
The pyroptosis-related gene
signature predicts prognosis and
reveals characterization of the
tumor immune
microenvironment in acute
myeloid leukemia

Tao Zhou1,2†, Kai Qian1,2†, Yun-Yun Li3†, Wen-Ke Cai4,
Sun-Jun Yin1, Ping Wang1 and Gong-Hao He1,5*
1Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People’s
Liberation Army, Kunming, China, 2College of Pharmacy, Dali University, Dali, China, 3Department of
Pharmacy, The Second People’s Hospital of Quzhou Zhejiang, Quzhou, China, 4Department of
Cardiothoracic Surgery, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army,
Kunming, China, 5Research Center of Clinical Pharmacology, Yunnan Provincial Hospital of Traditional
Chinese Medicine, Kunming, China

Background: Pyroptosis is a novel inflammatory form of programmed cell

death and a prospective target for cancer therapy. Nevertheless, little is

known about the association between pyroptosis-related genes (PRGs) and

acutemyeloid leukemia (AML) prognosis. Herein, we systematically investigated

the specific functions and clinical prognostic value of multiple PRGs in AML.

Methods: Univariate and LASSO Cox regression analyses based on TCGA and

GTEx databases were used to generate the PRG signature, whose predictive

efficacy of survival was evaluated using survival analysis, ROC, univariate and

multivariate Cox analyses as well as subgroup analysis. The BeatAML cohort was

used for data validation. The association between risk score and immune cell

infiltration, HLA, immune checkpoints, cancer stem cell (CSC), tumor mutation

burden (TMB), and therapeutic drug sensitivity were also analyzed.

Results: Six -PRG signatures, namely, CASP3, ELANE, GSDMA, NOD1, PYCARD,

and VDR were generated. The high-risk score represented a poorer prognosis

and the PRG risk score was also validated as an independent predictor of

prognosis. A nomogram including the cytogenetic risk, age, and risk score was

constructed for accurate prediction of 1-, 3-, and 5-year survival probabilities.

Meanwhile, this risk score was significantly associated with the tumor immune

microenvironment (TIME). A high-risk score is characterized by high immune

cell infiltration, HLA, and immune checkpoints, as well as low CSC and TMB. In

addition, patients with low-risk scores presented significantly lower IC50 values

for ATRA, cytarabine, midostaurin, doxorubicin, and etoposide.

Conclusion:Our findings might contribute to further understanding of PRGs in

the prognosis and development of AML and provide novel and reliable

biomarkers for its precise prevention and treatment.
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Introduction

Acute myeloid leukemia (AML) is the second most common

type of leukemia diagnosed in adults and accounted for

approximately 30% of all adult leukemia cases (Perna et al.,

2017), which is primarily characterized by heterogeneity of

molecular abnormalities and aberrant accumulation of

immature myeloid progenitors in bone marrow and peripheral

blood owing to impaired differentiation of hematopoietic

progenitors (Sperlazza et al., 2015). The invasive infiltration of

AML is mainly represented by a malignant extramedullary

infiltration which involves the skin, lymph nodes, liver, spleen,

and even central nervous system, and shows poorer prognosis in

clinic (Stölzel et al., 2011). In recent years, although the survival

and prognosis of AML patients were relatively prolonged with

the development and application of molecular targeted therapy

and combination therapy in clinical practice, the 5-year survival

rate remained at 27% for AML patients over 20 years old and

even 69% for patients younger than 20 partially due to the

absence of reliable prognostic biomarkers (Ball and Stein,

2019; Schlenk et al., 2019; Zheng et al., 2020). Thus,

identifying novel and effective prognostic biomarkers is

crucial for improving the AML prognosis and better

understanding the pathogenesis of AML.

Recently, much attention was paid to the influences of the

tumor microenvironment (TME) on tumorigenesis and

development, and alterations in TME components were found

at every stage of malignant development in almost all carcinomas

(Wu and Dai, 2017; Arneth, 2019). As an important component

of TME, the tumor immune microenvironment (TIME) was also

found to play prominent roles in tumor cell proliferation,

invasion, and metastasis (Fu et al., 2019). Numerous studies

showed that TIME was a key determinant of diagnosis and

therapeutic response in tumor patients (Xu B. et al., 2021;

Yang et al., 2021; Zeng et al., 2021; Wang et al., 2022).

However, TIME is complex and variable mainly because of

the multiple interaction networks among tumor, immune,

stromal, and mesenchymal cells along with various soluble

factors and changes in extracellular matrix (ECM)

components as well (Wu and Dai, 2017; Xu B. et al., 2021).

Therefore, identification of certain potential biomarkers related

to TIME would eventually contribute to better understanding of

tumor development and further identification of candidate

therapeutic targets.

As a highly specific inflammatory programmed cell death,

pyroptosis was reported to be significantly cross-correlated

with TIME according to previous studies (Orning et al., 2019;

Erkes et al., 2020). When persistent inflammation is present,

initial activation and assembly of inflammasome started

within host cells (Balahura et al., 2020). Subsequently, the

caspase was further activated and produced inflammatory

cytokines, eventually resulting in pyroptotic cell death (Broz

et al., 2010; Moujalled et al., 2021). In recent years, a growing

number of studies demonstrated that pyroptosis played crucial

roles in pathogenesis and progression of various types of

cancers including AML. It was reported that activation of

NLR family pyrin domain containing 1 b (NLRP1b) by small

molecule inhibitors of serine dipeptidase 8/9 (DPP8/9)

induced caspase-1 dependent pyroptosis, which, in turn,

suppressed the development of AML (Johnson et al., 2018).

