Skip to main content

CLINICAL TRIAL article

Front. Pharmacol., 15 June 2022
Sec. Respiratory Pharmacology
This article is part of the Research Topic Antiviral Drugs and Vaccines against Important Human Respiratory Viruses View all 8 articles

Antiviral Efficacy and Safety of Molnupiravir Against Omicron Variant Infection: A Randomized Controlled Clinical Trial

Rongrong Zou&#x;Rongrong Zou1Ling Peng&#x;Ling Peng1Dan Shu&#x;Dan Shu1Lei ZhaoLei Zhao2Jianfeng LanJianfeng Lan1Guoyu TanGuoyu Tan1Jinghan PengJinghan Peng1Xiangyi YangXiangyi Yang1Miaona LiuMiaona Liu1Chenhui ZhangChenhui Zhang1Jing YuanJing Yuan1Huxiang WangHuxiang Wang1Song Li
Song Li2*Hongzhou Lu
Hongzhou Lu1*Wu Zhong
Wu Zhong2*Yingxia Liu
Yingxia Liu1*
  • 1Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
  • 2National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China

Background: The rapid worldwide spread of the Omicron variant of SARS-CoV-2 has unleashed a new wave of COVID-19 outbreaks. The efficacy of molnupiravir, an approved drug, is still unknown in patients infected with the Omicron variant.

Objective: Evaluated the antiviral efficacy and safety of molnupiravir in patients infected with SARS-CoV-2 Omicron variant, with symptom duration within 5 days.

Methods: We conducted a randomized, controlled trial involving patients with mild or moderate COVID-19. Patients were randomized to orally receive molnupiravir (800 mg) plus basic treatment or only basic treatment for 5 days (BID). The antiviral efficacy of the drug was evaluated using reverse transcriptase polymerase chain reaction.

Results: Results showed that the time of viral RNA clearance (primary endpoint) was significantly decreased in the molnupiravir group (median, 9 days) compared to the control group (median, 10 days) (Log-Rank p = 0.0092). Of patients receiving molnupiravir, 18.42% achieved viral RNA clearance on day 5 of treatment, compared to the control group (0%) (p = 0.0092). On day 7, 40.79%, and 6.45% of patients in the molnupiravir and control groups, respectively, achieved viral RNA clearance (p = 0.0004). In addition, molnupiravir has a good safety profile, and no serious adverse events were reported.

Conclusion: Molnupiravir significantly accelerated the SARS-CoV-2 Omicron RNA clearance in patients with COVID-19.

Clinical Trial Registration: [chictr.org.cn], identifier [ChiCTR2200056817].

Introduction

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly replaced the Delta variant as the dominating SARS-CoV-2 variant, which has higher infectivity and stronger vaccine breakthrough ability (Chen et al., 2022; Saxena et al., 2022). Among the three lineages of Omicron: BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3), BA.2 is rapidly increasing worldwide since January 2022 and has become a new dominating “variant of concern” in China (Cheng et al., 2022; World Health Organization, 2022). With the current surge of Omicron infections in China, both the absolute number of patients hospitalized with coronavirus disease 2019 (COVID-19) and the percentage of total COVID-19 hospitalizations have been increasing recently. Although the direct effects of SARS-CoV-2 Omicron variant on patients have been largely mild, the impact on people’s health is substantial due to the large number of infected individuals and potential virus-induced lung injury (He et al., 2021). Thus, an oral, effective, and direct-acting therapeutic is needed to block the transmission of SARS-CoV-2 Omicron variant.

Molnupiravir, a small-molecule drug, has been reported to have shown good anti-SARS-CoV-2 efficacy in phase II/III clinical trials (Jayk Bernal et al., 2021; Fischer et al., 2022). It has been approved by the United Kingdom MHRA and has received an Emergency Use Authorization from the FDA for the treatment of COVID-19. Recent studies have shown that molnupiravir could inhibits Omicron variant in vitro and in vivo (Rosenke et al., 2022; Takashita et al., 2022; Uraki et al., 2022). However, data on its efficacy and safety in the population infected with the Omicron variant is still lacking.

In this study, we performed a randomized, controlled study to evaluate the clinical efficacy of molnupiravir for COVID-19 patients infected with Omicron BA.2 at the Third People’s Hospital of Shenzhen. We endeavored to compare the antiviral efficacy between patients who were treated with molnupiravir plus basic treatment and those treated only with basic treatment. This study will provide practical insight for the treatment against SARS-CoV-2 Omicron variant infections.

