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The tissue P system (TPS) possesses intrinsic attributes of parallel execution in

comprehensive data and instruction space, which provides fast convergence

during the transition from local to global optima. Method- In this study, we have

proposed and built a TPSysIR framework using the TPS for image registration

that optimizes upon themutual information (MI) similarity metric to find a global

solution. Result- The model was tested on single- and multimodal brain MRI

scans and other prominent optimization-based image registration techniques.

Conclusion- Results show that, among all methods, TPSysIR provides better MI

values with minimum deviation in a range of experiment setups conducted

iteratively.
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Introduction

Medical image registration involves processing image data from multiple sources,

each having a different coordinate system. These sources often have different sensors and

viewpoints, transforming the data collected into a single spatial coordinate system. Image

registration requires optimized parameter values for the required transformation,

translation, or rotation to be applied over the source images with respect to the

reference image to achieve matching. Image registration has been utilized in many

recent advances in image reconstruction (Prakash et al., 2019), land cover mapping

(Wang et al., 2020), and weather prediction (Kakimoto et al., 2019). A large number of

image registration methods are already available, which can be classified as single or

multimodal, automatic vs. inter-active, spatial domain vs. frequency domain-based,

intensity vs. feature-based, and transform-based. Image registration finds essential

applicability in the areas of remote sensing and medical image processing. Image

registration can be viewed as an optimization problem (Song et al., 2017) whose aim

is to maximize the similarity or minimize the cost in the process. It takes single or multiple

image data and transforms them according to the parameters to maximize the similarity

to the target reference image. Various parameters which can be optimized are correlation

ratio (Gong et al., 2019), mutual information (Ramamoorthy et al., 2010), energy of joint

probability distribution (Susskind et al., 2011), normalized correlation (Lewis, 2001), and

normalized mutual information (Knops et al., 2005).

Optimization methods such as Powell’s were among the earliest attempts to solve

image registration problems. However, the algorithm provided local optimum results, and

the objective search speed was also low. These shortcomings lead to the utilization of
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nature-based optimization techniques for image registration as

the next-generation solution. The genetic algorithm (GA)-based

method has been proposed by Rouet, Jacq, and Roux (Rouet et al.,

2000). Utilizing the local optima, LI Zuo-zhu (Zuo-zhu, 2007)

applied GA on mutual information (MI) metric optimization to

achieve an image registration solution. Rajapakse and Guojun

(Rajapakse and Guojun, 1999) performed image registration by

utilizing GA on time-series images. Still, the nonexistence of fine-

tuning ability coupled with considerable execution time led

researchers to explore better methods. Chen, Lin, and Mimori

(Lin et al., 2012) utilized particle swarm optimization (PSO) on

the image dataset, optimizing the MI measure. Wachowiak et al.

(Wachowiak et al., 2004), Chel, and Nandi (Chel and Nandi,

2013) used hybrid PSO on 3-D medical images; similarly

optimization was performed on normalized MI decreasing the

overall execution time. Basset et al. (Abdel-Basset et al., 2017)

utilized modified MI metric and PSO for image registration. This

method fell into local maxima with increasing degrees of

rotation. Zhang et al. (Zhang et al., 2010) integrated PSO with

Powell to overcome these shortcomings and applied them to

image registration.

In recent years, machine learning (Zhu et al., 2022) and deep

learning (Zhu et al., 2021) have found applications in image

processing and registration. Balakrishna et al. (Balakrishnan

et al., 2019) used a convolutional neural network for 3D

image registration. Ali and Rittscher (Ali and Rittscher, 2019)

utilized concatenated convolutional layers for deformable image

registration. Mansilla, Milone, and Ferrante (Mansilla et al.,

2020) proposed the AC-RegNet architecture to achieve image

registration.

Membrane computing (MC) (Paun, 2000) was introduced by

Gheorghe Paun, inspired by the computational mechanisms of

living cells or tissue systems. Biological and computational

processes at the cellular and tissue level are performed in a

maximally parallel and randomly distributed manner. These

random processes and communications are triggered when

appropriate compounds and catalyst inhibitors are present in

the cellular environment. Membrane computing forms the

computational model called P systems; these have been

efficiently utilized to obtain solutions to many NP-complete

(Paun, 2001) problems by creating a trade-off between time

and space complexity. P systems are built upon low-level

biological interactions or processes by equipping them to

capture the computational essence of complex cell metabolism

and information interchange. The P system may use any one of

the following mechanism or mechanisms to create variants of the

system: selective object recognition, controlled exchange of

particles through protein channels, cytoplasmic metabolism or

division, and dissolution of membranes. The P system has been

proved computationally complete and is utilized to solve many

optimization-based and NP-complete problems (Paun, 2001),

such as subset sum (Jiménez and Núñez, 2005), TSP, and tricolor

problems. Computation in a P system proceeds in a maximally

FIGURE 1
Membrane system.

