#### Check for updates

#### OPEN ACCESS

EDITED BY Shazia Qasim Jamshed, Sultan Zainal Abidin University, Malaysia

REVIEWED BY Sadia Shakeel, DOW University of Health Sciences (DUHS), Pakistan Yongsheng Chen, Jinan University, China Márió Gajdács, University of Szeged, Hungary Imma Pagano, University of Salerno, Italy

\*CORRESPONDENCE Songwei Li, lswhnszyy@hactcm.edu.cn

<sup>†</sup>These authors have contributed equally to this work

#### SPECIALTY SECTION

This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

RECEIVED 30 April 2022 ACCEPTED 22 November 2022 PUBLISHED 07 December 2022

#### CITATION

Gong X, Li H, Guo H, Wu S, Lu C, Chen Y and Li S (2022), Efficacy and safety of total glucosides of paeony in the treatment of systemic lupus erythematosus: A systematic review and meta-analysis. *Front. Pharmacol.* 13:932874. doi: 10.3389/fphar.2022.932874

#### COPYRIGHT

© 2022 Gong, Li, Guo, Wu, Lu, Chen and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

# Efficacy and safety of total glucosides of paeony in the treatment of systemic lupus erythematosus: A systematic review and meta-analysis

Xiaohong Gong<sup>1,2†</sup>, Huan Li<sup>1,2†</sup>, Hongtao Guo<sup>2</sup>, Shangwen Wu<sup>1,2</sup>, Chaoqun Lu<sup>1</sup>, Yiming Chen<sup>1</sup> and Songwei Li<sup>1,2,3</sup>\*

<sup>1</sup>Henan University of Chinese Medicine, Zhengzhou, China, <sup>2</sup>The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China, <sup>3</sup>Henan Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China

**Background:** Total glucosides of paeony (TGP), extracted from the Chinese medicine *Paeonia lactiflora* Pall., have been proven to be effective in various autoimmune diseases. We aim to systematically evaluate the efficacy and safety of TGP combined with different conventional therapeutic agents in the treatment of systemic lupus erythematosus (SLE).

**Methods:** Eight databases were searched for randomized controlled studies of TGP for SLE. The search time was set from the establishment of the databases to March 2022. The risk of bias was assessed by the Cochrane Evaluation Manual (5.1.0), RevMan 5.3 software was used for meta-analysis, and the certainty of the evidence was assessed by the GRADE methodology.

**Results:** A total of 23 articles were included, including 792 patients overall in the treatment group and 781 patients overall in the control group. The meta-analysis results showed that TGP combined with conventional treatments was superior to the conventional treatments in reducing the SLE disease activity and the incidence of adverse reactions (SMD<sub>TGP+GC+CTX</sub> = -1.98, 95% Cl = [-2.50, -1.46], p < 0.001; SMD<sub>TGP+GC+HCQ</sub> = -0.65, 95% Cl = [-1.04, -0.26], p < 0.001; SMD<sub>TGP+GC+TAC</sub> = -0.94, 95% Cl = [-1.53, -0.34], p < 0.05; SMD<sub>TGP+GC</sub> = -1.00, 95% Cl = [-1.64, -0.36], p < 0.05; and RR<sub>TGP+GC+CTX</sub> = 0.37, 95% Cl = [0.21, 0.64], p < 0.001). The results also showed that TGP helped improve other outcomes related to SLE disease activity, such as complement proteins (C3 and C4), immunoglobulins (IgA, IgM and, IgG), ESR, CRP, 24 h urine protein, and recurrence rate. In addition, TGP may also be effective in reducing the average daily dosage of glucocorticoids (GCs) and the cumulative dosage of cyclophosphamide (CTX). The certainty of the evidence was assessed as moderate to low.

**Conclusion:** TGP is more effective and safer when used in combination with different conventional therapeutic agents. It helped reduce the disease activity of SLE and the incidence of adverse reactions. However, we should be cautious about these conclusions as the quality of the evidence is poor. Future studies should focus on improving the methodology. High-quality randomized

controlled trials (RCTs) will be necessary to provide strong evidence for the efficacy of TGP for SLE.

**Systematic Review Registration:** https://www.crd.york.ac.uk/PROSPERO, identifier CRD42021272481

KEYWORDS

total glucosides of paeony, meta-analysis, safety, efficacy, systemic lupus erythematosus (SLE)

## 1 Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease with multi-organ involvement, recurrent relapses and remissions, and the presence of a large number of autoantibodies in the body as the main clinical features, which can cause irreversible damage to the involved organs and eventually lead to the death of the patients if left untreated (Durcan et al., 2019; Fava and Petri, 2019). It is reported the global prevalence of SLE is about 0-241/100,000, and the prevalence of SLE in China is about 30-100/100,000, ranking second in the world (Li et al., 2013; Rees et al., 2017; Chinese Rheumatology Association, 2020). With the development of gene and molecular biology technology, the research on the pathogenesis diagnosis and treatment of SLE has made rapid progress. Although the 10-year survival rate for patients with SLE improved significantly from 63.2% in the 1950s to 91.4% in 2000s (Mu et al., 2018), the allcause and cause-specific mortality rates remain significantly higher than the general population (Jorge et al., 2018; Bultink et al., 2021).

Drugs used in the treatment of SLE include glucocorticoids (GCs), hydroxychloroquine (HCQ), immunosuppressive (IS) drugs, and biological agents such as belimumab and rituximab (RTX). (Fanouriakis et al., 2019). However, long-term HCQ therapy can lead to retinal toxicity, with the incidence of retinal abnormalities exceeding 10% after 20 years of consecutive use (Knight et al., 2016; Kao et al., 2022). A longterm GC treatment can cause irreversible organ damage (Chen et al., 2018; Kwon et al., 2018). Combining IS drugs facilitates more rapid GC reduction and may prevent disease recurrence. However, the teratogenic potential of methotrexate (MTX) and azathioprine (AZA) and the toxic effect of cyclophosphamide (CTX) on the gonads have limited their widespread application in women and men of reproductive age (Knight et al., 2016; Martins et al., 2017; Tamirou et al., 2017). RTX and belimumab are usually considered following the failure of first-line therapies or relapsing disease (Iaccarino et al., 2015; Olfat et al., 2015; Fanouriakis et al., 2019; Huang et al., 2022). However, the price and potential risk of infection pose a huge financial burden and concern for patients (Steiger et al., 2022). Therefore, a safer and more effective therapeutic strategy needs to be explored.

Total glucosides of paeony (TGP) are a group of active glycosides extracted from the roots of *Paeonia lactiflora* Pall. (Bai shao in Chinese), which mainly include paeoniflorin, paeonin, albiflorin, and benzoylpaeoniflorin (Figure 1).

Paeoniflorin is the major active component of TGP. It constitutes more than 40% of TGP (Yang et al., 2021). Research studies have shown that TGP has analgesic, antiinflammatory, immunomodulatory, and antioxidant functions (He and Dai, 2011; Zhang and Wei, 2020). TGP is often used as an adjunctive therapy for autoimmune diseases. It has been successfully utilized in the clinical treatment of autoimmune diseases such as rheumatoid arthritis (Luo et al., 2017; Huang et al., 2019a), primary Sjogren's syndrome (Feng et al., 2019), and ankylosing spondylitis (Huang et al., 2019b). The combination of TGP with conventional therapeutic agents can reduce adverse reactions and have synergistic effects in the treatment of autoimmune diseases (Jiang et al., 2020). In recent years, TGP has also been increasingly used to treat SLE. Previous clinical and experimental studies have shown that TGP can alleviate typical symptoms, increase the expression rate of CD4+CD25+T cells, regulate the TLR9/MyD88/NF-KB signaling pathway, reduce the levels of CD40+, sVCAM-1, IL-18, VEGF, and MMP-3, and inhibit the expression of inflammatory factors, playing an immunomodulatory and anti-SLE renal damage role. This indicates that TGP may be a potential new therapeutic agent for the modern treatment of SLE (Wu et al., 2020; Wang et al., 2021; Wu et al., 2022).

To date, only one systematic review has evaluated the efficacy of TGP in different courses of treatment for SLE (Chen et al., 2022). However, no study followed the statement of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to evaluate the efficacy and safety of TGP in combination with different conventional therapeutic agents for the treatment of SLE. This study aims to investigate the efficacy and safety of TGP combined with different conventional therapeutic agents for the treatment of SLE, thus providing an evidence-based basis for future clinical treatment of SLE.

## 2 Methods

## 2.1 Protocol registration

This meta-analysis followed the PRISMA statement (Page et al., 2021). The study protocol was registered at PROSPERO: https://www.crd.york.ac.uk/PROSPERO (Registration number: CRD42021272481).



## 2.2 Search strategy

The method of combining subject words and free words was used to search the randomized controlled trials (RCTs) of TGP for SLE in eight databases including China National Knowledge Infrastructure (CNKI), the Chinese Science Technology Journal Database (VIP), WanFang Database, SinoMed, PubMed, Web of Science, Cochrane Library, and Embase from the inception to March 2022. The detailed search strategies for the eight databases are shown in Supplementary Table S1.

## 2.3 Inclusion criteria

#### 2.3.1 Study types

We included RCTs.

#### 2.3.2 Participant types

The patients were included in accordance with any of the SLE classification criteria (Hochberg, 1997; Petri et al., 2012; Aringer et al., 2019) and were in the active disease stages. There were no restrictions on age and gender.

#### 2.3.3 Intervention types

The control groups were treated according to the European League Against Rheumatism (EULAR) guidelines for SLE (Fanouriakis et al., 2019) or the Chinese treatment guidelines (Chinese Rheumatology Association, 2020) including GC, CTX, HCQ, and TAC, while the experimental groups were treated with TGP combined with the control group drugs.

#### 2.3.4 Outcome types

Primary outcome variables include SLE Disease Activity Index (SLEDAI) and the incidence of adverse reactions.

Secondary outcome variables include complements (C3 and C4), immunoglobulins (IgA, IgG, and IgM), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), 24 h urine protein, average daily dosage of GC, cumulative dosage of CTX, and recurrence rate.

The efficacy outcomes include: SLEDAI, C3, C4, IgA, IgG, IgM, ESR, CRP, 24 h urine protein, average daily dosage of GC,

cumulative dosage of CTX, and recurrence rate. The safety outcomes include the incidence of adverse reactions.

## 2.4 Exclusion criteria

The exclusion criteria include: 1) patients combined with rheumatic immune diseases other than SLE, 2) experimental or control group taking other herbal medicines, 3) literature with duplicate publications, animal experiments, case reports, reviews of progress, and data errors, and 4) inability to obtain the full text.