Meanwhile, pyridoxine was also found to induce death of

primary AML cell in AML patients and prevent disease

progression by activating caspase-3/8 and promoting the

release of inflammatory factors (Yang et al., 2020). These

findings suggested that pyroptosis provided a tumor-

suppressive microenvironment and played an

immunomodulatory role in AML. However, the prognostic

influence of pyroptosis on AML patients was still largely

unknown. Moreover, due to technical limitations, most

previous studies were limited to a small number of

pyroptosis-related genes (PRGs), whereas the involved

PRGs might be far more in numbers and their antitumor

effects were very likely to interact with each other in a highly

coordinated manner. Therefore, a comprehensive analysis

regarding the features of TIME cell infiltration mediated by

multiple PRGs may provide a relatively whole profile of the

function of PRGs and also further insights into the underlying

mechanisms of AML occurrence and progression, which,

however, has not been investigated so far as we know.

Based on these backgrounds, we, herein, systematically

analyzed the differential expression of PRGs and the

prognostic value of these genes in clinical practice between

AML and normal samples and established an independent

prognostic PRG signature. Subsequently, we also explored

the relationship between pyroptosis and TIME as well as

evaluated the sensitivity of therapeutic drugs for AML

patients according to PRG prognostic signature. This study

identified reliable prognostic biomarkers for AML patients and

provided a novel scientific basis for future immunotherapy

in AML.

Materials and methods

Acquisition of data

The specific analysis process of the present study is

illustrated in Supplementary Figure S1. The RNA

sequencing (RNA-seq) data of 151 AML patients’ bone

marrow (BM) samples and 755 normal peripheral whole

Frontiers in Pharmacology frontiersin.org02

Zhou et al. 10.3389/fphar.2022.951480

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.951480


blood samples were acquired from The Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/) and the

Genotype-Tissue Expression (GTEx) database (https://www.

gtexportal.org/). Meanwhile, we obtained the corresponding

clinical features of 151 AML patients from TCGA and

eventually included 132 samples after excluding 19 samples

without survival time. Furthermore, the gene expression

profile and relevant clinical characteristic data of 91 AML

patients were downloaded from the BeatAML database (Tyner

et al., 2018) (http://www.vizome.org/aml/) as a validation

cohort. All patients’ clinical features are detailed in

Supplementary Table S1. The RNA-seq data of raw count

normalized from the aforementioned databases were utilized

for differential expression analysis. Then, the count values

were converted to transcripts per kilobase million (TPM)

values, which were further transformed to log2 (TPM + 1)

for subsequent analysis. In addition, the somatic mutation and

copy number variation (CNV) data were also retrieved from

TCGA database.

Pyroptosis-related genes

A total of 44 PRGs were retrieved from the GeneCards

(https://www.genecards.org/) and previously published

literature works (Man and Kanneganti, 2015; Wang and

Yin, 2017; Karki and Kanneganti, 2019; Xia et al., 2019),

all of which were protein-coding genes. The full details of

these genes are listed in Supplementary Table S2. However, as

the expression profile of GSDME and PTVK could not be

acquired from the GTEx database, we finally selected 42 PRGs

for further analysis. The location of PRGs on the

chromosome was plotted by the “RCircos” R package. The

“limma” R package was utilized to identify the differentially

expressed pyroptosis–related genes (DEPRGs) with a p

value <0.05 and |log2FC| > 0 between tumor and normal

tissues. The PRG somatic mutation landscape was presented

via the “maftools” R packages. The frequencies of genetic

amplification and deletion were also summarized. The

univariate Cox regression was performed to identify PRGs

significantly associated with overall survival (OS) in TCGA

cohort. Simultaneously, the Spearman correlation test was

applied to evaluate the associations across all PRGs and the

comprehensive results were visualized using the “igraph” R

package.

Consensus clustering

Consensus clustering was adopted to identify the distinct

pyroptosis-related patterns pertaining to the expression of

pyroptosis regulators using k-means algorithms (Hartigan and

Wong, 1979). The numbers and stability of clusters were

determined by the consensus clustering algorithms of the

“ConsensuClusterPlus” R package (Wilkerson and Hayes,

2010). We conducted 1,000 times repetitions to guarantee the

classification stability.

Construction and validation of a
prognostic gene signature by prognostic
DEPRGs

The significant prognostic-related DEPRGs were presented

via the “VennDiagram” R package. Subsequently, the least

absolute shrinkage and selection operator (LASSO) Cox

regression analysis using the “glmnet” R package was applied

to screen out the optimal candidate gene combination to

construct the prognostic gene signature (Tibshirani, 1997).

The optimal value of the penalty parameter λ was determined

by 10-fold cross-validation based on the minimum criteria.