Methods

Study Design

We conducted a randomized, controlled trial of molnupiravir in patients infected with Omicron variant (ChiCTR2200056817, chictr.org.cn). The protocol was reviewed and approved by the Medical Ethics Committee of the Third People’s Hospital of Shenzhen, and the trial was conducted in accordance with the Declaration of Helsinki and Good Clinical Practice guidelines of the International Conference on Harmonization. Molnupiravir was provided by HUAHAI Pharmaceutical.

From March 3 to 21 March 2022, patients with confirmed mild/moderate COVID-19 were admitted and enrolled at the Third People’s Hospital of Shenzhen. Eligible patients include male or nonpregnant females aged ≥18 years and ≤80 years, who were tested positive for SARS-CoV-2 Omicron variant and had initial onset of symptoms for ≤5 days prior to the day of treatment. Exclusion criteria included severe vomiting or intolerance of oral drugs for other reasons, pregnancy or lactation, patients retesting positive for COVID-19, and those who had received antibody therapy, plasma therapy, or other investigational drugs for SARS-CoV-2. All the patients provided a written informed consent.

Patients were randomly grouped (2:1) into molnupiravir (n = 80) and control groups (n = 36) using a random number table. Molnupiravir (800 mg twice per day) were administered orally for 5 days in the hospital. In addition, all patients received the same basic treatment, which consisted of vitamin C, lianhuaqingwen granule, and nasal irrigation. Pharyngeal swab was collected every other day to determine the antiviral effect of molnupiravir against SARS-CoV-2 using RT-PCR. Adverse events were monitored throughout the study period.

Antiviral Efficacy

The primary endpoint was the time of viral RNA clearance measured using RT-PCR analysis of pharyngeal swab. The time of viral RNA clearance was defined as the number of days it took to have a negative viral RNA test result post-randomization (two consecutive times or 24 h at two intervals). Samples were tested for detection of ORF1ab and N genes. A negative RT-PCR result was confirmed only when all test results were reported negative (Ct > 35). The secondary antiviral efficacy endpoint included the percentage of patients who were negative for SARS-CoV-2 infectious virus on days 5, 7, and 10.

Statistical Analyses

The measurement data conforming to non-normal distribution were exhibited as median, and the Wilcoxon rank-sum test was used for comparison between groups. Meanwhile, the count data were exhibited as cases (%), and comparisons between groups were made using the chi-square test. A p value <0.05 was considered statistically significant. Time of viral RNA clearance was summarized using the Kaplan-Meier methodology, and log-rank test was used for comparison of the efficacy between treatments. The percentage of patients who were negative for viral RNA was summarized and compared between groups using Fisher’s exact test.

Results

Patient Demographics and Clinical Characteristics

From March 3 to 21 March 2022, 116 patients were randomly grouped, with 108 receiving molnupiravir or only basic treatment (Figure 1). The patients randomized to the control and molnupiravir groups were well matched. Baseline characteristics were generally similar across the groups, and baseline laboratory test results were well balanced (Table 1).

FIGURE 1
www.frontiersin.org

FIGURE 1. CONSORT diagram for this trial.

TABLE 1
www.frontiersin.org

TABLE 1. Patient demographics and clinical characteristics at baseline.

Antiviral Efficacy

A total of 107 patients in the cohort were included for the primary efficacy analysis. One patient in the molnupiravir group was excluded from the antiviral efficacy analysis because of a negative result in the viral RNA test less than 12 h after taking the medicine. The primary outcome of this study was the time of viral RNA clearance. The median time of viral clearance were 9 days (95% CI: 7–9 days) and 10 days (95% CI: 9–11 days) in the molnupiravir and control groups, respectively. The median time was significantly reduced in the molnupiravir group (log-rank p = 0.0092, Figure 2 and Table 2). This result indicates that molnupiravir can effectively accelerate viral RNA clearance in patients infected with the Omicron variant, which is consistent with the antiviral efficacy of molnupiravir in treatment of COVID-19 (Fischer et al., 2022).

FIGURE 2
www.frontiersin.org

FIGURE 2. Kaplan-Meier plot showing the time of viral RNA clearance in the molnupiravir and control groups.

TABLE 2
www.frontiersin.org

TABLE 2. Antiviral efficacy of molnupiravir.