## 2.5 Study selection

Two researchers (GXH and LCQ) independently searched the eight databases, imported the articles into EndNote X9, and selected articles according to the inclusion and exclusion criteria after deduplication. Any disagreements between the two researchers were resolved by discussion with a third researcher (LH).

#### 2.6 Data extraction

Two authors (WSW and CYM) independently extracted the relevant data according to the predefined criteria. The data included: study designs, year of publication, participant characteristics, diagnostic criteria, methodology, intervention and control approaches, treatment duration, outcome measures, and adverse reactions. Any disagreements between the two researchers were resolved by discussion with a third researcher (LSW).

## 2.7 Risk of bias assessment

Two researchers (GXH and WSW) independently assessed the risk of bias of the included 23 studies by referring to the Cochrane Evaluation Manual (5.1.0) (Sterne et al., 2019), mainly from the following seven aspects: 1) random sequence generation, 2) allocation concealment, 3) blinding of outcome assessment, 4) blinding of outcome evaluation, 5) incomplete outcome data, 6) selective reporting, and 7) other biases. Any disagreements between the two researchers were resolved by discussion with the third researcher (LSW).

#### 2.8 Data analysis and bias assessment

RevMan 5.3 software was applied to perform data analysis on the continuous and dichotomous data extracted from 23 studies. The relative risk (RR) was used to represent the binary variables, such as the incidence of adverse reactions and the recurrence rate. The standardized mean difference (SMD) was used to represent the continuous variables, such as SLEDAI, C3, C4, IgA, IgG, IgM, ESR, CRP, 24 h urine protein, average daily dosage of GC, and accumulation dosage of CTX. Subgroup analyses were performed according to conventional therapeutic agents. All data were described with the effect size and 95% confidence intervals (CI). When there was significant heterogeneity ( $I^2 \ge 50\%$ ,  $p \le 0.05$ ), a random-effects model was used; otherwise, a fixed-effects model was used. If the heterogeneity is large, sensitivity analyses were carried out by removing the articles one by one and analyzing the causes of heterogeneity by rereading the full text. A funnel plot of adverse reaction rates was plotted to assess publication bias.

#### 2.9 Certainty assessment

Two researchers (LSW and GHT) independently assessed the grade of evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology, which can be downgraded from five factors (study limitation, consistency of effect, imprecision, indirectness, and publication bias) or upgraded from three reasons (large magnitude of effect, reasonable residual confounding effects, and dose-response gradient). The certainty of evidence was rated as "very low," "low," "moderate," or "high" (Guyatt et al., 2008; Balshem et al., 2011).

## **3** Results

## 3.1 Study selection

A total of 389 articles including 204 duplications were initially retrieved after eight databases were searched by subject words combined with free words. A total of 23 articles were finally included according to the inclusion and exclusion criteria through reading abstracts and full texts. The flow diagram for selection of studies is shown in Figure 2.

## 3.2 Study characteristics

There were 23 RCTs of TGP combined with conventional therapeutic agents for SLE included in this study, including 1,573 patients, with 792 patients overall in the experimental group and 781 patients overall in the control group. All studies were published in Chinese from 2009 to 2020. The sample size ranged from 40 to 106 cases. The control group was treated with conventional therapeutic agents including CTX, TAC, GC, and HCQ, while the experimental group was treated with TGP combined with the drugs of the control groups. The disease



course varied from 1 year to 10 years. The duration of treatment ranged from 1 month to 1 year In total 18 studies reported the primary outcomes of SLEDAI and the incidence of adverse reactions. Other studies reported the second outcome. The baseline data were consistent between the two groups. The basic characteristics of the included studies are shown in Table 1.

## 3.3 Risk of bias assessment

The risk of bias of 23 studies was evaluated according to the Cochrane Evaluation Manual (5.1.0). Seven studies (Lin and Liu, 2016; Cai et al., 2017; Li Z. et al., 2018; Yang and Li, 2019; Wu et al., 2020; Xu, 2020; Zhao et al., 2020) used the random number table method to generate random sequences. Two studies (Peng, 2018; Yu et al., 2019) used the order of admission. One study

(Xue and Lyu, 2019) used the coin toss method. One study (Xiang, 2020) used the touch-ball method. The rest of the studies only mentioned randomness and did not elaborate on the method of random sequence generation. None of the studies stated whether a blinding was used, whether allocation concealment was used, or whether the outcome assessment was blinded. All studies were fully reported according to prespecified outcome measures. The risk of bias for the included studies is shown in Figure 3.

## 3.4 Efficacy outcomes

#### 3.4.1 SLEDAI

A total of 18 studies reported SLEDAI as the primary outcome, including 598 patients overall in the experimental

TABLE 1 Basic characteristics of included studies.

| Study ID Gender<br>(male/   |         | Sample<br>size (T/C) | Age (yea         | rs)             | Course o          | of disease        | Intervent                     | ion            | Treatment<br>duration | Outcome    |
|-----------------------------|---------|----------------------|------------------|-----------------|-------------------|-------------------|-------------------------------|----------------|-----------------------|------------|
|                             | female) | ()                   | Т                | С               | Т                 | С                 | Т                             | С              |                       |            |
| Zhao et al.<br>(2020)       | 8/98    | 106 (53/53)          | 38.14 ± 3.24     | 34.13 ±<br>3.22 | 9.91 ±<br>2.29y   | 9.82 ±<br>2.33y   | TGP 0.6 g<br>tid + CTs        | GC<br>+<br>HCQ | 3 m                   | 023®       |
| Zhang et al.<br>(2020)      | 31/33   | 64 (32/32)           | 38.2 ± 0.5       | 37.9 ± 1.2      | 12.4 ±<br>0.4 m   | 11.8 ±<br>0.7 m   | TGP 0.6 g<br>bid + CTs        | GC<br>+ TAC    | 6 m                   | 1          |
| Yu et al.<br>(2019)         | 11/49   | 60 (30/30)           | 37.84 ±<br>5.9 3 | 37.94 ±<br>5.82 | 5.92 ±<br>1.84y   | 5.87 ±<br>1.90y   | TGP 0.6 g<br>bid + CTs        | GC<br>+ CTX    | 6 m                   | 02780113   |
| Yang and Li,<br>(2019)      | 8/98    | 106 (53/53)          | $41.5\pm4.1$     | $42.7\pm5.2$    | 3.4 ± 1.1y        | 3.7 ± 1.3y        | TGP 0.6 g<br>tid + CTs        | GC             | 3 m                   | 1237®      |
| Xue and Lyu<br>(2019)       | 6/54    | 60 (30/30)           | 38.15 ± 3.20     | 38.12 ±<br>3.25 | 1.81 ±<br>0.32y   | 1.82 ±<br>0.35y   | TGP 0.6 g<br>bid/tid<br>+ CTs | GC<br>+<br>HCQ | 6 m                   | 0371       |
| Xu, (2020)                  | 21/51   | 72 (36/36)           | 36.82 ± 6.2      | 9               | 5.39 ±<br>1.67y   | 5.25 ±<br>1.72y   | TGP 0.6 g<br>bid/tid<br>+ CTs | GC<br>+ CTX    | 12 m                  | 090000     |
| Xu, (2015)                  | 19/34   | 53 (27/26)           | 42.7 ± 5.30      |                 | 5.9 ± 1.7y        | 5.3 ± 1.1y        | TGP 0.6 g<br>bid/tid<br>+ CTs | GC<br>+ CTX    | 1 m                   | 09003      |
| Wu et al.<br>(2020)         | 19/55   | 54 (27/27)           | 36.82 ± 6.3      | 1               | 3.24 ± 1.20y      | 3.19 ±<br>1.02y   | TGP 0.6 g<br>bid/tid<br>+ CTs | GC<br>+ CTX    | 3 m                   | 23456@8    |
| Wang and<br>Wang,<br>(2015) | 6/36    | 42 (21/21)           | 27.34 ±<br>7.65  | 29.28 ±<br>8.95 | NR                |                   | TGP 0.6 g<br>tid + CTs        | GC             | 3 m                   | 00         |
| Liu, (2016)                 | 12/74   | 86 (43/43)           | $44.2\pm9.4$     | $44.2\pm9.4$    | 6.9 ± 3.4y        |                   | TGP 0.6 g<br>tid + CTs        | GC             | NR                    | 451213     |
| Li et al.<br>(2018a)        | 16/74   | 90 (45/45)           | 32.15 ± 5.37     | 33.21 ±<br>4.94 | 32.81 ±<br>9.53 m | 32.07 ±<br>9.86 m | TGP 0.6 g<br>bid + CTs        | GC<br>+ TAC    | 6 m                   | 1234560003 |
| Chen, (2013)                | 4/37    | 41 (21/20)           | 27.5 ± 6.7       |                 | NR                |                   | TGP 0.6 g<br>tid + CTs        | GC<br>+ CTX    | 1.5 m                 | 09003      |
| Li et al.<br>(2013)         | 6/88    | 94 (47/47)           | 43.1             | 42.8            | 7.9y              | 7.4y              | TGP 0.6 g<br>tid + CTs        | GC             | NR                    | 450        |
| Li and<br>Zheng,<br>(2020)  | 14/52   | 66 (33/33)           | 47.21 ± 7.4      | 2               | NR                |                   | TGP 0.6 g<br>bid + CTs        | GC<br>+ CTX    | 1 m                   | 190123     |
| Lin and Liu,<br>(2016)      | 17/34   | 51 (26/25)           | 17-34            |                 | NR                |                   | TGP 0.6 g<br>tid + CTs        | GC<br>+ CTX    | NR                    | 090028     |
| Cai et al.<br>(2017)        | 9/51    | 60 (30/30)           | 33.2 ± 5.1       |                 | 2.47 ±<br>0.78y   | 2.56 ±<br>0.82y   | TGP 0.6 g<br>tid + CTs        | GC<br>+ CTX    | 6 m                   | 12790113   |
| Peng, (2018)                | 10/30   | 40 (20/20)           | 43.3 ± 4.9       |                 | 5.5 ± 1.2y        | 5.7 ± 1.1y        | TGP 0.6 g<br>tid + CTs        | GC<br>+ CTX    | 3 m                   | 1901@3     |
| Xiang,<br>(2020)            | 17/53   | 70 (35/35)           | 39.2 ± 4.3       |                 | 6.8 ± 1.7y        | 6.7 ± 1.6y        | TGP 0.6 g<br>bid/tid<br>+ CTs | GC<br>+ CTX    | 6 m                   | 0900       |
| Feng et al.<br>(2017)       | 19/34   | 53 (27/26)           | 42.7 ± 5.30      |                 | 5.9 ± 1.7y        | 5.3 ± 1.1y        | TGP 0.6 g<br>tid + CTs        | GC<br>+ CTX    | NR                    | 029000     |
| Sun, (2013)                 | 44/52   | 96 (48/48)           | 34.6 ± 4.10      |                 | 2.4 ± 0.8y        | 2.5 ± 0.7y        | TGP 0.6 g<br>tid + CTs        | GC<br>+ CTX    | 3 m                   | 0259       |
| Yang, (2016)                | 11/39   | 50 (26/24)           | 43.1 ± 7.2       |                 | 5.1 ± 1.9y        | 4.2 ± 2.1y        | TGP 0.6 g<br>bid/tid<br>+ CTs | GC<br>+ CTX    | NR                    | 00         |
| Zhu and<br>Wei, (2009)      | 7/58    | 65 (35/30)           | 32 ± 6.5         | 32 ± 6.5        | 5m-6y             |                   | TGP 0.6 g<br>tid + CTs        | GC             | 3 m                   | 123780     |
| Wang et al.<br>(2013)       | 6/88    | 94 (47/47)           | 43.1             | 42.8            | 7.9y              | 7.4y              | TGP 0.6 g<br>tid + CTs        | GC             | NR                    | 4503       |