FIGURE 2
Membrane hierarchy.
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parallel and non-deterministic path, which can be tuned

according to the execution model of the problem.

Membrane system

The membrane system shown in Figure 1 can be viewed as a

hierarchically organized set of membranes existing inside an

outer space called the environment. The tree in Figure 2 can

represent the hierarchical organization of a membrane system in

Figure 1. The tree’s root is associated with the skin membrane,

and the leaves are associated with the elementary membranes.

The membranes at the same level can float around in the same

membrane compartment. The hierarchical string expression 1) is

written for Figure 2 membrane structure:

[1[2]2[3]3[4[5 ]5[6 ] 6 ] 4 ]1. (1)

P systems

The operations of a P System can be visualized as an

extended distributed computation machine that presents a

range of solutions to a particular problem. The nature of the

multiset solution present in the output environment or

membrane varies, based on the halting condition associated

with the problem. The distribution and transition of multisets

in the membrane regions determine the generated languages

and their related grammar.Formally a P system ∏ can be

defined as

∏ � O,M,m1, m2, . . .mn, R1, R2, . . . , Rn, δ0( ). (2)

Here, O is the finite set of objects. M is the set of membranes.

mi is the multiset of objects in the membrane. Ri is the rule inside

the corresponding membrane. δ0 is the set of output membrane.

A P System can be viewed as a hierarchical system

comprising of a three-dimensional space referred environment

containing membranes. The membranes contain a set of objects

called multiset, coexisting with rules and other

membranes.Figure 3 shows a P System.

The P System can be formally written as

FIGURE 3
P system.

FIGURE 4
P system.

FIGURE 5
Tissue P system for TPSysIR algorithm.

Frontiers in Pharmacology frontiersin.org03

Kujur and Sahana 10.3389/fphar.2022.949872

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.949872


∏ � a, b, c, d, , e{ }, 1, 2, 3, 4, 5, 6{ }, , ac, cd2, ab2c, b2c2{ }(
e → eout,{ } ac → ab, a → bout{ }, cd → eout{ },{
bc → eout{ }, bc → cd, ac → #{ }, bc → eout{ },

bc → a, a → #{ }}, 1{ })
. (3)

Here, O = {a, b, c, d, e}, M = {1, 2, 3, 4, 5, 6}, and mi =

{, ac, cd2, ab2c, b2c2} Ri � {e → eout,}, {ac{
→ ab, a → bout}, {cd → eout}, {bc → eout}, bc → cd, ac{
→ #}, {bc → a, a → #}} δ0� 1{ }.The rules in the membranes

are represented as x → y or x → y#, with x ϵ O+ and v ϵ
(O × Tar)*, where Tar = {here; in; out}. Many forms of multiset

rewriting and communicating rules have been utilized to

convey more information about the state. There are mainly

two types of rules: evolution and communication rules. The

evolution rules govern the evolution of the membrane state,

and communication rules facilitate communication, i.e., data

transportation from one membrane to another. Evolution

rules are of the form l → m or l → #; here, the occurrence

of the # symbol leads to the dissolution of the membrane

wherever the rule is executed, and all multisets currently

existing inside it are passed onto its parent membrane.

Communication rules are of form w → xoutyin; here the

multiset w forms two multisets, x and y ; here, x moves

outside the membrane to the parent whereas y moves to

the child existing inside the current membrane.

Computation process in a P system

Computation in a P system is performed in a non-

deterministic and maximally parallel manner. The

configuration changes from an initial state to the next

state in an asynchronous manner, referred to as the

transition of a P system. The computation is thus the

continuous transition of the P system by applying the rules

in a non-deterministic and maximally parallel manner until

the system halts. The halting condition is achieved when no

further rules can be applied and the output is obtained as the

contents of the output membrane. A non-deterministic

manner ensures that the rules are chosen at random. This

randomness may lead to different transition paths. The order

of application of rules is also an important aspect. Maximally

parallel application of rules ensures that all possible rules are

executed simultaneously in every transition step of the

computation. The rules rewrite the multiset content inside

a membrane. The execution of u → v rules is dependent

mainly on the availability of the multiset composing the left

side of the membrane u, which transforms into the right side

multiset v.