The key secondary virological endpoint of this trial was the percentage of patients who were negative for viral RNA on days 5, 7, and 10 (Table 2). On day 5 of treatment, the percentage of patients who were negative for viral RNA was 18.42% in the molnupiravir group and 0% in the control group (p = 0.0092). The percentage of patients who were negative for viral RNA also increased to 40.79% on day 7 in the molnupiravir group compared to the control group (6.45%) (p = 0.0004). The percentage of patients negative for viral RNA remained significantly different between molnupiravir and control groups on day 10 of treatment (molnupiravir group: 76.32%; control group: 51.61%) (p = 0.02).

Safety

Three adverse events were reported in the molnupiravir group (Table 3). One patient (1.3%) had skin rash, and two patients (2.6%) had elevated levels of alanine transaminase. No grade 3 or higher adverse events were reported, and no adverse events led to the discontinuation of molnupiravir treatment.

TABLE 3
www.frontiersin.org

TABLE 3. Summary of adverse events in the two groups.

Clinical Outcomes

The duration of fever, time of symptom alleviation and laboratory test results were collected to evaluate the overall health condition associated with COVID-19. At baseline, patients in the molnupiravir and control groups matched well in all presentation indicators, with no significant difference. In the laboratory test before discharge, all test values of patients recovered to the normal range, and no significant difference was observed between the groups (Table 4). The median time to alleviate COVID-19 symptoms between the molnupiravir and control groups was not statistically significant (5 days vs. 7 days, p = 0.499), and the results were consistent with previously published studies (Fischer et al., 2022). In addition, the median time of fever duration was not statistically between the two groups, although the duration of fever was reduced by 2 days in the molnupiravir group compared to the control group (1 day vs. 3 days, p = 0.096).

TABLE 4
www.frontiersin.org

TABLE 4. Clinical outcomes associated with COVID-19.

Discussion

As of 22 March 2022, 470,839,745 confirmed COVID-19 cases were recorded, including 6,092,933 deaths, and a total of 10,925,055,390 doses of vaccine had been administered worldwide. The emerging Omicron variant of SARS-CoV-2 is highly infectious and has a stronger vaccine breakthrough ability against antibodies provided by existing vaccines, thus it is the dominating SARS-CoV-2 variant globally (Arora et al., 2022). The current effective tools to fight COVID-19 outbreaks are vaccination and small-molecule oral drug therapy. The main role of marketed COVID-19 vaccines is to reduce symptomatic infection and prevent severe illness. Unfortunately, no clinical trial on small-molecule oral medicine as treatment against COVID-19 caused by Omicron variant is available. Molnupiravir has been approved for marketing in the United Kingdom for the treatment of adults with mild to moderate COVID-19 and has been granted emergency use authorization from FDA (Food and Drug Administration, 2021; Merck, 2021).

In our study, we found that molnupiravir was effective in treating COVID-19 caused by Omicron variant infection, with few adverse effects. Compared to basic treatment, molnupiravir treatment significantly reduced viral load in pharyngeal swabs and accelerated viral RNA clearance in patients with COVID-19. In the completed phase 2A trial of molnupiravir, the median time of viral RNA clearance was 14 days in the molnupiravir group and 15 days in the control group (p = 0.013) (Fischer et al., 2022). In this study, the median time of viral RNA clearance in the molnupiravir group and the control group were 9 days and 10 days, respectively (p = 0.0092). This difference may be due to two possible reasons, as follows: 1) reduced replication capacity and pathogenicity of the Omicron variant compared to the other variants (Shuai et al., 2022), and 2) more than 90% of the patients enrolled in this trial received at least two doses of COVID-19 vaccine (molnupiravir group: 90.9%; control group: 93.6%). In the vaccination population, most of the patients received the inactivated vaccine (Sinavac), only 7.1 and 6.9% patients received other vaccines (BNT162b2 or Zifivax) in molnupiravir and control groups, respectively (Supplmentary Table S1). We have checked the neutralization antibody titers for all the vaccination patients and found that there was no significant difference on neutralization antibody titer between two groups (p = 0.521) (Supplementary Table S2). In term of T cell immunity, there was no significant difference in T cells (CD4 and CD8 cells) counts, as shown in Table 1. These results indicate that molnupiravir administration based on widespread vaccination may be more effective in responding to outbreaks caused by the Omicron variant.