According to the coefficient calculated by LASSO regression

and the standardized and normalized TCGA AML expression

level, the individual risk score of each AML patient could be

calculated using the following formula:

Risk score � ∑
n

i�1
Exp ipCoef i.

Simultaneously, the TCGA AML patients were separated

into high- and low-risk categories according to the median risk

score. The principal component analysis (PCA) and

t-distributed stochastic neighbor–embedding (t-SNE)

analysis were conducted using the “Rtsne” and “ggplot2” R

packages to investigate the distribution of various groups in

terms of gene expression levels in the constructed model.

Thereafter, we performed Kaplan–Meier analysis via the

“survminer” R package to assess the survival difference

between the two categories. The “survival” and “timeROC”

R packages were utilized to perform the time-dependent

receiver operating characteristic (ROC) curve analysis,

which was applied to evaluate the prognostic gene

signature’s predictive value. The prognostic significances of

gene signature and other clinical characteristics were further

investigated using univariate and multivariate Cox regression

analyses. Moreover, the same formula and statistical methods

were used to further validate the prognostic capacity of the

gene signature in the BeatAML cohort.

The chi-squared test was adopted to explore the

association of gene signature and clinicopathological

characteristics, which was visualized with a heatmap using

the “pheatmap” R package. TheWilcoxon signed-rank test and

Kruskal–Wallis H-test were utilized to compare the risk score

among various categories of these clinicopathological

characteristics, and the visualization of results was

presented via the boxplots.
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Establishment of the predictive
nomogram

The independent clinical features (cytogenetic risk, age,

and risk score) validated using univariate and multivariate

Cox regression analyses were enrolled to construct a predictive

prognosis nomogram using the “rms” and “survival” R

packages. Time-dependent ROC curves for 1, 3, and 5 years

were used to assess the performance of the nomogram. The

calibration curves for 1-, 3-, and 5-year prediction were

utilized to depict the consistency between predicted and

actual survival. Furthermore, an alluvial diagram was

drawn to show the changes in pyroptosis-related clusters,

risk score, age, and cytogenetic risk using the “ggalluvial” R

package.

Functional enrichment analysis of DEGs
based on the high- and low-risk groups

AML patients in TCGA cohort were batched into two

groups according to the median risk score, respectively. The

same approach was also performed in the BeatAML cohort.

Afterward, the differentially expressed genes (DEGs) were

extracted by utilizing the “limma” R package with the

criteria of FDR <0.05 and |log2FC| > 1. Gene ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses of the DEGs were

performed using the “clusterProfiler” R package (Wu et al.,

2021).

Assessment of the tumor immune
environment

We applied the ESTIMATE algorithm to calculate the

stromal, immune scores, and ESTIMATE scores of each

patient in TCGA and BeatAML cohorts (Yoshihara et al.,

2013). Furthermore, considering the significant roles of the

immune cell infiltration in the TIME, the infiltrating scores of

22 kinds of human immune cells in each AML sample were

computed by the CIBERSORT algorithm with

1,000 permutation. Furthermore, the single-sample gene set

enrichment analysis (ssGSEA) algorithm using the “gsva” R

package was utilized to calculate infiltration abundance of

29 immune signatures in the AML TIME. Subsequently, we

explored the association between the enrichment scores of

22 kinds of immune cells and the risk score or expression

levels of the aforementioned identified optimal candidate genes.

In addition, the Wilcoxon signed-rank test was applied to

estimate the differences in expression of human lymphocyte

antigen (HLA) signature and immune checkpoint genes

between high- and low-risk groups.

Analysis of CSC, TMB, and drug
susceptibility between high- and low-risk
groups

The gene expression–based stemness index was acquired

from the previous study (Malta et al., 2018). We explored the

correlation between risk score and cancer stemness cell (CSC).

Simultaneously, we also computed the tumor mutation burden

(TMB) score for each AML sample based on the “maftools” R

package and analyzed the differences in the TMB score between

high- and low-risk groups, as well as the associations between the

TMB score and risk score. To investigate the differences in

efficacy of therapeutic drugs in patients between high- and

low-risk categories, we calculated the semi-inhibitory

concentration (IC50) values of drugs commonly used for the

treatment of AML via the “pRRophetic” R package.

Statistical analysis

All statistical analyses were performed by R software (version

4.0.4). Association coefficients were calculated by the Spearman

correlation test. Log-rank tests were used for identifying the

significance of differences in Kaplan–Meier analysis curves. p

values of less than 0.05 were considered statistically significant

(*p < 0.05) in all analyses.

Results

Landscape of expression and genetic
alterations of PRGs in AML

This study first summarized the incidence of CNVs and

somatic mutations of 42 PRGs in AML. The exploration of

CNVs demonstrated prevalent CNV alterations in all 42 PRGs,

among which the CNV of TIRAP was significantly increased

while the CNVs of CEBPB, PLCG1, and VDR were significantly

decreased (Figure 1A). Furthermore, the location of CNV

variation in the PRGs on their respective chromosomes is

displayed in Figure 1B. In the following assessment of the

genetic mutation of PRGs in depth, only CASP3 (1%),

NLRC4 (1%), NLRP1 (1%), NLRP2 (1%), NLRP3 (1%),

TFAM (1%), and TXNIP (1%) showed the genetic mutation

in AML patients (Figure 1C). To determine whether these gene

variants influence the expression of PRGs in patients with AML,

we further calculated the mRNA expression levels of 42 PRG

between normal and tumor specimens and then identified the

statistically significant DEGs (p < 0.05) that correspond to

them. As a result, 19 downregulated and 16 upregulated

genes were observed in the tumor group (Figure 1D).