T, test group; C, control group; CTs, control treatments; m, month; y, year; bid, twice a day; tid, three times a day; NR, not reported; GC, glucocorticoids; CTX, cyclophosphamide; TGP, total glucosides of paeony; HCQ, hydroxychloroquine; TAC, tarcolimus; SLEDAI, systemic lupus erythematosus disease activity index; C3, complement 3; C4, complement 4; Ig, Immunoglobulin; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; ③ SLEDAI; ② C3; ③ C4; ④ IgA; ⑤ IgG; ⑥ IgM; ⑦ ESR; ⑧ CRP; ③ 24 h urine protein; ⑩ GC, average daily dosage; ⑪ cumulative dosage of CTX; @ recurrence rate; ⑬ incidence of adverse reactions.

group and 587 patients overall in the control group. Subgroup analysis was performed according to different treatment drugs. Twelve studies (Chen, 2013; Sun, 2013; Xu, 2015; Lin and Liu, 2016; Yang, 2016; Cai et al., 2017; Feng et al., 2017; Peng, 2018; Yu et al., 2019; Li and Zheng, 2020; Xiang, 2020; Xu, 2020) used TGP in combination with GC and CTX. One study (Zhao et al., 2020) used TGP in combination with GC and HCQ. Two studies (Li Z. et al., 2018; Zhang, 2020) used TGP in combination with GC and TAC. Three studies (Zhu and Wei, 2009; Wang and Wang, 2015; Yang and Li, 2019) used TGP in combination with GC. A random-effects model was applied for analysis because of the existence of heterogeneity ( $I^2 = 88\%$ , p < 0.001). Subgroup analysis showed that the SLEDAI score of the experimental group was significantly lower than that of the control group (SMD = -1.98, 95% Cl = [-2.50, -1.46], *p* <0.001; SMD = -0.65, 95% Cl = [-1.04, -0.26], p < 0.01;SMD = -0.94, 95% Cl = [-1.53, -0.34], p < 0.01;SMD = -1.00, 95% Cl = [-1.64, -0.36], p < 0.01). The difference was statistically significant (Figure 4).

Sensitivity analysis was performed to explore the source of heterogeneity by excluding articles sequentially and reading the full text. It was found that two studies (Sun, 2013; Cai et al., 2017) had a significant influence on the result when TGP was combined with GC and CTX treatment. The heterogeneity was reduced after excluding the two articles, (I<sup>2</sup> = 25% and *p* = 0.21). We merged the data of other studies to analyze (SMD = -2.26, 95% Cl = [-2.52, -2.01], *p* <0.001). The shorter mean duration of disease in patients included in one study (Cai et al., 2017) and the shorter mean disease duration of patients included in another study (Sun, 2013) with more comorbidities and higher disease activity before treatment may be the main reasons for the heterogeneity.

One study (Yang and Li, 2019) had a significant influence on the result when TGP was combined with GC treatment. The heterogeneity was reduced after excluding this study ( $I^2 = 0\%$ , p =0.66). Data from other studies was merged for analysis (SMD = -0.69, 95% Cl = [-1.08, -0.29], p < 0.001). The older average age of patients in this study may be the main reason for the heterogeneity (Supplementary Figure S1).

#### 3.4.2 C3

Eight studies reported C3 as the outcome, including 316 patients overall in the experimental group and 311 patients overall in the control group. Subgroup analysis was performed according to different treatment drugs. Four studies (Sun, 2013; Cai et al., 2017; Yu et al., 2019; Wu et al., 2020) used TGP in combination with GC and CTX. Two studies (Xue and Lyu, 2019; Zhao et al., 2020) used TGP in combination with GC. A fixed-effects model was applied for analysis due to low heterogeneity ( $I^2 = 22\%$ , p = 0.26). Subgroup analysis showed that C3 in the experimental group was significantly higher than that in the

control group (SMD = 1.28, 95% Cl = [1.05, 1.52], p < 0.001; SMD = 1.43, 95% Cl = [1.09, 1.77], p < 0.001; SMD = 1.12, 95% Cl = [0.74, 1.50], p < 0.001). The difference was statistically significant (Figure 5A).

## 3.4.3 C4

Six studies reported C4 as the outcome, including 230 patients overall in the experimental group and 225 patients overall in the control group. Subgroup analysis was performed according to different treatment drugs. One study (Wu et al., 2020) used TGP in combination with GC and CTX. Two studies (Xue and Lyu, 2019; Zhao et al., 2020) used TGP in combination with GC and HCQ. One study (Li Z. et al., 2018) used TGP in combination with GC and TAC. Two studies (Zhu and Wei, 2009; Yang and Li, 2019) used TGP in combination with GC therapy. A fixed-effects model was applied for analysis because of low heterogeneity ( $I^2 = 5\%$ , p = 0.39). Subgroup analysis showed that C4 in the experimental group was significantly higher than that in the control group (SMD = 0.87, 95%Cl = [0.40, 1.35], p < 0.001; SMD = 1.43, 95% Cl = [1.08, 1.77],*p* <0.001; SMD = 0.96, 95% Cl = [0.52, 1.40], *p* <0.001; SMD = 1.18, 95% Cl = [0.80, 1.56], p <0.001). The difference was statistically significant (Figure 5B).

#### 3.4.4 IgA

Five studies reported IgA as the outcome, including 215 patients overall in the experimental group and 191 patients overall in the control group. Subgroup analysis was performed according to different treatment drugs. One study (Wu et al., 2020) used TGP in combination with GC and CTX. One study (Li Z. et al., 2018) used TGP in combination with GC and HCQ. Three studies (Li, 2013; Liu, 2016; Peng, 2018) used TGP in combination with GC and HCQ. Three studies (Li, 2013; Liu, 2016; Peng, 2018) used TGP in combination with GC. A random-effects model was applied for analysis because of the existence of heterogeneity (I<sup>2</sup> = 79%, *p* <0.001). Subgroup analysis showed that IgA in the experimental group was lower than that in the control group (SMD = -0.85, 95% Cl = [-1.32, -0.37], *p* <0.001; SMD = -1.45, 95% Cl = [-1.92, -0.99], *p* <0.001; SMD = -0.33, 95% Cl = [-0.57, -0.09], *p* <0.01). The difference was statistically significant (Figure 6A).

Sensitivity analysis was performed to explore the source of heterogeneity by excluding articles sequentially and reading the full text. Two studies (Li Z. et al., 2018; Wu et al., 2020) were found to have a significant impact on the result. The heterogeneity was reduced after excluding the two articles ( $I^2 = 0\%$ , p = 0.77). We merged the data of other studies for analysis (SMD = -0.33, 95% Cl = [-0.57, -0.09], p < 0.01). It was found that TGP in combination with different drug treatments may be responsible for the heterogeneity (Supplementary Figure S2).

#### 3.4.5 IgG

Six studies reported IgG as the outcome, including 267 patients overall in the experimental group and



267 patients overall in the control group. Subgroup analysis was performed according to different treatment drugs. Two studies (Sun, 2013; Wu et al., 2020) used TGP in combination with GC and CTX. One study (Li Z. et al., 2018) used TGP in combination with GC and TAC. Three studies (Li, 2013; Wang et al., 2013; Liu, 2016) used TGP in combination with GC. A random-effects model was applied for analysis because of the existence of heterogeneity (I<sup>2</sup> = 83%, *p* <0.001). Subgroup analysis showed that the IgG in the experimental group was lower than that in the control group (SMD = -0.42, 95% Cl = [-1.60, 0.77], *p* < 0.001; SMD = -1.34, 95% Cl = [-1.80, -0.89], *p* < 0.001; SMD = -0.39, 95% Cl = [-0.63, -0.15], *p* < 0.01). The difference was statistically significant (Figure 6B).

Sensitivity analysis was performed to explore the source of heterogeneity by excluding articles sequentially and reading the full text. Three studies (Sun, 2013; Li Z. et al., 2018; Wu et al., 2020) were found to have a significant impact on the result. The heterogeneity was reduced after excluding the three articles ( $I^2 = 0\%$ , p = 0.82). We merged the data of other studies to analyze (SMD = -0.39, 95% Cl = [-0.63, -0.15], p < 0.01). It was found that TGP in combination with different drug treatments may be responsible for heterogeneity (Supplementary Figure S3).

#### 3.4.6 IgM

Two studies reported IgM as the outcome, including 82 patients overall in the experimental group and 82 patients overall in the control group. Subgroup analysis was performed according to different treatment drugs. One study (Wu et al., 2020) used TGP in combination with GC and CTX. One study (Li Z. et al., 2018) used TGP in combination with GC and TAC. A fixed-effects model was applied for analysis because of low heterogeneity (I<sup>2</sup> = 0%, p = 0.45). Subgroup analysis showed that the IgM in the experimental group was lower than that in the control group (SMD = -1.31, 95% Cl = [-1.81, -0.80], p < 0.001; SMD = -1.05, 95% Cl = [-1.49, -0.61], p < 0.001). The difference was statistically significant (Figure 6C).