Figure 4 shows a simple P System with four membranes 1, 2,

3, and 4. Membrane one is the outermost membrane that holds

the output on halting. The system can transit through multiple

process paths due to the non-deterministic nature of the

computation.

Example steps of computation

• Step 1: Observing the initial configuration in membranes

three and four Figure 4

m3, R3 = {a2b2}, {ab→ ac, ac→ c#} ab is assigned to rule ab→
ac m4, R4 = {b2c2}, {bc→ a, a→ dout} bc is assigned to rule bc→ a.

• Step 2: After transition in step 1 we have

m3, R3 = {a2c2}, {ac → c#} ac is assigned to rule ac → c# #

dissolves membrane three and multiset ac2 moves into

membrane two

m4, R4 = {a2}, {a → dout} a is assigned to rule a → dout d
2 is

passed out of membrane four and no more transitions can

happen in it.

• Step 3: After step 2 we have the membrane possible for

transition

FIGURE 6
TPSysIR algorithm.
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m2, R2 = {ac2d2}, {cd → e, e → eout} cd is assigned to rule cd

→ e.

• Step 4:After step 3 membrane two new state

m2, R2 = {ae2}, {e→ eout} e is assigned by e→ eout e
2 is passed

out to membrane one.

• membrane one is the output membrane so the

computation halts here

m1, R1 = {e2}

The computation halts since no more rules can be executed.

Mutual Information

Mutual information measures the statistical dependency

between two sets of data (here the image data sets)

independent of the intensity values of images. The MI value

between two images or voxels is maximum when the geometrical

alignment between them is good. MI measures two sets of image

data , A and B, obtained as follows:

MI A, B( ) � ∑
a,b

Prob a, b( )log Prob a, b( )
Prob a( )Prob b( ). (4)

Here, Prob (a, b) is the joint probability of a ϵ A and b ϵ B.
Prob(a) and Prob(b) are the independent probabilities.

Methods

Tissue P system

Tissue P system (Pan and Perez-Jim´enez, 2010) can be

viewed as the graph of P system membranes connected with

bidirectional protein channels (Freund et al., 2005). The protein

channels facilitate the communication (transportation) of

multisets of objects between the membranes. The

communication can be performed in a replicative manner

where a copy of the multiset can be sent to all adjacent

membranes attached to the communication channel (protein

FIGURE 7
(A) Original Image: row first left. (B) Float Image Unscaled: row first right. (C) Float Image Scaled: second row center.
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channel) or in a non-replicative manner where only one copy of

the membrane is communicated to a particular membrane.

Mathematically, the tissue P system (Bernardini and

Gheorghe, 2005) of degree (number of membranes) n can be

defined as

Γ � O, μ1, μ2, . . . , μn, comm, μout( ). (5)

Here,

1. O is a finite set of objects (alphabets)

2. comm ⊆{1, 2, 3, .., n}×{1, 2, 3, . . . , n}
3. μout = {μ1, μ2, . . . , μn} is the output membrane

4. {μ1, μ2, . . . , μn} are the membranes of form μ1 = {si,0, muli,0,

Rulei}

(a) si,0 is initial state of ith membrane

(b) muli,0 multiset of ith membrane

(c) Rulei set of rules in ith membrane

The tissue P system in Figure 5 is organized in the form of a

multilevel membrane structure, with levels one and two having three

membranes as child membranes. The output membrane or level

1 membrane is labeled usingμ0. It contains three child membranes

labeled by μ01, μ02, and μ03 respectively; these form level two in the

system. The level two membranes further contain three child

membranes each. Child membranes are labelled as μab, where a is

the parent node and b is the child membrane. The system is

interconnected with a bidirectional transportation channel that

facilitates the transportation or communication of objects between

the membranes. Each membrane contains multisets of objects along

with the rules governing the evolution and communication of objects.

The algorithm searches for the optimal solution among the floating

image objects configured with the transform parameters inside the

membranes. The objects in the solution space continuously evolve by

utilizing the rules and are examined for the existence of a better

optimized solution.