Based on the higher infectivity and reduced pathogenicity of the Omicron variant, it is more likely to result in a great deal of patients with mild COVID-19 or asymptomatic infections, rather than severe COVID-19. As a result, the clearance of viral RNA from patients and interruption of viral transmission are more relevant in the fight against Omicron variant infections. This clinical trial was outlined to assess the efficacy and safety of molnupiravir against the Omicron variant of SARS-CoV-2 and did not focus on evaluating clinical endpoints, such as symptom duration or length of hospitalization. Furthermore, recruitment was not limited to patients with risk factors of progressing to severe disease. Patients did not benefit from molnupiravir treatment in terms of duration of fever and symptoms alleviating time during the observation period. Another limitation is that asymptomatic individuals were not recruited into the trial. In this population, which was positive for viral RNA but has no characteristic symptoms, treatment with molnupiravir that exert a direct antiviral effect is equally relevant and may be more effective.

This study provides biological evidence to support the use of molnupiravir in accelerating viral RNA clearance in patients infected with the Omicron variant of SARS-CoV-2, potentially reducing viruses early transmission. The dynamic zero COVID-19 strategy is the most effective prevention and control strategy proposed and implemented in China during the COVID-19 epidemic. In the face of a new wave of COVID-19 outbreaks caused by the Omicron variant, small-molecule oral drug therapy will contribute to the implementation of the dynamic zero COVID-19 strategy and accelerate the end of the epidemic.

Data Availability Statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics Statement

The studies involving human participants were reviewed and approved by the Medical Ethics Committee of the Third People’s Hospital of Shenzhen (No. 2022-034-02). The patients/participants provided their written informed consent to participate in this study.

Author Contributions

RZ, SL, HL, WZ, and YL conceived the overall study and designed experiments. RZ, LP, DS, JL, GT, JP, XY, ML, CZ, JY, HW, and HL contributed to the data collection, analysis, and interpretation. RZ, LZ, and HL analyzed the data. YL, LZ, and WZ wrote and edited the manuscript. SL, WZ, and YL conceived and supervised the data analysis. All co-authors made important comments on the manuscript.

Funding

This research was supported by grants from the National Key Research and Development Project (2021YFC2300704) (WZ), Shenzhen Science and Technology Research and Development Project (JSGG20200207161928126) (YL) and in part from the National Science and Technology Major Projects (2018ZX09711003) (WZ).

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Acknowledgments

Thanks to Qian Kang of Carelink Pharmaceutical Co., Ltd. for providing statistical analysis.

Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2022.939573/full#supplementary-material

References

Arora, P., Zhang, L., Rocha, C., Sidarovich, A., Kempf, A., Schulz, S., et al. (2022). Comparable Neutralisation Evasion of SARS-CoV-2 Omicron Subvariants BA.1, BA.2, and BA.3. Lancet. Infect. Dis. 22 (6), 766–767. doi:10.1016/s1473-3099(22)00224-9

PubMed Abstract | CrossRef Full Text | Google Scholar

Chen, J., Wang, R., Gilby, N. B., and Wei, G. W. (2022). Omicron Variant (B.1.1.529): Infectivity, Vaccine Breakthrough, and Antibody Resistance. J. Chem. Inf. Model 62 (2), 412–422. doi:10.1021/acs.jcim.1c01451

PubMed Abstract | CrossRef Full Text | Google Scholar

Cheng, V. C.-C., Ip, J. D., Chu, A. W.-H., Tam, A. R., Chan, W.-M., Abdullah, S. M. U., et al. (2022). Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Omicron Subvariant BA.2 in a Single-Source Community Outbreak. Clin. Infect. Dis. 1, ciac203. doi:10.1093/cid/ciac203

PubMed Abstract | CrossRef Full Text | Google Scholar

Fischer, W. A., Eron, J. J., Holman, W., Cohen, M. S., Fang, L., Szewczyk, L. J., et al. (2022). A Phase 2a Clinical Trial of Molnupiravir in Patients with COVID-19 Shows Accelerated SARS-CoV-2 RNA Clearance and Elimination of Infectious Virus. Sci. Transl. Med. 14 (628), eabl7430. doi:10.1126/scitranslmed.abl7430

PubMed Abstract | CrossRef Full Text | Google Scholar

Food and Drug Administration, (2021). Coronavirus (COVID-19) Update: FDA Authorizes Additional Oral Antiviral for Treatment of COVID-19 in Certain Adults. Available at: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-oral-antiviral-treatment-covid-19-certain. [Online] (Accessed April 19, 2022).