Subsequently, we discovered that the CNV alteration may be

a major factor resulting in perturbations on PRG expression
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levels. In comparison to normal samples, the expressions of

genes with deleted CNVs were found to be significantly

decreased in AML samples (such as CEBPB, PLCG1, and

VDR), and vice versa (such as TIRAP). Based on the

aforementioned results, the composite landscape of

interaction and correlation of the 42 PRGs and their

prognostic value for AML patients was further

comprehensively displayed in a pyroptosis network, which

showed that 12 pyroptosis genes exhibited a significant

prognostic value (Figure 1E; Supplementary Tables S3, S4).

Tumor classification based on the DEPRGs

To further investigate the expression features of the PRGs in

AML, we applied the consensus clustering algorithm to classify

the patients with AML according to the expression spectrums of

35 DEPRGs (Supplementary Figures S2A–H). We found that k =

3 seemed to be the optimum alternative for categorizing the

entire cohort into three subtypes (Figure 2A and Supplementary

Figures S2I–J), based on which satisfied separation across the

three clusters was achieved according to the PCA and t-SNE plots

(Figures 2B,C). The OS time was also compared between the

three groups, but no significant difference was observed (p = 0.11,

Figure 2D). Furthermore, the heatmap displayed the PRG

expression profile and clinicopathological characteristic such

as race, gender, age, FAB classification, cytogenetic risk, FLT3-

ITD mutation, and NPM1 mutation, with NPM1 mutation (chi-

squared test: p < 0.01) and FAB classification (p < 0.001)

demonstrating significant differences among the three groups

(Figure 2E).

Gene signature construction and
validation from prognostic DEPRGs

To further explore the prognostic value of the DEPRGs in

AML patients, the gene signature was constructed. As shown

FIGURE 1
Genetic and transcriptional alteration of PRGs in AML. (A) Frequencies of CNV gain, loss, and non-CNV for 42 PRGs in TCGA cohort. (B)
Locations of CNV alterations in PRGs on 23 chromosomes. (C)Mutation frequency of PRGs in TCGA cohort. (D) Heatmap of expression patterns of
PRGs in normal and tumor samples. (E)Network of correlations including PRGs in TCGA cohort. PRGs, pyroptosis-related genes; AML, acutemyeloid
leukemia; CNV, copy number variant; TCGA, The Cancer Genome Atlas.
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in Figure 3A, 12 of 42 PRGs showed a significant prognostic

value according to univariate Cox regression analysis, among

which 10 genes were overlapped between DEPRGs and

prognostic genes and were identified as the prognostic

DEPRGs. The specific prognostic value of 10 genes is

further depicted in Figure 3B and Supplementary Table S5

with five risk and five favorable factors, respectively.

Subsequently, based on 1,000 times 10-fold cross-validation

in LASSO Cox regression analysis, the minimum of the λ value

was selected as the optimum λ value (0.0278). Then, six of

10 genes with not-zero coefficients were screened to construct

the gene signature according to the optimum λ (Figures 3C,D).

The risk score of each patient is computed as follows: risk

score = (−0.0993153386641694 × expression of CASP3) +

(−0.0669072839409446 × expression of ELANE) +

(1.29694083393916 × expression of GSDMA) +

(−0.164405100033389 × expression of NOD1) +

(0.440274519545682 × expression of PYCARD) +

(0.00707428724075096 × expression of VDR). Then, the

patients were separated into the high-risk group (n = 66) and

low-risk (n = 66) group according to the median risk score

(Figure 4A). The distribution of the risk score indicated that the

OS status in the high-risk category was significantly worse than

that in the low-risk category (Figure 4B). Further PCA and t-SNE

analyses showed identifiable dimensions between the high-risk

and low-risk categories (Figures 4C,D). Meanwhile, the

Kaplan–Meier survival curves demonstrated significantly

superior OS in patients with low scores than those with high

scores (p < 0.0001; Figure 4E). Furthermore, time-dependent

ROC analysis also revealed that this gene signature exhibited a

favorable prognostic performance with AUCs of 0.736, 0.769,

and 0.815 at 1-, 3-, and 5-year, respectively (Figure 4F).