The objects

The object in the solution space can be represented as the set

of transformation parameters:

Ojbrs � xrs, yrs, θrs, Zrs. (6)

1. r = 1 . . . n and s = 1 . . . m

2. n is the membrane count of tissue P system

3. m is the object count in membrane r

4. θrs is the degree of rotation

5. Zrs is the image scaling factor

6. xrs is the displacement in x axis

7. yrs is the displacement in y axis

The algorithm utilizes the MI metric as the optimization

function to measure and maximize the similarity of the

parameters in the evolved objects. The object evolves

inside the membranes, and the local best is selected for

each level 3 membrane. This local best value is

communicated to the neighboring membrane and level

2 membranes through the bidirectional channel. The level

2 membranes communicate between themselves and their

children to search for the global best solution. This solution

is then transferred to the level 1 output membrane, thus

representing the final solution.

The evolution rules

The evolution rules govern the evolution of float image

object configurations inside the membrane; the evolution is

performed so as to achieve the optimal best object according

to the optimization criteria. Each level 3 membrane contains

three optimal objects; Objt,bestab , the local optimal best object

obtained at the tth moment inside the abth membrane,

Objt,bestab,n , one of the optimal best object randomly selected

among all the optimal objects received from the neighbors to

the abth membrane, and Objt,bestab,u , the optimal best object

transferred from the parent level 2 membrane u to abth child

membrane.

The PSO (particle swarm optimization) technique is utilized

here to govern the formation and execution of rule1 and rule2,

and its velocity position equation is modified to define the

evolution rules. These rules evolve the objects according to

the position (configuration) and time.

vt+1k,ab � ωtvtk,ab + l0z0 Objt,bestab − Objtk,ab( ) + l1z1 Objt,bestab,n − Objtk,ab( )
+l2z2 Objt,bestab,u − Objtk,ab( ),

(7)
Objt+1k,ab � Objtk,ab + vt+1k,ab, (8)

rule1 ≡ Objtk,ab[ ]
t

ab
↔ Objt+1k,ab[ ]

t+1
ab
, (9)

Objt+2,bestab � max MI Objt+1k,ab( ){ } ∪ MI Objt,bestab( ){ } , (10)
rule2 ≡ Objt,bestab[ ]t+1

ab
↔ Objt+2,bestab[ ]t+2

ab
. (11)

The velocity component is updated using (7) ωt is the

weight balancing factor which gradually decreases; l0,l1,and

l2 are the learning factor; z0, z1, and z2 are the random

numbers between 0 and 1. Objtk,ab is the kth float object in

abth membrane having a configuration of the floating image.

This is updated by rule1 in Eqs. 8, 9 .This updates the new

configuration of each object inside the membrane. The local

best object of the membrane is selected by utilizing Eq 10,

and the old one is replaced by the new local best utilizing

rule2 at Eq 11.
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The communication rules

The communication (Paun and Paun, 2002) rules facilitate

the transportation of objects between the membranes at inter- or

intra-level utilizing the bidirectional channel connecting them.

Intra-level object communication rule

The local optimal object Objt,bestab is updated during the

evolution stage inside each membrane at level 3. These

objects are further communicated to every neighboring

FIGURE 8
(A)Multimodal Experiment 1 T2: row first left. (B)Multimodal Experiment 1 T1: row first right. (C)Multimodal Experiment 2 T1: row second left.
(D) Multimodal Experiment 1 T2: row second right. (E) Multimodal Experiment 3 T1: row third left. (F) Multimodal Experiment 1 T2: row third right.

Frontiers in Pharmacology frontiersin.org07

Kujur and Sahana 10.3389/fphar.2022.949872

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.949872


membrane under the shared parent membrane. This process

involves the creation of a duplicate copy of the local optimal

object Objt,bestab in each membrane, exchanging it with every

other membrane under the common parent. The

intracommunication rule is described as follows:

rule3 ≡ Objt,bestaj[ ]t
ai
↔ Objt,bestai[ ]t

aj
. (12)

In Eq 12 rule3 the objects Objt,bestaj and Objt,bestai are the

local optimal bests in membranes aj and ai, respectively.

Both are located at level 3 under the same parent membrane.

The objects are exchanged and rule3 is executed in Eq 12.

Inter-level object communication rule

The copy of the local optimal object Objt,bestab is updated

during the evolution stage in each membrane at level 3, and

this object is also communicated to the parent membrane at

level 2. All the membranes in the child level 3 receive a copy

of Objt,bestu optimal object updated at the parent level. This

process involves simultaneous duplication and

communication between a membrane at the parent and

another at the child level. The intercommunication rule is

described as

FIGURE 9
(A) Multi Modal Experiment 1 Float: row first left. (B) Multi Modal Experiment 1 GA output: row first right. (C) Multi Modal Experiment 1 PSO
output: row second left. (D)Multi Modal Experiment 1 PSO and Powell Output: row second right. (E)Multi Modal Experiment 1 TPSysIR Output: row
third center.
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rule4 ≡ Objt,bestu[ ]t
ab
↔ Objt,bestab[ ]t

u
, (13)

rule5 ≡ Objt,bestu[ ]
t

u
↔ Objt,bestu[ ]

t

0
. (14)