Google Scholar

He, X., Hong, W., Pan, X., Lu, G., and Wei, X. (2021). SARS-CoV-2 Omicron Variant: Characteristics and Prevention. MedComm 2 (4), 838–845. doi:10.1002/mco2.110

CrossRef Full Text | Google Scholar

Jayk Bernal, A., Gomes da Silva, M. M., Musungaie, D. B., Kovalchuk, E., Gonzalez, A., Delos Reyes, V., et al. (2022). Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. N. Engl. J. Med. 386 (6), 509–520. doi:10.1056/NEJMoa2116044

PubMed Abstract | CrossRef Full Text | Google Scholar

Merck, (2021). Merck and Ridgeback’s Molnupiravir, an Oral COVID-19 Antiviral Medicine, Receives First Authorization in the World. Available at: https://www.merck.com/news/merck-and-ridgebacks-molnupiravir-anoral-covid-19-antiviral-medicine-receives-first-authorization-in-the-world/. [Online] (Accessed April 19, 2022).

Google Scholar

Rosenke, K., Okumura, A., Lewis, M. C., Feldmann, F., Meade-White, K., Bohler, W. F., et al. (2022). Molnupiravir Inhibits SARS-CoV-2 Variants Including Omicron in the Hamster Model. JCI Insight 1, e160108. doi:10.1172/jci.insight.160108

CrossRef Full Text | Google Scholar

Saxena, S. K., Kumar, S., Ansari, S., Paweska, J. T., Maurya, V. K., Tripathi, A. K., et al. (2022). Characterization of the Novel SARS-CoV-2 Omicron (B.1.1.529) Variant of Concern and its Global Perspective. J. Med. Virol. 94 (4), 1738–1744. doi:10.1002/jmv.27524

PubMed Abstract | CrossRef Full Text | Google Scholar

Shuai, H., Chan, J. F., Hu, B., Chai, Y., Yuen, T. T., Yin, F., et al. (2022). Attenuated Replication and Pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature 603 (7902), 693–699. doi:10.1038/s41586-022-04442-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Takashita, E., Kinoshita, N., Yamayoshi, S., Sakai-Tagawa, Y., Fujisaki, S., Ito, M., et al. (2022). Efficacy of Antibodies and Antiviral Drugs against Covid-19 Omicron Variant. N. Engl. J. Med. 386 (10), 995–998. doi:10.1056/NEJMc2119407

PubMed Abstract | CrossRef Full Text | Google Scholar

Uraki, R., Kiso, M., Iida, S., Imai, M., Takashita, E., Kuroda, M., et al. (2022). Characterization and Antiviral Susceptibility of SARS-CoV-2 Omicron/BA.2. Nature 1, 1. doi:10.1038/s41586-022-04856-1

CrossRef Full Text | Google Scholar

World Health Organization, (2022). "COVID-19 Weekly Epidemiological Update, edition 83, 15 March 2022". (Geneva: World Health Organization).

Google Scholar

Keywords: Omicron variant, SARS-CoV-2, molnupiravir, antiviral efficacy, clinical trial

Citation: Zou R, Peng L, Shu D, Zhao L, Lan J, Tan G, Peng J, Yang X, Liu M, Zhang C, Yuan J, Wang H, Li S, Lu H, Zhong W and Liu Y (2022) Antiviral Efficacy and Safety of Molnupiravir Against Omicron Variant Infection: A Randomized Controlled Clinical Trial. Front. Pharmacol. 13:939573. doi: 10.3389/fphar.2022.939573

Received: 09 May 2022; Accepted: 31 May 2022;
Published: 15 June 2022.

Edited by:

Qingbing Zheng, Xiamen University, China

Reviewed by:

Xun Gui, Mabwell (Shanghai) Bioscience Co., Ltd., China
Yingying Su, Xiamen University, China
Yushan Jiang, Southern Medical University, China

Copyright © 2022 Zou, Peng, Shu, Zhao, Lan, Tan, Peng, Yang, Liu, Zhang, Yuan, Wang, Li, Lu, Zhong and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Song Li, bGlzLmxpc29uZ0BnbWFpbC5jb20=; Hongzhou Lu, bHVob25nemhvdUBzenN5LnN1c3RlY2guZWR1LmNu; Wu Zhong, emhvbmd3dUBibWkuYWMuY24=; Yingxia Liu, c3pzeV9seXhAc3pzeS5zdXN0ZWNoLmVkdS5jbg==

These authors have contributed equally to this work

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.