FIGURE 2
Tumor classification based on the DEPRGs. (A) 132 AML patients were classified into three clusters according to the consensus clusteringmatrix
(k = 3). (B) PCA and (C) t-SNE analysis exhibiting a remarkable difference in transcriptomes among three clusters. (D) Kaplan–Meier OS curves for
three clusters. (E)Heatmap and clinicopathological features of three clusters. DEPRGs, differentially expressed pyroptosis-related genes; AML, acute
myeloid leukemia; PCA, principal component analysis; t-SNE, t-distributed stochastic neighbor embedding; OS, overall survival.
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To verify the capability of the 6-gene signature, the

BeatAML dataset was downloaded as an external validation

cohort. We calculated the risk scores of patients with the same

formula and stratified patients into high-risk (n = 45) and low-

risk (n = 46) groups (Supplementary Figure S3A). Similarly,

patients in the two groups of the BeatAML cohort were

distributed in various directions based on the PCA and

t-SNE analyses (Supplementary Figures S2C–D). Similar to

the results of TCGA cohort, patients with low scores were

found to have significantly longer OS and a favorable

prognostic value (p = 0.0034) in the validation cohort

(Supplementary Figures S3B,E). In addition, the results of

1-, 3-, and 5-year ROC curves also possessed

relatively higher AUC values (0.654, 0.800, and 0.659),

indicating that the signature had excellent predictive

capability for survival of AML patients (Supplementary

Figure S3F).

Independent prognostic value of the 6-
gene signature and evaluation of clinical
characteristics

We performed univariate and multivariate Cox analyses to

assess the possibility of the risk score functioning as an

independent prognostic factor. The results of univariate

Cox regression analysis demonstrated that the risk score

was a significant independent predictor of poor survival in

both TCGA (p < 0.001, HR = 3.176, 95% CI = 2.122–4.754;

Figure 5A) and BeatAML cohorts (p = 0.005, HR = 3.108, 95%

CI = 1.407–6.867; Figure 5C). Multivariate analysis also

revealed that the risk score was a critical prognostic factor

for AML patients in both cohorts after accounting for other

confounders (p < 0.001, HR = 3.356, 95% CI = 1.958–5.753 for

TCGA cohort and p = 0.031, HR = 2.602, 95% CI =

1.092–6.201 for the BeatAML cohort; Figures 5B,D).

FIGURE 3
Construction of a PRG signature for AML in TCGA cohort. (A) Ten prognostic DEPRGswere identified via the Venn diagram. (B) Forest plots show
the results of univariate Cox analysis of OS for 10 prognostic DEPRGs. (C) LASSO regression of the 10 prognostic DEPRGs. (D) Cross-validation for
turning the parameter selection in the LASSO regression. PRG, pyroptosis-related gene; AML, acute myeloid leukemia; TCGA, The Cancer Genome
Atlas; DEPRGs, differentially expressed pyroptosis-related genes; OS, overall survival; LASSO, the least absolute shrinkage and selection
operator.
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FIGURE 4
Prognostic study of TCGA cohort via the PRG signature model. (A) Risk scores and (B) survival status of AML patients. (C) PCA and (D) t-SNE
analysis showing the different gene expression of samples. (E) Kaplan–Meier OS curves for high-risk and low-risk groups. (F) The 1-, 3-, and 5-year
ROC curve to predict the survival status. TCGA, The Cancer Genome Atlas; PRG, pyroptosis-related gene; PCA, principal component analysis; t-SNE,
t-distributed stochastic neighbor embedding; OS, overall survival; ROC, receiver operating characteristic.
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The chi-squared test of correlations between the risk

subgroups and clinicopathological features indicated that

NPM1 mutation (p < 0.05), cytogenetic risk (p < 0.001),

FAB classification (p < 0.001), and PRG clusters (p < 0.001)

were significantly associated with risk subgroups

(Figure 5E). Subsequently, the Wilcoxon signed-rank test

was applied to compare the differences in risk scores across

respective ;groups of the aforementioned

clinicopathological characteristics, also demonstrating a

remarkable relationshipof these clinicopathological

characteristics with risk scores (Supplementary Figures

S4A–D).

In addition, we further assessed whether the risk score

could still maintain a good prediction of survival

across different subgroups. The results showed that low-risk

patients also showed a better prognosis than high-risk

patients in all subgroups, with statistically

significant results in the following subgroups: race (white:

p < 0.0001), gender (male: p = 0.018; female: p = 0.0001),

age (≤55 years: p = 0.024; >55 years: p = 0.00045), FAB

classification (M0: p = 0.017; M2: p = 0.011), cytogenetic

risk (intermediate: p = 0.036), NPM1 mutation (positive:

p = 0.0051; negative: p = 0.0029), and FLT3-ITD mutation

(positive: p = 0.034; negative: p = 0.0019) (Supplementary

Figures S5A–R).

Development of a prognostic nomogram
for AML

In consideration of the fact that the risk score alone was not

sufficient to predict OS in AML patients, a nomogram

incorporating the risk score and clinicopathological features

was constructed to forecast 1-, 3-, and 5-year OS of AML

patients according to the significant results of multivariate

Cox regression analysis (Figure 6A). Furthermore, ROC

curves indicated that this nomogram exhibited a good

prognostic performance with AUCs of 0.738, 0.768, and

0.815 at 1-, 3-, and 5-year, respectively (Figure 6B). The

subsequent calibration plot showed the proposed nomogram

operated in a manner consistent with an ideal model

(Figure 6C). Moreover, the alluvial diagram was applied to

visualize variations in the aforementioned characteristics of

AML patients (Figure 6D).