In (13), rule4 exchanges the objects Obj
t,best
ab and Objt,bestu from

membrane ab in level 3 andmembrane u at level 2, respectively. The

objects are first copied and are then exchanged between each child

FIGURE 10
(A) Multi Modal Experiment 2 Float: row first left. (B) Multi Modal Experiment 2 GA output: row first right. (C) Multi Modal Experiment 2 PSO
output: row second left. (D)Multi Modal Experiment 2 PSO and Powell Output: row second right. (E)Multi Modal Experiment 2 TPSysIR Output: row
third center.
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FIGURE 11
(A) Multi Modal Experiment 3 Float: row first left. (B) Multi Modal Experiment 3 GA output: row first right. (C) Multi Modal Experiment 3 PSO
output: row second left. (D)Multi Modal Experiment 4 PSO and Powell Output: row second right. (E)Multi Modal Experiment 5 TPSysIR Output: row
third center.
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and parent membrane, executing rule4 for each child’s membrane.

The membrane at level 2 will have local optimal best objects from all

its child membranes, and all its children will have a copy of the

optimal object from its parent.

The (14) rule5 communicates the objectObjt,bestu optimal best

of membrane u at level 2 is copied and sent to output membrane

at level 1 as the global best.

The selection and substitution rules

After the inter level object communication stage, the

membrane at level 2 has n copies of the object from each

of its child nodes. Level 2 membrane selects the best among

all the objects received from the child membranes and

compares it with its local optimal best. The MI metric is

utilized to perform the selection between the two best

optimal values. The maximal object obtained from the

above process is substituted as the current local best of

this membrane. The rule can be described as

Objt+2,bestab � max MI Objt+1k,ab( ){ } ∪ MI Objt,bestab( ){ } , (15)
rule6 ≡ Objt,bestu[ ]t

u
→ Objt+1,bestu[ ]t+1

u
. (16)

Eq. 15 examines the MI of all objects Objt+1k,ab received from

the child membranes along with the MI of the current best object

Objt,bestu of membrane u for the maximum among all of them.

This value is replaced as the new local best of membrane u by

rule6 in Eq 16.

The designed TPS utilizes the search capability of the PSO

algorithm and explores the search space filled with floating image

object solutions. The local object evolution is performed at the

third level of the system; this generates local optimum objects.

The optimized objects then move to the neighboring membrane

and higher level 2 membranes.

The halting condition

The system is executed in the manner of steps; it is halted

after the desired number of steps are performed. The optimal

object obtained at the output level 1 membrane at that instance is

recorded as the best solution to the problem.

The TPSysIR algorithm

The algorithm is designed using the TPS framework in the

form of three membrane levels; the algorithm is shown in

Figure 6. The system utilizes each level for specific evolution

and optimization objectives. The level 3 membranes are utilized

to evolve the floating image objects to achieve local optimal

values at their level inside each membrane. Communication of

local optimal objects among membranes under a common parent

is done to optimize the configuration object further. This optimal

object, obtained from each child membrane at level 3, is

communicated to the level 2 membranes to form the global

optimal solution. Level 2 membranes examine the optimality of

the received objects from the child membranes to create a global

maximal. The optimal value of level 2 is sent to the level 1 output

membrane. The copy of the optimal value of the level

2 membrane is also sent back to the children’s membrane.

The entire process, from the evolution of objects in the level

3 membrane to the transfer of global optima from level 2 to level

1, constitutes a step. The specified number of steps must be

completed before the system halts; otherwise, the system restarts

TABLE 1 Without scaling DATA.

Algorithm X − 8 Y − 6 θ − 5 MI

GA Max 0.925 0.888 0.132 1.459
Min 0.688 0.722 0.030 1.075
Mean 0.806 0.805 0.081 1.267
Δ 0.118 0.083 0.051 0.192

PSO Max 0.679 0.741 0.111 1.232
Min 0.490 0.607 0.073 0.962
Mean 0.584 0.674 0.092 1.097
Δ 0.094 0.067 0.019 0.135

PSO and POWELL Max 0.530 0.496 0.072 1.569
Min 0.493 0.465 0.055 1.356
Mean 0.511 0.480 0.063 1.462
Δ 0.018 0.015 0.008 0.106

TPSysIR Max 0.511 0.508 0.058 1.712
Min 0.470 0.484 0.036 1.669
Mean 0.49 0.496 0.047 1.690
Δ 0.020 0.012 0.011 0.021
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TABLE 2 With scaling DATA.