#### 3.4.7 ESR

Five studies reported ESR as the outcome, including 155 patients overall in the experimental group and 150 patients overall in the control group. Subgroup analysis was performed according to different treatment drugs. Two studies (Cai et al., 2017; Yu et al., 2019) used TGP in combination with GC and CTX. One study (Xue and Lyu, 2019) used TGP in combination with GC and HCQ. Two studies (Zhu and Wei, 2009; Yang and Li, 2019) used TGP in combination with GC. A random-effects model was applied for analysis because of the existence of heterogeneity (I<sup>2</sup> = 69%, *p* < 0.01). Subgroup analysis showed that the ESR of the experimental group was lower than that in the control group (SMD = -0.95,

|                                                               | -                    |                      |                     |                |              |                      |                    |                        |                      |
|---------------------------------------------------------------|----------------------|----------------------|---------------------|----------------|--------------|----------------------|--------------------|------------------------|----------------------|
| ~                                                             | Expe                 | rimen                | tal                 | с.             | ontrol       |                      |                    | Std. Mean Difference   | Std. Mean Difference |
| Study or Subgroup                                             | Mean                 | SD                   | Total               | Mean           | SD           | Total                | Weight             | IV, Random, 95% Cl     | IV, Random, 95% Cl   |
| 1.1.1 GC+CTX+TGP V                                            | S GC+C               | IX                   |                     |                |              |                      |                    |                        |                      |
| Cai H 2017                                                    | 2.41                 | 0.73                 | 30                  | 2.88           | 0.88         | 30                   | 5.8%               | -0.57 [-1.09, -0.06]   |                      |
| Chen J 2013                                                   | 2.3                  | 0.95                 | 21                  | 5.3            | 2.37         | 20                   | 5.3%               | -1.64 [-2.36, -0.93]   |                      |
| Feng P 2017                                                   | 2.1                  | 0.59                 | 27                  | 5.9            | 2.11         | 26                   | 5.3%               | -2.44 [-3.16, -1.71]   |                      |
| Li X 2020                                                     | 2.37                 | 0.61                 | 33                  | 5.73           | 1.98         | 33                   | 5.5%               | -2.27 [-2.89, -1.64]   |                      |
| Lin G 2016                                                    | 2.2                  | 0.93                 | 26                  | 5.1            | 2.35         | 25                   | 5.5%               | -1.61 [-2.25, -0.97]   |                      |
| Peng H 2018                                                   | 2.6                  | 0.6                  | 20                  | 6.3            | 1.5          | 20                   | 4.6%               | -3.17 [-4.13, -2.21]   |                      |
| Sun X 2013                                                    | 5.79                 | 1.15                 | 48                  | 6.37           | 1.29         | 48                   | 6.0%               | -0.47 [-0.88, -0.07]   |                      |
| Xiang S 2020                                                  | 2.14                 | 0.63                 | 35                  | 5.47           | 1.77         | 35                   | 5.5%               | -2.48 [-3.11, -1.85]   |                      |
| Xu F 2015                                                     | 2.1                  | 0.59                 | 27                  | 5.9            | 2.11         | 26                   | 5.3%               | -2.44 [-3.16, -1.71]   |                      |
| Xu Y 2020                                                     | 2.42                 | 0.71                 | 36                  | 5.86           | 2.15         | 36                   | 5.6%               | -2.13 [-2.71, -1.54]   |                      |
| Yang M 2016                                                   | 2.01                 | 0.51                 | 26                  | 6.17           | 2.34         | 24                   | 5.2%               | -2.47 [-3.21, -1.72]   |                      |
| Yu H 2019                                                     | 2.13                 | 0.64                 | 30                  | 5.46           | 1.78         | 30                   | 5.4%               | -2.46 [-3.14, -1.78]   |                      |
| Subtotal (95% CI)                                             |                      |                      | 359                 |                |              | 353                  | 64.9%              | -1.98 [-2.50, -1.46]   | -                    |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: | 0.74; Cl<br>Z = 7.40 | hi² = 90<br>1 (P < 0 | 0.43, df<br>0.00001 | í = 11 (P<br>) | o < 0.01 × ۱ | 0001); I             | ²= 88%             |                        |                      |
| 1.1.2 GC+HCQ+TGP V                                            | S GC+H               | CQ                   |                     |                |              |                      |                    |                        |                      |
| Zhao L2020                                                    | 4.75                 | 1.93                 | 53                  | 6.08           | 2.13         | 53                   | 6.1%               | -0.65 [-1.04, -0.26]   | -                    |
| Subtotal (95% CI)                                             |                      |                      | 53                  |                |              | 53                   | 6.1%               | -0.65 [-1.04, -0.26]   | •                    |
| Heterogeneity: Not ap                                         | plicable             |                      |                     |                |              |                      |                    |                        |                      |
| Test for overall effect:                                      | Z = 3.26             | (P = 0               | .001)               |                |              |                      |                    |                        |                      |
| 1.1.3 GC+Tac+TGP V                                            | S GC+Ta              | ic                   |                     |                |              |                      |                    |                        |                      |
| Li Z 2018                                                     | 4.81                 | 1.65                 | 45                  | 6.16           | 2.36         | 45                   | 6.0%               | -0.66 [-1.08, -0.23]   |                      |
| Zhang Y 2020                                                  | 4.75                 | 1.02                 | 32                  | 6.17           | 1.19         | 32                   | 5.7%               | -1.27 [-1.81, -0.73]   |                      |
| Subtotal (95% CI)                                             |                      |                      | 77                  |                |              | 77                   | 11.7%              | -0.94 [-1.53, -0.34]   | <b>•</b>             |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: | 0.12; CI<br>Z = 3.09 | hi² = 3.<br>I (P = 0 | 01, df=<br>1.002)   | = 1 (P =       | 0.08);       | l² = 679             | Х6                 |                        |                      |
| 44400-100-00                                                  |                      |                      |                     |                |              |                      |                    |                        |                      |
| 1.1.4 GC+TGP VS GC                                            | 0.00                 | 4 77                 | 4                   | 1.74           | 4 70         | 24                   | C . C . V          | 0.0014.00.0.00         |                      |
| Wang D 2015                                                   | 3.66                 | 1.11                 | 21                  | 4.71           | 1.79         | 21                   | 5.5%               | -0.58 [-1.20, 0.04]    |                      |
| Yang X 2019<br>750 Y 2000                                     | 4.33                 | 1.19                 | 53                  | 0.84           | 1.87         | 53                   | 5.0%               | -1.59 [-2.03, -1.15]   |                      |
| Zhu Y 2009<br>Subtetel (05% CI)                               | 12                   | 4.8                  | 35                  | 16             | 5.68         | 30                   | 5.8%               | -0.76[-1.26, -0.25]    |                      |
| Hotorogonalty Tav?                                            | 0.25.00              | hiZ - C              | 20 46               | 2/0-           | 0.04 0       | 104                  | 17.5%              | - 1.00 [- 1.04, -0.36] | -                    |
| Test for overall effect:                                      | Z = 3.05             | (P = 0               | 28, ui -<br>1.002)  | = 2 (F =       | 0.010,       | , = 70               | 570                |                        |                      |
| Total (95% Cl)                                                |                      |                      | 598                 |                |              | 587                  | 100.0%             | -1.60 [-1.99, -1.22]   | •                    |
| Heterogeneity: Tau <sup>2</sup> =                             | 0.59° CI             | hi <sup>2</sup> = 14 | 40.21               | df = 17 (      | P < 0        | 00001                | <sup>2</sup> = 88% | ,,                     |                      |
| Test for overall effect                                       | Z = 8.20             | (P < 0               | 00001               | )              |              |                      |                    |                        | -4 -2 0 2 4          |
| Test for subaroup diff                                        | erences              | : Chi² =             | = 16.24             | . df = 3       | (P = 0.      | 001). I <sup>a</sup> | = 81.5%            |                        | experimental control |
|                                                               |                      |                      |                     |                |              |                      |                    |                        |                      |
|                                                               |                      |                      |                     |                |              |                      |                    |                        |                      |
| TOTOST PLOT OF SELDAI.                                        |                      |                      |                     |                |              |                      |                    |                        |                      |
|                                                               |                      |                      |                     |                |              |                      |                    |                        |                      |

95% Cl = [-1.73, -0.17], p < 0.05; SMD = -1.77, 95% Cl = [-2.37, -1.17], p < 0.001; SMD = -1.58, 95% Cl = [-1.98, -0.17], p < 0.001). The difference was statistically significant (Figure 7A).

Sensitivity analysis was performed to explore the source of heterogeneity by excluding articles sequentially and reading the full text. It was found that one study (Yu et al., 2019) had an important impact on the result. The heterogeneity was reduced after excluding this article (I<sup>2</sup> = 0%, p = 0.63). We merged the data of other studies to analyze (SMD = -1.56, 95% Cl = [-1.85, -1.27], p < 0.001). The imprecise result of the study may be the main reason for the heterogeneity. (Supplementary Figure S4).

#### 3.4.8 CRP

Two studies reported CRP as the outcome, including 65 patients overall in the experimental group and 60 patients overall in the control group. Subgroup analysis was performed according to different treatment drugs. One study (Yu et al., 2019) used TGP in combination with GC and CTX. One study (Zhu and Wei, 2009) used TGP in combination with GC. A fixed-effects model was applied for analysis because of low heterogeneity (I<sup>2</sup> = 11%, *p* = 0.29). Subgroup analysis showed that the CRP of the experimental group was lower than that of the control group (SMD = -1.01, 95% Cl = [-1.55, -0.47], *p* <0.001; SMD = -0.61, 95% Cl = [-1.11, -0.11], *p* < 0.05). The difference was statistically significant (Figure 7B).