Functional annotation of the 6-gene
signature

To further investigate the potential biological functions and

pathways of the 6-gene signature, the DEGs across the high-risk

and low-risk categories were applied to perform GO and KEGG

FIGURE 5
Univariate and multivariate Cox regression analyses for the risk score. (A) Univariate and (B) multivariate Cox regression of the risk score and
other clinical characteristics associated with OS in the TCGA cohort. (C) Univariate and (D) multivariate Cox regression of the risk score and other
clinical characteristics associated with OS in the BeatAML cohort. (E) Heatmap for association between clinicopathologic characteristics and risk
groups. OS, overall survival.
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analyses. The specific details of results were presented in

Supplementary Tables S6, S7. Furthermore, these DEGs of

TCGA cohort were significantly enriched in biological

processes and molecular functions with immunity, such as

neutrophil activation involved in the immune response,

leukocyte cell–cell adhesion, regulation of leukocyte

FIGURE 6
Construction and evaluation of a PRG signature-based nomogram. (A) Nomogram incorporating cytogenetic risk, age, and risk score was
constructed to predict 1-, 3-, and 5-year survival probabilities. (B) ROC curves for 1-, 3-, and 5-year were used to assess the performance of
nomogram. (C) Calibration curves for 1-, 3-, and 5-year prediction were utilized to depict the consistency between predicted and actual survival. (D)
Alluvial diagram of subgroup distributions with different risk scores and survival outcomes. PRG, pyroptosis-related gene; ROC, receiver
operating characteristic.
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FIGURE 7
GO and KEGG functional enrichment between high- and low-risk groups. Top 10 results of (A)GO and (B) KEGG pathway enrichment of DEGs
among high- and low-risk groups in TCGA cohort. Top 10 results of (C) GO and (D) KEGG pathway enrichment of DEGs among high- and low-risk
groups in the BeatAML cohort. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes.
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FIGURE 8
Immune characteristics analysis in TCGA cohort. (A) Associations between risk score and both immune and stromal scores. (B) Correlations
between the abundance of immune cells and six genes in the proposed signature. Comparison of the enrichment scores of (C) 22 kinds of immune
cells and (D) 29 types of immune signatures between high- and low-risk groups. (E) Expression of HLA in the high- and low-risk groups. (F)
Expression of immune checkpoints in the high- and low-risk groups. p values are shown as: ns, not significant. *p= < 0.05; **p= < 0.01; ***p= <
0.001. HLA, human lymphocyte antigen.
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proliferation, immune receptor activity, immunoglobulin

binding, and IgG binding (Figure 7A). Several of these

biological processes and molecular functions were

validated in the BeatAML cohort, including neutrophil

activation involved in the immune response, leukocyte

cell–cell adhesion, and immune receptor activity

(Figure 7C). The results of KEGG analysis also showed

enrichment of immune-related pathways, which included

cytokine–cytokine receptor interaction, phagosome, viral

protein interaction with cytokine and cytokine receptor,

intestinal immune network for IgA production, and

leukocyte transendothelial migration in both TCGA and

BeatAML cohorts (Figures 7B,D). Moreover, pathways

regarding B-cell receptor signaling and Th1 and Th2 cell

differentiation were also found in TCGA (Figure 7B) and

BeatAML cohorts (Figure 7D), respectively. In addition,

several cancer-related pathways were simultaneously

identified in both cohorts, such as transcriptional

misregulation in cancer, hematopoietic cell lineage, ECM-

receptor interaction, and proteoglycans in cancer. These

results revealed that the pyroptosis-related 6-gene

signature was significantly associated with cancer

progression and particularly possessed an important

influence on the immunoregulation of TME.

Tumor immune microenvironment
analysis of 6-gene signature

Next, we further explored the association between the

pyroptosis-related gene signature and tumor immune

microenvironment and observed that the low-risk patients

were significantly correlated with inferior immune and

ESTIMATE scores in the TCGA cohort (Figure 8A).

Subsequently, based on the CIBERSORT algorithm, we

compared the distribution of 22 kinds of immune cells in

diverse risk subgroups. A significant difference in the

distribution of immune cells was observed in high-risk

patients with superior infiltration of monocytes and

M2 macrophages, but inferior infiltration of plasma cells,

resting memory CD4+ T cells, follicular helper T cells,

activated mast cells, and resting mast cells (Figure 8C and

Supplementary Table S8). Concurrently, we analyzed the

connection between the risk score and the infiltration score

of immune cells, which further suggested that the risk score

was significantly associated with the six kinds of immune cells

(Supplementary Figure S6). We also evaluated the relationship

between the six pyroptosis-related genes in the proposed

signature and abundance of immune cells. The results

showed that partial immune cells were significantly

associated with the six genes (Figure 8B). Furthermore,

comparisons of 29 immune signatures provided by the

ssGSEA algorithm revealed that high-risk patients exhibited

higher infiltration scores of APC co-inhibition, APC co-

stimulation, B cells, CCR, checkpointa, DCs, HLA, iDCs,

increased inflammation , neutrophils, parainflammation,

pDCs, T-cell co-inhibition, T helper cells, Tfh, TIL, and

type I IFN response, whereas lower infiltration scores of

mast cells (Figure 8D and Supplementary Table S9)

indicated higher immune infiltration among high-risk AML

patients.