Algorithm X − 8 Y − 6 θ − 5 S-1.25 MI

Single multimodal experiment 2

GA Max 0.717 0.678 0.316 0.010 0.385
Min 0.516 0.123 0.139 0.003 0.291
Mean 0.616 0.400 0.227 0.006 0.324
Δ 0.10 0.24 0.08 0.003 0.033

PSO Max 0.845 0.507 0.234 0.006 0.445
Min 0.633 0.039 0.132 0.002 0.402
Mean 0.739 0.273 0.183 0.004 0.423
Δ 0.106 0.234 0.051 0.002 0.021

PSO and POWELL Max 0.567 0.461 0.189 0.005 0.519
Min 0.421 0.055 0.143 0.003 0.477
Mean 0.494 0.251 0.166 0.004 0.498
Δ 0.073 0.196 0.023 0.001 0.021

TPSysIR Max 0.459 0.362 0.189 0.004 0 0.551
Min 0.400 0.049 0.123 0.002 0.532
Mean 0.429 0.206 0.156 0.003 0.541
Δ 0.029 0.156 0.033 0.001 0.019

Multimodal expreiment 1

GA Max 0.98 0.48 0.50 0.025 0.0079
Min 0.75 0.12 0.32 0.018 0.0013
Mean 0.86 0.30 0.41 0.006 0.0046
Δ 0.12 0.18 0.09 0.003 0.0033

PSO Max 0.84 0.31 0.47 0.023 0.0100
Min 0.62 0.03 0.16 0.019 0.0031
Mean 0.73 0.17 0.31 0.004 0.0065
Δ 0.11 0.14 0.11 0.002 0.0034

PSO and POWELL Max 0.56 0.24 0.30 0.013 0.0112
Min 0.42 0.05 0.18 0.011 0.0070
Mean 0.49 0.14 0.24 0.004 0.0091
Δ 0.07 0.10 0.06 0.001 0.0021

TPSysIR Max 0.38 0.22 0.25 0.010 0.0136
Min 0.31 0.03 0.21 0.008 0.0098
Mean 0.35 0.13 0.23 0.003 0.0112
Δ 0.03 0.09 0.02 0.001 0.0019

Multimodal experiment 2

GA Max 1.655 1.751 0.965 0.074 0.0191
Min 1.295 1.591 0.074 0.018 0.0071
Mean 1.475 1.671 0.854 0.062 0.0131
Δ 0.180 0.80 0.111 0.012 0.0060

PSO Max 1.126 1.506 0.751 0.060 0.0204
Min 0.862 1.400 0.419 0.043 0.0115
Mean 0.994 1.453 0.585 0.051 0.0160
Δ 0.132 0.053 0.83 0.009 0.0045

PSO and POWELL Max 0.850 1.118 0.452 0.023 0.0225
Min 0.664 1.047 0.353 0.015 0.0147
Mean 0.757 1.082 0.402 0.019 0.0186
Δ 0.093 0.036 0.050 0.004 0.0039

TPSysIR Max 0.503 0.643 0.324 0.012 0.0271
Min 0.381 0.547 0.280 0.010 0.0221
Mean 0.442 0.608 0.242 0.008 0.0246
Δ 0.061 0.035 0.040 0.002 0.0024

Multimodal experiment 3

GA Max 1.122 1.990 0.965 0.617 0.0308
Min 0.810 1.796 0.743 0.578 0.0071
Mean 0.966 1.893 1.204 0.597 0.0235
Δ 0.156 0.097 0.093 0.020 0.0162

PSO Max 1.009 1.838 1.067 0.471 0.0387
Min 0.739 1.445 0.982 0.424 0.0261
Mean 0.874 1.641 0.984 0.447 0.0324
Δ 0.135 0.197 0.083 0.023 0.0063

(Continued on following page)
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the evolution process utilizing the previously obtained locally

optimized solutions.

Experimental setup

All the experiments were conducted using python

(Python Programming Language, 2021) and plingua (P

Lingua Programming Language, 2021) on a platform with

Intel i5 four-core CPU at 2.5 GHz each and 8 gigabytes of

RAM. The image data consisting of standard brain atlas was

obtained from the Montreal Neurological Institute (MNI)

(McConnell Brain Imaging Centre, 2021). The data was

utilized by different optimization-based methods, utilizing

MI as an optimization metric for image registration. The

experiments are divided into two sets; first set of two

experiments utilizes the single modal data and second set

of three experiment utilizes the multimodal data.