| Α                                 |              |          |         |                       |         |          |        |                      |                        |
|-----------------------------------|--------------|----------|---------|-----------------------|---------|----------|--------|----------------------|------------------------|
|                                   | Expe         | riment   | tal     | C                     | ontrol  |          |        | Std. Mean Difference | Std. Mean Difference   |
| Study or Subgroup                 | Mean         | SD       | Total   | Mean                  | SD      | Total    | Weight | IV, Fixed, 95% CI    | IV, Fixed, 95% CI      |
| 1.2.1 GC+CTX+TGP                  | /S GC+C1     | TX       |         |                       |         |          |        |                      |                        |
| Cai H 2017                        | 1.23         | 0.33     | 30      | 0.91                  | 0.26    | 30       | 10.2%  | 1.06 [0.52, 1.61]    |                        |
| Sun X 2013                        | 0.79         | 0.22     | 48      | 0.37                  | 0.29    | 48       | 14.0%  | 1.62 [1.16, 2.08]    |                        |
| Wu X 2020                         | 0.83         | 0.27     | 37      | 0.6                   | 0.25    | 37       | 13.2%  | 0.87 [0.40, 1.35]    |                        |
| Yu H 2019                         | 1.28         | 0.25     | 53      | 0.94                  | 0.21    | 53       | 16.2%  | 1.46 [1.03, 1.89]    |                        |
| Subtotal (95% CI)                 |              |          | 168     |                       |         | 168      | 53.6%  | 1.28 [1.05, 1.52]    | ◆                      |
| Heterogeneity: Chi <sup>2</sup> = | : 6.11, df:  | = 3 (P = | = 0.11) | ; I² = 51             | %       |          |        |                      |                        |
| Test for overall effect           | Z=10.6       | 2 (P <   | 0.0000  | 1)                    |         |          |        |                      |                        |
|                                   |              |          |         |                       |         |          |        |                      |                        |
| 1.2.2 GC+HCQ+TGP                  | VS GC+H      | CQ       |         |                       |         |          |        |                      |                        |
| Xue Y2019                         | 1.27         | 0.24     | 30      | 0.95                  | 0.22    | 30       | 9.4%   | 1.37 [0.81, 1.94]    |                        |
| Zhao L2020                        | 1.28         | 0.25     | 53      | 0.94                  | 0.21    | 53       | 16.2%  | 1.46 [1.03, 1.89]    |                        |
| Subtotal (95% CI)                 |              |          | 83      |                       |         | 83       | 25.6%  | 1.43 [1.09, 1.77]    | •                      |
| Heterogeneity: Chi <sup>2</sup> = | : 0.06, df : | = 1 (P = | = 0.80) | ; I <sup>2</sup> = 0% | 5       |          |        |                      |                        |
| Test for overall effect           | : Z = 8.18   | (P < 0   | .00001  | )                     |         |          |        |                      |                        |
|                                   |              |          |         |                       |         |          |        |                      |                        |
| 1.2.3 GC+TGP VS GC                |              |          |         |                       |         |          |        |                      |                        |
| Yang X 2019                       | 1.27         | 0.24     | 30      | 0.95                  | 0.22    | 30       | 9.4%   | 1.37 [0.81, 1.94]    |                        |
| Zhu Y 2009                        | 1.12         | 0.39     | 35      | 0.76                  | 0.39    | 30       | 11.4%  | 0.91 [0.40, 1.43]    |                        |
| Subtotal (95% CI)                 |              |          | 65      |                       |         | 60       | 20.8%  | 1.12 [0.74, 1.50]    | •                      |
| Heterogeneity: Chi <sup>2</sup> = | : 1.39, df : | = 1 (P = | = 0.24) | ; I <sup>2</sup> = 28 | %       |          |        |                      |                        |
| Test for overall effect           | : Z = 5.77   | (P < 0   | .00001  | )                     |         |          |        |                      |                        |
|                                   |              |          |         |                       |         |          |        |                      |                        |
| Total (95% CI)                    |              |          | 316     |                       |         | 311      | 100.0% | 1.29 [1.11, 1.46]    |                        |
| Heterogeneity: Chi <sup>2</sup> = | : 8.97, df : | = 7 (P = | = 0.26) | ; I² = 22             | %       |          |        | -4                   | -2 0 2 4               |
| Test for overall effect           | : Z = 14.5   | 4 (P <   | 0.0000  | 1)                    |         |          |        | -4                   | experimental control   |
| Test for subaroup di              | Terences:    | : Chi²=  | = 1.40. | df = 2 (F             | P = 0.5 | 0). I² = | 0%     |                      | separation and control |

#### В

|                                     | Expe     | erimen               | tal     | С                     | ontrol  |                  |        | Std. Mean Difference | Std. Mean Difference |
|-------------------------------------|----------|----------------------|---------|-----------------------|---------|------------------|--------|----------------------|----------------------|
| Study or Subgroup                   | Mean     | SD                   | Total   | Mean                  | SD      | Total            | Weight | IV, Fixed, 95% CI    | IV, Fixed, 95% Cl    |
| 1.3.1 GC+CTX+TGP VS                 | GC+C     | TX                   |         |                       |         |                  |        |                      |                      |
| Wu X 2020                           | 0.27     | 0.1                  | 37      | 0.19                  | 0.08    | 37               | 17.5%  | 0.87 [0.40, 1.35]    | -                    |
| Subtotal (95% CI)                   |          |                      | 37      |                       |         | 37               | 17.5%  | 0.87 [0.40, 1.35]    | •                    |
| Heterogeneity: Not app              | plicable |                      |         |                       |         |                  |        |                      |                      |
| Test for overall effect: 2          | Z = 3.58 | 8 (P = 0             | 1.0003) |                       |         |                  |        |                      |                      |
| 1.3.2 GC+HCQ+TGP V                  | S GC+H   | CQ                   |         |                       |         |                  |        |                      |                      |
| Xue Y2019                           | 0.31     | 0.06                 | 30      | 0.24                  | 0.05    | 30               | 12.9%  | 1.25 [0.69, 1.81]    |                      |
| Zhao L2020                          | 0.32     | 0.05                 | 53      | 0.25                  | 0.04    | 53               | 21.2%  | 1.53 [1.10, 1.97]    |                      |
| Subtotal (95% CI)                   |          |                      | 83      |                       |         | 83               | 34.1%  | 1.43 [1.08, 1.77]    | •                    |
| Heterogeneity: Chi <sup>2</sup> = 0 | 0.62, df | = 1 (P               | = 0.43) | ; I <sup>2</sup> = 09 | 6       |                  |        |                      |                      |
| Test for overall effect: 2          | Z = 8.16 | 6 (P < 0             | 0.00001 | )                     |         |                  |        |                      |                      |
| 1.3.3 GC+Tac+TGP VS                 | GC+Ta    | ic                   |         |                       |         |                  |        |                      |                      |
| Li Z 2018                           | 0.19     | 0.05                 | 45      | 0.15                  | 0.03    | 45               | 20.9%  | 0.96 [0.52, 1.40]    | -                    |
| Subtotal (95% CI)                   |          |                      | 45      |                       |         | 45               | 20.9%  | 0.96 [0.52, 1.40]    | •                    |
| Heterogeneity: Not app              | plicable |                      |         |                       |         |                  |        |                      |                      |
| Test for overall effect: 2          | Z = 4.31 | (P < 0               | 1.0001) |                       |         |                  |        |                      |                      |
| 1.3.4 GC+TGP VS GC                  |          |                      |         |                       |         |                  |        |                      |                      |
| Yang X 2019                         | 0.31     | 0.06                 | 30      | 0.24                  | 0.05    | 30               | 12.9%  | 1.25 [0.69, 1.81]    |                      |
| Zhu Y 2009                          | 0.52     | 0.22                 | 35      | 0.33                  | 0.07    | 30               | 14.5%  | 1.11 [0.59, 1.64]    |                      |
| Subtotal (95% CI)                   |          |                      | 65      |                       |         | 60               | 27.4%  | 1.18 [0.80, 1.56]    | •                    |
| Heterogeneity: Chi <sup>2</sup> = ( | 0.12, df | = 1 (P               | = 0.73) | ; I <sup>2</sup> = 09 | 6       |                  |        |                      |                      |
| Test for overall effect: 2          | Z = 6.04 | (P < 0               | 0.00001 | )                     |         |                  |        |                      |                      |
| Total (95% CI)                      |          |                      | 230     |                       |         | 225              | 100.0% | 1.16 [0.96, 1.36]    | •                    |
| Heterogeneity: Chi <sup>2</sup> = 9 | 5.24, df | = 5 (P               | = 0.39) | ; I <sup>2</sup> = 59 | 6       |                  |        |                      |                      |
| Test for overall effect: 2          | Z = 11.4 | 0 (P <               | 0.0000  | 01)                   |         |                  |        |                      | evperimental control |
| Test for subaroup diffe             | erences  | : Chi <sup>2</sup> = | = 4.50. | df = 3 (f             | P = 0.2 | 1), <b> </b> ² = | 33.4%  |                      | systemental sention  |
| FIGURE 5                            |          |                      |         |                       |         |                  |        |                      |                      |
| Forest plot of C3 (A), C4           | (B).     |                      |         |                       |         |                  |        |                      |                      |
|                                     |          |                      |         |                       |         |                  |        |                      |                      |

| •                                 |                       |                  |           |           |         |          |               |                      |                      |
|-----------------------------------|-----------------------|------------------|-----------|-----------|---------|----------|---------------|----------------------|----------------------|
| A                                 | Expe                  | erimen           | tal       | с         | ontrol  |          |               | Std. Mean Difference | Std. Mean Difference |
| Study or Subgroup                 | Mean                  | SD               | Total     | Mean      | SD      | Total    | Weight        | IV, Random, 95% CI   | IV, Random, 95% CI   |
| 1.4.1 GC+CTX+TGP \                | /S GC+C               | ТХ               |           |           |         |          |               |                      |                      |
| Wu X 2020                         | 2.57                  | 0.54             | 37        | 3.04      | 0.56    | 37       | 19.2%         | -0.85 [-1.32, -0.37] |                      |
| Subtotal (95% CI)                 |                       |                  | 37        |           |         | 37       | 19.2%         | -0.85 [-1.32, -0.37] | ◆                    |
| Heterogeneity: Not a              | pplicable             |                  |           |           |         |          |               |                      |                      |
| Test for overall effect           | Z = 3.48              | (P=0             | 1.0005)   |           |         |          |               |                      |                      |
|                                   |                       |                  |           |           |         |          |               |                      |                      |
| 1.4.2 GC+Tac+TGP V                | S GC+Ta               | IC               |           |           |         |          |               |                      |                      |
| Li Z 2018                         | 2.12                  | 0.43             | 45        | 2.82      | 0.52    | 45       | 19.4%         | -1.45 [-1.92, -0.99] | <b>T</b>             |
| Subtotal (95% CI)                 |                       |                  | 45        |           |         | 45       | 19.4%         | -1.45 [-1.92, -0.99] | -                    |
| Heterogeneity: Not a              | pplicable             |                  |           |           |         |          |               |                      |                      |
| Test for overall effect           | Z = 6.11              | (P < 0           | 0.00001   | )         |         |          |               |                      |                      |
| 44200,00000000000                 |                       |                  |           |           |         |          |               |                      |                      |
| 1.4.3 GC+1GP VS GC                | 2.07                  | 2.26             | 47        | 2 70      | 2 00    | 47       | 20.60         | 0 27 1 0 67 0 1 41   |                      |
| LIT 2013                          | 3.07                  | 1.30             | 47        | 3.70      | 2.00    | 47       | 20.0%         | -0.27 [-0.07, 0.14]  |                      |
| LIU VV 2010                       | 2.00                  | 1.35             | 43        | 3.91      | 2.9     | 43       | 20.2%         | -0.40 [-0.09, -0.03] |                      |
| Subtotal (05% CI)                 | 3.07                  | 2.50             | 137       | 3.70      | 2.00    | 137      | 61 3%         | 0.27 [-0.07, 0.14]   | •                    |
| Unteregeneiter Tou?               | 0.00.0                | hiz - 0          | EA df-    | - 2/0 -   | 0 771   | 137      | 01.5%         | -0.55 [-0.57, -0.05] | •                    |
| Test for everall effect           | 7 - 2 60              | n = 0            | .94, ui = | = 2 (F =  | 0.77),  | 1-= 0 %  |               |                      |                      |
| restion overall ellect            | . <u>2</u> = 2.08     | (r = t           | .007)     |           |         |          |               |                      |                      |
| Total (95% CI)                    |                       |                  | 219       |           |         | 219      | 100.0%        | -0.65 [-1.08, -0.22] | •                    |
| Heterogeneity: Tau <sup>2</sup> : | = 0.19 <sup>-</sup> C | hi² = 1!         | 9 4 4 dt  | (= 4 (P : | = 0 000 | 16): 17= | 79%           | the [ hoo, one ]     |                      |
| Test for overall effect           | 7 = 2.96              | (P = f)          | 003       | . (       | 0.000   |          |               |                      | -4 -2 0 2 4          |
| Test for subgroup dif             | ferences              | Chi <sup>2</sup> | = 18.91   | df = 2    | (P < 0  | 0001)    | $ ^2 = 89.49$ | 6                    | experimental control |