Considering that HLA-related genes play a critical role in

regulating the immune response, we then compared the

expression of HLA-related genes between different subgroups

and observed that most of the HLA-related genes were

upregulated in the high-risk group (Figure 8E). Furthermore,

we investigated the correlation between 33 immune checkpoints

and the 6-PRG signature. Figure 8F demonstrated that high-risk

patients exhibited significantly higher expression of PDCD1,

CD200R1, CAG3, and LGALS9 as well as lower expression of

CD160, NRP1, and TMIGD2 compared with low-risk patients. In

addition, similar results were also observed in the BeatAML

cohort (Supplementary Figures S7, S8; Supplementary Tables

S10, S11).

Analysis of CSC index, TMB, and drug
susceptibility

Considering that the CSC index and TMB play a critical role in

the pathogenesis and immunotherapy of AML (Eppert et al., 2011;

Snyder et al., 2014), we further explored the potential correlation

between them and the PRG signature. As shown in Figure 9A, the

risk score was negatively associated with the CSC index (R = −0.29,

p = 0.0011), suggesting that AML cells with a lower risk score

exhibitedmore significant stem cell characteristics and a lower degree

of cell differentiation.Meanwhile, we also found that TMBof the low-

risk group was significantly higher than that of the high-risk group

(p = 0.039; Figure 9B) and was negatively associated with the PRG

risk score (R = −0.25, p = 0.019; Figure 9C). Furthermore, the

Kaplan–Meier survival curve for combining the PRG risk score and

TMB revealed significant differences in survival outcomes and

patients with high TMB and low PRG risk scores exhibited a

more pronounced survival advantage (Figure 9D).

Moreover, given the impact of drug susceptibility on patients

with AML, we further selected the drugs currently used in the

treatment of AML to assess the sensitivity of these drugs to

patients in both high-risk and low-risk subgroups. Interestingly,

we observed that patients in the low-risk group presented

significantly lower IC50 values for ATRA, cytarabine,

midostaurin, doxorubicin, and etoposide than those in the

high-risk group (Figures 9E–I). Therefore, patients with a low

PRG risk score might exhibit better treatment benefits when

administrating these drugs. Nevertheless, the effect of these drugs

in the treatment of AML patients remains to be further proven in

future clinical studies.
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Discussion

AML is a rapidly progressive hematologic tumor with poor

prognosis, and its development can be influenced by multiple factors

(Coombs et al., 2016), among which genes associated with

programmed cell death (PCD), such as autophagy-related genes

and ferroptosis-related genes, were demonstrated to serve as

reliable prognostic biomarkers for AML (Fu et al., 2021; Shao

et al., 2021). However, studies regarding the role of PRGs in

AML are restricted to individual PRG and have never been

investigated systematically and comprehensively. In this study, we

detected the global alterations in PRGs at transcriptional and genetic

levels in AML and identified a total of 42 currently available PRGs,

themajority of whichwere differentially expressed betweenAML and

normal samples and were associated with prognostic of this disease.

Subsequently, we first constructed a reliable and valid PRG signature

for AML based on six PRGs. In both training and validation cohorts,

the PRG signature exhibited robust capabilities in predicting survival

outcomes in AML patients. Furthermore, patients with low and high

PRG scores showed significantly different clinicopathological

features. In addition, univariate and multivariate Cox regression

analyses also indicated that the PRG signature was an

independent prognostic factor. These findings confirm that the

present PRG signature can be used as a potentially reliable

prognostic biomarker in AML patients with various

clinicopathological features.

FIGURE 9
Comprehensive analysis of the risk score in AML. (A) Associations between the risk score and CSC index. (B)Comparison of TMB between high-
and low-risk groups. (C) Spearman correlation analysis of risk score and TMB. (D) Kaplan–Meier OS curves for different TMB and risk score
subgroups. (E–I)Relationships between risk score and therapeutic drugs of AML sensitivity. AML, acutemyeloid leukemia; CSC, cancer stemness cell;
TMB, tumor mutation burden; OS, overall survival.
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Pyroptosis, a novel form of PCD, is activated via the

classical caspase-1 inflammasome or non-classical caspase-4,

caspase-5, and caspase-11–mediated pathways (Tang et al.,

2020). Recently, the dual roles of pyroptosis in tumor

progression gained substantial attention. On one hand, it

was reported that inflammatory molecules released from

cancer cells underwent pyroptosis and gradually converted

the surrounding normal cells into cancer cells by altering the

microenvironment, which in turn promoted tumor

development. On the other hand, induction of tumor cell

pyroptosis was also found to inhibit tumor progression and

was demonstrated to be a potential therapeutic target for drug

development (Tang et al., 2020). This situation raised great

uncertainties regarding the exact functions of pyroptosis in

different kinds of tumors. Furthermore, as a matter of fact,

previous studies paid much more attention to the roles of

PRGs in solid carcinomas [e.g., hepatocellular carcinoma

(Deng et al., 2022), breast cancer (Xu D. et al., 2021), lung

adenocarcinoma (Lin W. et al., 2021), and colon

adenocarcinoma (Luo et al., 2021)] with few studies,

however, focusing on non-solid tumor such as AML.