Experiments with a single-modal image

1) Experiment 1: The float Figure 7B in this experiment is

created by moving the original Figures 7A, 8 pixel units in x-axis

up direction, six pixel units in y-axis in the left direction, and

rotated 5° in a counterclockwise direction.

2) Experiment 2: The original Figure 7A in this experiment is

moved eight pixel-units in x-axis up direction, six pixel-units in

y-axis, rotated 5° in a counterclockwise direction, and scaled into

0.8 times of its original size to create float Figure 7C.

Experiment with multimodal images

1) Experiment 1: The multimodal image set one contains

images from two different modes, cerebrospinal fluid (CSF)

section T1-weighted MRI Figure 8B having low signal and

T2-weighted Figure 8A having high signal in the CSF section.

T1 in X-Y plane image was utilized to create the float image

Figure 9A after it was panned eight pixel units in x axis in the

upward direction, six pixel units in Y axis in the left direction,

rotated 5° in a counter clockwise direction, and scaled into 0.8 of

its original size.

2) Experiment 2: The multimodal image set two contains

T1 Figure 8C and T2 Figure 8D in the X-Z plane. The float

Figure 10A was created from T2 after it was panned 10 pixel units

in X axis in the upward direction, 13 pixel units in Z axis in the

left direction, rotated 7° in a counter clockwise direction, and

scaled into 1.1 of its original size. T1 is the target image.

3) Experiment 3: The multimodal image set two contains

T1 and T2 images in the Y-Z plane. T1 Figure 8E is the target

image while T2 Figure 8F was utilized as the float image.

Figure 11A was created after it was panned 12 pixel units in

Y axis in the upward direction, nine pixel units in Z axis in the left

TABLE 2 (Continued) With scaling DATA.

Algorithm X − 8 Y − 6 θ − 5 S-1.25 MI

PSO and POWELL Max 0.598 0.523 0.708 0.163 0.0447
Min 0.400 0.377 0.568 0.129 0.0147
Mean 0.499 0.450 0.638 0.146 0.0401
Δ 0.099 0.073 0.070 0.017 0.0355

TPSysIR Max 0.323 0.361 0.531 0.088 0.0544
Min 0.187 0.267 0.460 0.062 0.0476
Mean 0.237 0.314 0.495 0.075 0.0510
Δ 0.086 0.047 0.035 0.013 0.0034

FIGURE 12
Mutual Information ranges in each algorithm for Table 1
single modal experiment 1.
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direction, rotated 10° in a counter clockwise direction, and scaled

into 0.7 of its original size.

Experimental results and analysis

The experiments designed above are applied to the

proposed TPSysIR algorithm along with three other

optimization-based algorithms, GA, PSO, PSO, and

POWELL. The experiments were repeated eight times for

each method, and the maximum and minimum variance

values were recorded and tabulated. MI value was also

calculated for the output configuration on recorded data.

The results for the variance along the X-axis and Y-axis and

rotation angle(θ) are recorded in Table 1 for experiment 1,

utilizing single modal images with no scaling factor. Table 2

shows that scaling factor variance S is considered for

experiment 2 utilizing single modal image data with a

FIGURE 13
(A) Single Modal Experiment 2 Float: row first left. (B) Single Modal Experiment 2 GA output: row first right. (C) Single Modal Experiment 2 PSO
output: row second left. (D) Single Modal Experiment 2 PSO and Powell Output: row second right. (E) Single Modal Experiment 2 TPSysIR Output:
row third center.
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scaling factor. Table 2 with multimodal experiments 1, 2, and

3 utilizes multimodal images for the experiments, and all four

variables are considered.

Table 1 results with no size scaling experiment show that PSO

and POWELL have the lowest mean variance (Mean) and

deviation(Δ) among the results in the Y-axis. TPSysIR has the

lowest variance value on the X-axis and equals the deviation to

PSO and POWELL. The mean rotation variance (θ) is the least in

TPSysIR than all other algorithms including GA, PSO, and PSO and

POWELL. TPSysIR has themaximum values, in mutual information,

of 1.76 and the slightest deviation 0.02. The boxplot Figure 12 shows

that the range ofMI values obtained by PSO and Powell and TPSysIR

is better than other algorithms, but TPSysIR obtains the range of least

deviation. The maximumMI results for TPSysIR has shown 17.93%,

19.58%, and 9.61% improvement against the corresponding

maximumMI values ofGA, PSO, andPSOandPOWELL algorithms.