#### в

|                                   | Exp        | eriment               | al       | (        | Control                 |                        |        | Std. Mean Difference | Std. Mean Difference |  |  |  |
|-----------------------------------|------------|-----------------------|----------|----------|-------------------------|------------------------|--------|----------------------|----------------------|--|--|--|
| Study or Subgroup                 | Mean       | SD                    | Total    | Mean     | SD                      | Total                  | Weight | IV, Random, 95% Cl   | IV, Random, 95% Cl   |  |  |  |
| 1.5.1 GC+CTX+TGP V                | S GC+C     | TX                    |          |          |                         |                        |        |                      |                      |  |  |  |
| Sun X 2013                        | 15.41      | 1.27                  | 48       | 15.15    | 1.57                    | 48                     | 17.1%  | 0.18 [-0.22, 0.58]   |                      |  |  |  |
| Wu X 2020                         | 12.14      | 2.53                  | 37       | 14.89    | 2.75                    | 37                     | 15.9%  | -1.03 [-1.52, -0.54] |                      |  |  |  |
| Subtotal (95% CI)                 |            |                       | 85       |          |                         | 85                     | 33.0%  | -0.42 [-1.60, 0.77]  | -                    |  |  |  |
| Heterogeneity: Tau <sup>2</sup> = | = 0.68; CI | hi <sup>2</sup> = 14. | 16, df = | = 1 (P = | 0.0002                  | ); I <sup>2</sup> = 9: | 3%     |                      |                      |  |  |  |
| Test for overall effect:          | Z = 0.69   | (P = 0.4              | 49)      |          |                         |                        |        |                      |                      |  |  |  |
| 4.5.0.00.7                        | 0.00.7-    |                       |          |          |                         |                        |        |                      |                      |  |  |  |
| 1.5.2 GC+Tac+TGP V                | S GC+Ta    | IC                    |          |          |                         |                        |        |                      | -                    |  |  |  |
| Li Z 2018                         | 14.02      | 2.41                  | 45       | 17.13    | 2.17                    | 45                     | 16.3%  | -1.34 [-1.80, -0.89] |                      |  |  |  |
| Subtotal (95% CI)                 |            |                       | 45       |          |                         | 45                     | 16.3%  | -1.34 [-1.80, -0.89] | -                    |  |  |  |
| Heterogeneity: Not ap             | oplicable  |                       |          |          |                         |                        |        |                      |                      |  |  |  |
| Test for overall effect:          | Z= 5.74    | (P < 0.0              | 00001)   |          |                         |                        |        |                      |                      |  |  |  |
| 1.5.3 GC+TGP VS GC                |            |                       |          |          |                         |                        |        |                      |                      |  |  |  |
| Li Y 2013                         | 18.34      | 11.16                 | 47       | 22.18    | 11.27                   | 47                     | 17.0%  | -0.34 [-0.75, 0.07]  |                      |  |  |  |
| Liu W 2016                        | 17.23      | 10.84                 | 43       | 23.08    | 12.16                   | 43                     | 16.7%  | -0.50 (-0.93, -0.07) |                      |  |  |  |
| Wang Z 2013                       | 18.34      | 11.16                 | 47       | 22.18    | 11.27                   | 47                     | 17.0%  | -0.34 [-0.75, 0.07]  |                      |  |  |  |
| Subtotal (95% CI)                 |            |                       | 137      |          |                         | 137                    | 50.7%  | -0.39 [-0.63, -0.15] | •                    |  |  |  |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00: CI | hi² = 0.3             | 8. df =  | 2(P = 0) | ).82): I <sup>2</sup> : | = 0%                   |        | •                    |                      |  |  |  |
| Test for overall effect:          | Z = 3.20   | (P = 0.0              | 001)     |          |                         |                        |        |                      |                      |  |  |  |
| Total (05% CI)                    |            |                       | 267      |          |                         | 267                    | 100.0% | 0.551.0.09 0.121     |                      |  |  |  |
| Total (95% CI)                    | 0.04.01    |                       | 207      | C (D )   | 0.0004                  | 207                    | 100.0% | -0.55 [-0.98, -0.12] | <b>→</b>             |  |  |  |
| Heterogeneity: Tau*=              | = 0.24; CI | nr= 29.               | 80, df : | = 5 (P < | 0.0001                  | ); i* = 8:             | 5%     |                      | -4 -2 0 2 4          |  |  |  |
| Test for overall effect:          | Z = 2.53   | (P = 0.0)             | J1)      |          |                         |                        |        |                      | experimental control |  |  |  |
| Test for subaroup dif             | terences   | : Chi <sup>2</sup> =  | 13.12.   | dt = 2 ( | P = 0.00                | 11), l <sup>2</sup> =  | 84.8%  |                      |                      |  |  |  |

## С

|                | Experimental                         |               |                      |         | С         | ontrol  |                  |        | Std. Mean Difference | Std. Mean Difference |  |  |  |
|----------------|--------------------------------------|---------------|----------------------|---------|-----------|---------|------------------|--------|----------------------|----------------------|--|--|--|
| _              | Study or Subgroup                    | Mean          | SD                   | Total   | Mean      | SD      | Total            | Weight | IV, Fixed, 95% CI    | IV, Fixed, 95% Cl    |  |  |  |
|                | 1.6.1 GC+CTX+TGP V                   | S GC+C        | TX                   |         |           |         |                  |        |                      |                      |  |  |  |
|                | Wu X 2020                            | 1.83          | 0.3                  | 37      | 2.24      | 0.32    | 37               | 43.4%  | -1.31 [-1.81, -0.80] |                      |  |  |  |
|                | Subtotal (95% CI)                    |               |                      | 37      |           |         | 37               | 43.4%  | -1.31 [-1.81, -0.80] | •                    |  |  |  |
|                | Heterogeneity: Not ap                | plicable      |                      |         |           |         |                  |        |                      |                      |  |  |  |
|                | Test for overall effect:             | Z = 5.08      | 8 (P < 0             | .00001  | )         |         |                  |        |                      |                      |  |  |  |
|                | 162GC+Tac+TGPV                       | S 6C+T2       | 10                   |         |           |         |                  |        |                      |                      |  |  |  |
|                | 117 2018                             | 1 46          | 0.27                 | 45      | 1 78      | 0.33    | 45               | 56.6%  | -1 05 61 49 -0 611   |                      |  |  |  |
|                | Subtotal (95% CI)                    | 1.40          | 0.21                 | 45      | 1.10      | 0.00    | 45               | 56.6%  | -1.05 [-1.49, -0.61] | ▲                    |  |  |  |
|                | Heterogeneity: Not ap                | plicable      |                      |         |           |         |                  |        | ,,                   |                      |  |  |  |
|                | Test for overall effect:             | Z = 4.67      | (P < 0               | .00001  | )         |         |                  |        |                      |                      |  |  |  |
|                |                                      |               |                      |         |           |         |                  |        |                      |                      |  |  |  |
|                | Total (95% CI)                       |               |                      | 82      |           |         | 82               | 100.0% | -1.16 [-1.50, -0.83] | •                    |  |  |  |
|                | Heterogeneity: Chi <sup>2</sup> =    | 0.56, df      | = 1 (P               | = 0.45) | ; l² = 09 | 6       |                  |        |                      | -4 -2 0 2 4          |  |  |  |
|                | Test for overall effect:             | Z = 6.88      | 6 (P < 0             | .00001  | )         |         |                  |        |                      | experimental control |  |  |  |
|                | Test for subaroup diff               | erences       | : Chi <sup>2</sup> : | = 0.56. | df = 1 (  | P = 0.4 | 5), <b> </b> ² = | 0%     |                      |                      |  |  |  |
|                |                                      |               |                      |         |           |         |                  |        |                      |                      |  |  |  |
| FIGURE 6       |                                      |               |                      |         |           |         |                  |        |                      |                      |  |  |  |
| Forest plot of | lgA <b>(A)</b> , lgG <b>(B)</b> , lg | дМ <b>(С)</b> |                      |         |           |         |                  |        |                      |                      |  |  |  |