Therefore, the present study provided a novel signature

featuring six PRGs (CASP3, ELANE, GSDMA, PYCARD,

VDR, and NOD1) that exactly and independently predict

OS in AML patients, which will further contribute to

driving the progress of individualized prevention and

treatment of AML.

Among these PRGs, caspase-3 (CASP3) is an important

member of the caspase family, whose activation degrades

structural and functional proteins within cells, thereby

inducing cell death (Yuan et al., 1993; Jiang et al., 2020). In

the present study, we further revealed that this gene was a

favorable predictor of survival outcome and was associated

with increased sensitivity to chemotherapeutic drug–induced

pyroptosis in AML, which was in accordance with the

previous study indicating that CASP3 activated by

chemotherapeutic drugs initiated pyroptosis (Wang et al.,

2017). Moreover, as one of the primary serine proteases

secreted by neutrophils, ELANE is another known promoter

of pyroptosis, which activates inflammatory factors such as

TNF-α, IL-1β, and IL-18, and induces neutrophils to develop

pyroptosis (Kambara et al., 2018; Mirea et al., 2020).

Consistently, our study demonstrated that the expression of

ELANE was significantly higher while the neutrophil

infiltration score was remarkably lower in the low-risk group

than that in the high-risk group, which was very likely to be

ascribed to its pyroptosis activating effect in neutrophils. In

addition, the following three genes (GSMDA, PYCARD, and

VDR) that were previously identified as possible executors of

pyroptosis and usually exhibited tumor-suppressive effects (Ding

et al., 2016; Šutić et al., 2019; Ling et al., 2022) were also identified

and included in the present PRG signature, further confirming its

reliability.

Interestingly, as a cytoplasmic pattern recognition

receptor, NOD1 was initially identified as a cancer-

promoting factor and might cause tumor recurrence and

metastasis, resulting in a poorer prognosis through

pyroptosis (Fernández-García et al., 2022; Nomoto et al.,

2022). However, in our research, NOD1 showed a

significant cancer suppressive effect and acted as a

protective factor against AML. This discrepancy may be

attributed to the specialized tumor microenvironment in

non-solid tumors and also the antitumor immune activity

generated by the combined action of multiple PRGs although

the exact mechanism still needs to be further explored.

Previous studies showed that the pro-inflammatory effects of

pyroptosis are strongly associated with the regulation of the

TIME (Tsuchiya, 2021). This study hence further evaluated

the association between the risk score of PRG signature and

TIME and found that patients in the high-risk group showed

significantly higher immune scores than those in the low-risk

group. The abundance of infiltration of tumor immune cells also

differed between the high- and low-risk groups. Compared to the

high-risk group, resting CD4+ memory T cells and follicular

helper T cells, both of which were well acknowledged to exert an

important antitumor immune response (Watanabe, 2021),

infiltrated at higher levels in the low-risk group; whereas

tumorigenesis-, angiogenesis- and immune suppressing-related

cell types, such as M2 macrophages, monocytes, antigen-

presenting cells, and dendritic cells (Nahas et al., 2019; Fu and

Song, 2021), showed higher infiltration levels in the high-risk

group. Furthermore, this study also found that patients with

high-risk scores showed a worse prognosis than those with low-

risk scores. These findings indicated that the immunosuppressive

microenvironment played important roles during the genesis and

development of AML. In fact, it was reported that the formation

of an immunosuppressive microenvironment usually prevented

the clearance of tumor cells by tumor killer cells, resulting in an

increased risk of malignant progression and death (Fridman

et al., 2022). Therefore, treatment targeting the

immunosuppressive microenvironment may be a more

effective and feasible strategy for patients with a poor

prognosis of AML.

In addition, we found that most HLA-related genes and PDCD1

expressed at higher levels in the high-risk group, which was in

accordance with the current increasing evidence regarding solid

tumors suggesting that more HLA presentation increased the

recognition of tumor-associated antigens in HLA and in turn

increased the success of immune checkpoint inhibitor therapy

(Rizvi et al., 2015; Lin W. Y. et al., 2021). Therefore, patients

with high-risk scores for AML might benefit more from

immunotherapy, especially with immune checkpoint inhibitors

PD-1.

Although we analyzed the effects of pyroptosis on the prognosis

of AML and the immune microenvironment as comprehensively as

possible, the following points remained inadequate. First, all analyses
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in this study were performed based on retrospective data from public

databases, and large prospective studies and additional in vivo and

in vitro experimental studies are still needed to confirm our findings.

Second, the proposed gene signature model was validated only

through public databases. Therefore, further clinical trials are still

necessary to confirm its clinical utility. In addition, the potential

mechanisms of the present six key genes used formodel construction

need to be further explored in order to better understand the

tumorigenesis and development of AML. Finally, subgroup

analyses for ethnicity were not performed in our study mainly

due to the limited availability of current original data, which

should also be validated in future studies based on additional risk

models.

In summary, we comprehensively analyzed the expression and

genetic changes of PGRs in AML, their prognostic value in the

clinic, their important role in TIME, and constructed a signature

consisting of six PRGs, which was confirmed to be an independent

predictor for OS in AML patients. The results of this study will

contribute to further understanding of the important role of

pyroptosis in the prognosis and development of AML and

provide novel and reliable biomarkers for its precise prevention

and treatment.
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