Table 2 singlemodal experiment 2 data includes the scaling factor

along with all other parameters measured in experiment 1 to obtain

FIGURE 14
Mutual Information ranges in each algorithm for Table 2
single model experiment 2.

FIGURE 15
Mutual Information ranges in each algorithm for Table 2
Multimodal Experiment 1.

FIGURE 16
Mutual Information ranges in each algorithm for Table 2
Multimodal Experiment 2.

FIGURE 17
Mutual Information ranges in each algorithm for Table 2
Multimodal Experiment 3.
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results from all fourmethods. Notably in this experiment 2, the overall

MI is lower than the previous experiment 1 as the similarity between

the original and output image has decreased. The deviation in the

X-axis is least in the TPSysIR algorithm. The deviation angle of

rotation varies from 0.08 to 0.02 for GA to PSO and POWELL and

TPSysIR. TPSysIR has a deviation value of 0.03 but has a lower max

value than PSO and POWELL. The results of the experiments are

shown in Figure 13B–E. PSO and POWELL and TPSysIR did a better

job on image scaling. Mutual interference values show slightly better

results for TPSysIR than PSO and POWELL, whereas other

algorithms such as GA and PSO have lower scores. Angular bias

is present in the output configuration images for GA Figure 13B and

PSOFigure 13C. The boxplot Figure 14 shows that all algorithms gave

minimum deviation in the range of MI values, but the maximum

value range was obtained by TPSysIR to obtain best alignment. The

maximum MI results for TPSysIR have shown 57.14%, 25%, and

7.84% improvement against the corresponding maximum MI values

of GA, PSO, and PSO and POWELL algorithms, respectively.

Table 2 multimodal experiment 1 data shows lower ranges of the

MI values than in previous experiments, expressing further

dissimilarity between the reference and the output image. The

TPSysIR algorithm shows lower deviation values for X, Y, and

rotation angle variance. The scalability factor deviation has relative

range values for PSO andPOWELL andTPSysIR, whileMI values are

best for TPSysIR. The boxplot Figure 15 shows that the ranges of MI

values obtained by TPsysIR were the best. The maximum MI results

for TPSysIR has shown 72.15%, 36%, and 21.42% improvement

against corresponding maximum MI values of GA, PSO, and PSO

and POWELL algorithms, respectively. The configuration results

obtained for each method in the experiment for multimodal

images are shown in Figure 9B–E.

Table 2 multimodal experiment 2 contains the data from the

experiment performed over multimodal T1 and T2 images taken in

the X-Z plane. The output in Figure 10B–E shows the output for the

experiment. The table values for GA and PSO variance over X and Z

have significantly higher values than PSO and Powell and TPSysIR.

The MI value shows overlapping ranges for GA, PSO, and PSO and

Powell while TPSysIR has higher ranges, as shown in the boxplot

Figure 16. The TPSysIR has 29.52%, 24.72%, and 16.97% better MI

values than GA, PSO, and PSO and Powell.

Table 2 multimodal experiment 3 data is obtained from the

experiment performed over multimodal T1 and T2 images taken

in the Y-Z plane. The output data for this experiment are shown

in Figures 11B–E. The data shows the variance in Y of GA is the

maximum of all other algorithms, and TPSysIR has the lowest.

The MI range values of GA, PSO, and PSO and Powell show

overlapping, while TPSysIR has a higher range of values. The

same is confirmed in the boxplot in Figure 17. The TPSysIR MI

values are 43.38%, 28.86%, and 17.83% are better than GA, PSO,

and PSO and Powell respectively.

PSO and POWELL has good optimization capability due to

its hybridization to acquire local and global search capabilities.

The TPSysIR algorithm employs the TPS’s parallel execution

capability, optimizing the local search and creating a globally

optimal solution with faster convergence of results.

Conclusion

The method described in this paper utilizes the tissue P

system’s parallel and simultaneous execution feature to guide its

velocity position model-based rules. The novelty of this work is

the use of the TPS, which enables faster convergence and highMI

with the parallel feature using an optimization-based model to

obtain parameters for image registration and the use of the PSO

technique to make the evolution rules. The algorithm is tested on

multimodal and unimodal MRI image sets to verify its

effectiveness. The results of the tests prove it to be a good

optimization-based solution to the image registration problem

compared to other state-of-the-art algorithms.
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