| Α                                 | Eve        | orimont               | al      |           | ontrol   |                     |        | Std. Maan Difference | Std Moon Difference  |
|-----------------------------------|------------|-----------------------|---------|-----------|----------|---------------------|--------|----------------------|----------------------|
| Study or Subgroup                 | Moan       | SD                    | Total   | Moan      |          | Total               | Moight | N Pandom 95% Cl      | N Pandom 95% Cl      |
| 171GC+CTX+TGD                     | /S GC+C    | <u>30</u><br>TX       | Total   | Wean      | 30       | Total               | weight | TV, Random, 55% Ci   |                      |
| Coi H 2017                        | 22.24      | 1 50                  | 20      | 20.25     | 4 21     | 20                  | 20.0%  | 1 26 [ 1 02 .0 70]   |                      |
|                                   | 10.42      | 4.30                  | 20      | 25.55     | 4.31     | 20                  | 20.0%  | -0.56[-1.02,-0.73]   |                      |
| Subtotal (95% CI)                 | 15.45      | 10.75                 | 60      | 23.07     | 11.54    | 60                  | 41 2%  | 0.05[173_047]        | •                    |
| Hotorogeneity Tou?                | - 0.24: 0  | hi² - 1 1             | 9 df-   | 1 /P - 0  | 041-12-  | - 76%               | 41.270 | -0.55 [-1.75, -0.17] | •                    |
| Test for overall effect           | 7 = 2.39   | P = 0.1               | 0, 01 - | 1 (1 - 0  |          | - 70 %              |        |                      |                      |
| restion overall ellect            |            | , (i = 0.i            | 02)     |           |          |                     |        |                      |                      |
| 1.7.2 GC+HCQ+TGP                  | VS GC+H    | CQ                    |         |           |          |                     |        |                      |                      |
| Xue Y2019                         | 18.02      | 4.37                  | 30      | 26.35     | 4.9      | 30                  | 19.2%  | -1.77 [-2.37, -1.17] |                      |
| Subtotal (95% CI)                 |            |                       | 30      |           |          | 30                  | 19.2%  | -1.77 [-2.37, -1.17] | ◆                    |
| Heterogeneity: Not a              | pplicable  |                       |         |           |          |                     |        |                      |                      |
| Test for overall effect           | : Z = 5.76 | 6 (P < 0.0            | 00001)  |           |          |                     |        |                      |                      |
| 1736C+T6P VS 60                   |            |                       |         |           |          |                     |        |                      |                      |
| Yang X 2019                       | 18.02      | 4 37                  | 30      | 26 35     | 49       | 30                  | 19 7%  | -1 77 [-2 37 -1 17]  |                      |
| 7hu Y 2009                        | 35.08      | 813                   | 35      | 45.98     | 6 96     | 30                  | 20.4%  | -1 41 [-1 96 -0 87]  | -                    |
| Subtotal (95% CI)                 | 55.00      | 0.10                  | 65      | 40.00     | 0.00     | 60                  | 39.6%  | -1.58 [-1.98, -1.17] | •                    |
| Heterogeneity Tau <sup>2</sup> :  | = 0.00° C  | $hi^2 = 0.7$          | 3 df=   | 1 (P = 0) | (39) P   | = 0%                |        |                      |                      |
| Test for overall effect           | 7 = 7.61   | (P < 0)               | 00001   |           |          |                     |        |                      |                      |
|                                   |            |                       | ,       |           |          |                     |        |                      |                      |
| Total (95% CI)                    |            |                       | 155     |           |          | 150                 | 100.0% | -1.36 [-1.81, -0.91] | •                    |
| Heterogeneity: Tau <sup>2</sup> : | = 0.18; C  | hi <sup>2</sup> = 12. | 80, df: | = 4 (P =  | 0.01); P | = 69%               |        |                      |                      |
| Test for overall effect           | Z = 5.88   | (P < 0.0              | 00001)  |           |          |                     |        |                      | -4 -2 U 2 4          |
| Test for subaroup dit             | fferences  | : Chi <sup>2</sup> =  | 2.79.0  | f= 2 (P   | = 0.25). | I <sup>2</sup> = 28 | .2%    |                      | experimental control |

В

|                                                                                                            | Expe                             | rimen                                    | tal                                 | C                      | ontrol       |                 |                        | Std. Mean Difference                         | Std. Mean Difference                |
|------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------|-------------------------------------|------------------------|--------------|-----------------|------------------------|----------------------------------------------|-------------------------------------|
| Study or Subgroup                                                                                          | Mean                             | SD                                       | Total                               | Mean                   | SD           | Total           | Weight                 | IV, Fixed, 95% CI                            | IV, Fixed, 95% Cl                   |
| 1.8.1 GC+CTX+TGP V                                                                                         | S GC+C                           | ГХ                                       |                                     |                        |              |                 |                        |                                              |                                     |
| Yu H 2019                                                                                                  | 9.37                             | 4.82                                     | 30                                  | 13.52                  | 3.14         | 30              | 46.2%                  | -1.01 [-1.55, -0.47]                         |                                     |
| Subtotal (95% CI)                                                                                          |                                  |                                          | 30                                  |                        |              | 30              | 46.2%                  | -1.01 [-1.55, -0.47]                         | ◆                                   |
| Heterogeneity: Not ap                                                                                      | plicable                         |                                          |                                     |                        |              |                 |                        |                                              |                                     |
| Test for overall effect:                                                                                   | Z = 3.66                         | (P = 0                                   | .0003)                              |                        |              |                 |                        |                                              |                                     |
| 1.8.2 GC+TGP VS GC<br>Zhu Y 2009<br>Subtotal (95% CI)<br>Heterogeneity: Not ap<br>Test for overall effect: | 25<br>oplicable<br>Z = 2.39      | 6.08<br>(P = 0                           | 35<br>35<br>1.02)                   | 29.01                  | 6.95         | 30<br><b>30</b> | 53.8%<br><b>53.8</b> % | -0.61 [-1.11, -0.11]<br>-0.61 [-1.11, -0.11] | *                                   |
| Total (95% CI)<br>Heterogeneity: Chi <sup>2</sup> =<br>Test for overall effect:<br>Test for subdroup diff  | 1.12, df<br>Z = 4.24<br>ferences | = 1 (P<br>(P < 0<br>: Chi <sup>2</sup> : | 65<br>= 0.29)<br>1.0001)<br>= 1.12. | ;  ² = 11<br>df = 1 (F | %<br>P = 0.2 | 60<br>9). I² =  | <b>100.0</b> %         | -0.79 [-1.16, -0.43]                         | -4 -2 0 2 4<br>experimental control |

С

|            | •                                   | Expe            | erimen    | tal      | C               | ontrol |       |        | Std. Mean Difference | Std. Mean Difference |  |  |
|------------|-------------------------------------|-----------------|-----------|----------|-----------------|--------|-------|--------|----------------------|----------------------|--|--|
|            | Study or Subgroup                   | Mean            | SD        | Total    | Mean            | SD     | Total | Weight | IV, Fixed, 95% CI    | IV, Fixed, 95% CI    |  |  |
|            | Cai H 2017                          | 1.34            | 0.53      | 30       | 1.39            | 0.62   | 30    | 11.2%  | -0.09 [-0.59, 0.42]  |                      |  |  |
|            | Chen J 2013                         | 1.37            | 0.74      | 21       | 1.66            | 0.85   | 20    | 7.5%   | -0.36 [-0.98, 0.26]  |                      |  |  |
|            | Feng P 2017                         | 0.56            | 0.15      | 48       | 0.66            | 0.02   | 48    | 16.1%  | -0.93 [-1.35, -0.51] | -                    |  |  |
|            | Li X 2020                           | 1.21            | 0.54      | 33       | 1.83            | 0.61   | 33    | 10.7%  | -1.06 [-1.58, -0.55] |                      |  |  |
|            | Lin G 2016                          | 1.35            | 0.72      | 26       | 1.63            | 0.82   | 25    | 9.4%   | -0.36 [-0.91, 0.20]  |                      |  |  |
|            | Peng H 2018                         | 1.31            | 0.03      | 20       | 1.8             | 0.79   | 20    | 6.8%   | -0.86 [-1.51, -0.21] |                      |  |  |
|            | Sun X 2013                          | 1.15            | 0.53      | 26       | 1.96            | 0.82   | 24    | 7.9%   | -1.16 [-1.77, -0.56] |                      |  |  |
|            | Xiang S 2020                        | 1.28            | 0.65      | 27       | 1.81            | 0.77   | 26    | 9.2%   | -0.73 [-1.29, -0.18] |                      |  |  |
|            | Xu F 2015                           | 1.18            | 0.65      | 27       | 1.88            | 0.77   | 26    | 8.8%   | -0.97 [-1.54, -0.40] |                      |  |  |
|            | Xu Y 2020                           | 1.26            | 0.51      | 36       | 1.76            | 0.72   | 36    | 12.4%  | -0.79 [-1.27, -0.31] |                      |  |  |
|            | Total (95% CI)                      |                 |           | 294      |                 |        | 288   | 100.0% | -0.73 [-0.90, -0.57] | •                    |  |  |
|            | Heterogeneity: Chi <sup>2</sup> =   | 14.67, d        | lf = 9 (F | P = 0.10 | 0); I² = 3      | 9%     |       |        |                      | -4 -2 0 2 4          |  |  |
|            | Test for overall effect:            | Z = 8.50        | ) (P < 0  | .00001   | )               |        |       |        |                      | experimental control |  |  |
| FIGURE 7   | 7                                   |                 |           |          |                 |        |       |        |                      |                      |  |  |
| Forest pla | ot of ESR <b>(A)</b> , CRP <b>(</b> | <b>B)</b> , 24h | n urine   | e prot   | ein <b>(C</b> ) | ).     |       |        |                      |                      |  |  |

| Unty of Subgroup         Mean         SD         Total         Weight         M. Bandom, 95% CI         W. Random, 95% CI           10.1 GC+CTX+TGP VS GC+CTX         12.3         3.57         21         2.32         3.73         20         6.18         -0.55 [+1.07, -0.04]         -0.55 [+1.07, -0.04]           hen J 2013         12.3         3.57         21         2.32         3.73         20         6.18         -2.77 [+3.65, -1.88]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Expe                                                                                                                                                           | riment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | al                                                                                                                                                                                                                            | C                                                                                                                                             | ontrol                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             | Std. Mean Difference                                                                                                                                                                                                                                                                                                                                    | Std. Mean Difference                                                                                                                                                                                                                                                                               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 101 + G - CTX + TGP VS - GC + CTX is all + 36 3.68 30 8.8% - 0.55 [+ 107, -0.04] + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tudy or Subaroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mean                                                                                                                                                           | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total                                                                                                                                                                                                                         | Mean                                                                                                                                          | SD                                                                                                                     | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weight                                                                                                                                                      | IV, Random. 95% CI                                                                                                                                                                                                                                                                                                                                      | IV, Random, 95% Cl                                                                                                                                                                                                                                                                                 |  |
| $\frac{a_{11} + 2017}{1224} \frac{1}{254} \frac{1}{254} \frac{1}{254} \frac{1}{254} \frac{1}{212} \frac{1}{2254} \frac{1}{2554} \frac{1}{2554} \frac{1}{2554} \frac{1}{2556} \frac{1}{2556} \frac{1}{2566$                                                                                                                                                                                                                                                                                                | .10.1 GC+CTX+TGP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VS GC+                                                                                                                                                         | CTX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                    |  |
| $\frac{1}{10^{2}} \frac{1}{10^{2}} \frac{1}{10^{2}} \frac{1}{10^{2}} \frac{1}{22^{2}} \frac{1}{23^{2}} 1$                                                                                                                                                                                                                                                                                                                                                                                                                      | ai H 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.34                                                                                                                                                          | 3.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                                                                                                            | 14.36                                                                                                                                         | 3.68                                                                                                                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.8%                                                                                                                                                        | -0.55 [-1.07, -0.04]                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                  |  |
| $\frac{enp}{2} 2017$ 116 221 27 241 344 26 80% -370 445 -2719 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chen J 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.3                                                                                                                                                           | 3.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21                                                                                                                                                                                                                            | 23.2                                                                                                                                          | 3.73                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.1%                                                                                                                                                        | -2.77 [-3.65, -1.89]                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                    |  |
| $ \begin{array}{c} yx 2020 \\ yx 2020 \\ yx 2020 \\ yx 201 \\ yx 201 \\ yx 201 \\ yx 202 \\ yx 201 \\ yx 202 \\ y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eng P 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.6                                                                                                                                                           | 3.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27                                                                                                                                                                                                                            | 24.1                                                                                                                                          | 3 4 4                                                                                                                  | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.0%                                                                                                                                                        | -3 70 [-4 61 -2 79]                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                    |  |
| $\frac{\ln 3 016}{\ln 3 2016} = \frac{122}{122} \frac{2}{395} \frac{2}{28} \frac{2}{31} \frac{3}{372} \frac{2}{25} \frac{2}{8} \frac{3}{38} \frac{-2}{-280[358,201]} + \frac{1}{168} \frac{1}{321} \frac{1}{372} \frac{1}{285} \frac{1}{295} $                                                                                                                                                                                                                              | i X 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1214                                                                                                                                                           | 3.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33                                                                                                                                                                                                                            | 25.23                                                                                                                                         | 2.78                                                                                                                   | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.0%                                                                                                                                                        | -4 40 [-5 31 -3 49]                                                                                                                                                                                                                                                                                                                                     | <b>—</b>                                                                                                                                                                                                                                                                                           |  |
| $\frac{1}{3} + 2016 \\ \frac{1}{159} + 2016 \\ \frac{1}{159} + 225 \\ \frac{1}{220} + 227 \\ \frac{1}{38} + 20 \\ \frac{1}{220} + 227 \\ \frac{1}{38} + 235 \\ \frac{1}{320} + 228 \\ \frac{1}{38} + 223 \\ \frac{1}{38} + 223 \\ \frac{1}{38} + 224 \\ \frac{1}{304} + 228 \\ \frac{1}{38} + 228 \\ \frac{1}{38} + 228 \\ \frac{1}{38} + 228 \\ \frac{1}{38} + 223 \\ \frac{1}{38} + 238 \\ \frac{1}{38} + 238 \\ \frac{1}{38} + 238 \\ \frac{1}{39} + 238 \\ \frac{1}{38} + 238 \\ \frac{1}{39} $                                                                                                                                                                                                                                                                                                                                                                                                                                                 | in G 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.2                                                                                                                                                           | 3.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26                                                                                                                                                                                                                            | 23.1                                                                                                                                          | 3.72                                                                                                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.3%                                                                                                                                                        | -2.80 [-3.58, -2.01]                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                    |  |
| $\frac{1}{4} = 32020$ $\frac{11}{150} = 328 = 326 = 231 = 323 = 356 = 231 = 323 = 356 = 94.\% - 316 + 331 + 24.7 = 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + 14.8 + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peng H 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.8                                                                                                                                                           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                                                            | 22.7                                                                                                                                          | 3.8                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.8%                                                                                                                                                        | -3.32 [-4.31, -2.34]                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                    |  |
| $ \frac{1}{2} 2015 \\ \frac{1}{2} 115 \\ \frac{1}{2} 216 \\ \frac{1}{2} 21 \\ \frac{1}{2} 26 \\ \frac{1}{2} 21 \\ \frac{1}{2} 26 \\ \frac{1}{2} 21 \\ \frac{1}{2} 26 \\ \frac{1}{2} 21 \\ \frac{1}{2} 2 \\ \frac{1}{2} 2 \\ \frac{1}{2} \\ \frac{1}{2$                                                                                                                                                                                                                                                   | (iang S 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.59                                                                                                                                                          | 3.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35                                                                                                                                                                                                                            | 23.1                                                                                                                                          | 3.83                                                                                                                   | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.4%                                                                                                                                                        | -3.19 [-3.91, -2.47]                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                    |  |
| $ \begin{array}{c} u^{v} 2020 & 11.23 & 2.85 & 38 & 22.19 & 4.27 & 38 & 8.5\% & -2.98 (3.87, -2.30) \\ util 2019 & 11.58 & 3.29 & 30 & 23.09 & 3.84 & 30 & 8.3\% & -3.18 (3.85, -2.40) \\ util 2019 & 11.64 & 2.48 & 45 & 22.39 & 3.02 & 45 & 8.8\% & -2.13 (3.85, -2.40) \\ util 2019 & 16.45 & 2.48 & 45 & 22.39 & 3.02 & 45 & 8.8\% & -2.13 (2.65, -1.61) \\ util 2019 & 16.45 & 2.48 & 45 & 22.39 & 3.02 & 45 & 8.8\% & -2.13 (2.65, -1.61) \\ util 2019 & 16.45 & 2.48 & 45 & 22.39 & 3.02 & 45 & 8.8\% & -2.13 (2.65, -1.61) \\ util 2019 & 16.45 & 2.48 & 45 & 22.29 & 1.6 & 30 & 8.8\% & -0.94 (-1.46, -0.43) \\ util 2019 & 13.4 & 7.3 & 35 & 22.5 & 11.6 & 30 & 8.8\% & -0.94 (-1.46, -0.43) \\ util 2019 & 13.4 & 7.3 & 35 & 22.5 & 11.6 & 30 & 8.8\% & -0.94 (-1.46, -0.43) \\ util 2019 & 13.4 & 7.3 & 35 & 356 & 100.0\% \\ util 2019 & 13.4 & 7.3 & 35 & 356 & 100.0\% \\ util 2019 & 13.4 & 7.3 & 35 & 356 & 100.0\% \\ util 2019 & 13.4 & 7.3 & 35 & 356 & 100.0\% \\ util 2019 & 13.4 & 7.3 & 35 & 356 & 100.0\% \\ util 2019 & 13.4 & 7.3 & 35 & 356 & 100.0\% \\ util 2019 & 13.4 & 7.3 & 35 & 356 & 100.0\% \\ util 2019 & 13.4 & 7.3 & 35 & 356 & 100.0\% \\ util 2019 & 13.4 & 7.3 & 35 & 356 & 100.0\% \\ util 2017 & 8.79 & 0.63 & 30 & 9.23 & 0.78 & 30 & 10.4\% & -0.61 (-1.13, -0.09) \\ util 2017 & 8.79 & 0.63 & 30 & 9.23 & 0.78 & 30 & 10.4\% & -0.61 (-1.13, -0.09) \\ util 2017 & 1.42 & 1.24 & 27 & 18.1 & 2.13 & 26 & 9.8\% & -3.40 (-1.48, -7.52) \\ util 2020 & 2.21 & 1.12 & 33 & 19.22 & 2.1 & 33 & 9.9\% & -9.68 (-1.13, -7.23) \\ util 2017 & 1.42 & 1.24 & 27 & 18.1 & 2.13 & 26 & 9.8\% & -9.48 (-1.14, -7.52) \\ util 2016 & 1.64 & 0.83 & 26 & 9.7 & 0.72 & 25 & 9.6\% & -9.28 (-1.13, -7.23) \\ util 2016 & 1.64 & 0.83 & 26 & 9.7 & 0.72 & 25 & 9.6\% & -9.38 (-1.32, -7.52) \\ util 2016 & 1.64 & 0.83 & 26 & 9.7 & 0.72 & 25 & 9.6\% & -9.38 (-1.32, -7.52) \\ util 2019 & 1.44 & 0.47 & 30 & 9.05 & 1.38 & 30 & 10.1\% & -5.90 (-1.23, -5.53) \\ util 2019 & 1.44 & 0.47 & 30 & 9.05 & 1.38 & 30 & 10.1\% & -5.90 (-1.23, -5.53) \\ util 2019 & 1.44 & 0.47 & 30 & 9.05 & 1.38 & 30 & 10.1\% & -5.90 (-1.2, -5.53) \\ util 2019 & 1.44 & 0.47 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (u F 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.6                                                                                                                                                           | 3.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27                                                                                                                                                                                                                            | 24.1                                                                                                                                          | 3.44                                                                                                                   | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.0%                                                                                                                                                        | -3.70 [-4.61, -2.79]                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                    |  |
| u H 2019 11.58 3.29 30 23.09 3.84 30 8.3% -3.18 [3.36]; 2.40]<br>withotal (95% CI) 285 281 82.4% -3.04 [-3.83, -2.24]<br>est for overall effect Z = 7.46 (P < 0.00001); P = 90%<br>est for overall effect Z = 7.46 (P < 0.00001)<br>.10.2 GC+Tac+TGP VS GC+Tac<br>12 2018 16.45 2.48 45 22.39 3.02 45 8.8% -2.13 [2.65, -1.61]<br>withotal (95% CI) 16.45 2.48 45 22.39 3.02 45 8.8% -2.13 [2.65, -1.61]<br>withotal (95% CI) 13.4 7.3 35 22.5 11.6 30 8.8% -0.94 [-1.46, -0.43]<br>withotal (95% CI) 35 30 8.8% -0.94 [-1.46, -0.43]<br>withotal (95% CI) 35 365 10.0% -2.77 [-3.48, -2.06]<br>Herogeneity: Not applicable<br>est for overall effect Z = 7.64 (P < 0.00001); P = 90.6%<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (u Y 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.23                                                                                                                                                          | 2.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36                                                                                                                                                                                                                            | 22.19                                                                                                                                         | 4.27                                                                                                                   | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.5%                                                                                                                                                        | -2.99 [-3.67, -2.30]                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                  |  |
| ubtotal (95% Cl) 285 281 82.4% $-3.04 [-3.83, -2.24]$<br>leterogeneity: Tau <sup>2</sup> = 1.48; Chi <sup>2</sup> = 9.4.57, df = 9 ( $P < 0.00001$ ); P = 90%<br>est for overall effect Z = 7.4 ( $P < 0.00001$ )<br>.10.2 GC+Tac-TGP VS GC+Tac<br>IZ 2018 16.45 248 45 22.39 3.02 45 8.8% $-2.13 [-2.65, -1.61]$<br>ubtotal (95% Cl) 45 45 8.8% $-2.13 [-2.65, -1.61]$<br>est for overall effect Z = 8.01 ( $P < 0.00001$ )<br>.10.3 GC+TGP VS GC<br>ubtotal (95% Cl) 35 30 8.8% $-0.94 [-1.46, -0.43]$<br>ubtotal (95% Cl) 365 356 100.0%<br>est for overall effect Z = 7.64 ( $P < 0.00001$ )<br>est for overall effect Z = 7.64 ( $P < 0.00001$ )<br>est for subaroup differences: Chi <sup>2</sup> = 21.37, df = 2 ( $P < 0.0001$ ), P = 90.6%<br>3<br><b>Experimental</b> Control<br>tudy or Subaroup differences: Chi <sup>2</sup> = 21.37, df = 2 ( $P < 0.0001$ ), P = 90.6%<br><b>Std. Mean Difference</b><br>tudy or Subaroup differences: Chi <sup>2</sup> = 21.37, df = 2 ( $P < 0.0001$ ), P = 90.6%<br><b>Std. Mean Difference</b><br>tudy or Subaroup differences: Chi <sup>2</sup> = 21.37, df = 2 ( $P < 0.0001$ ), P = 90.6%<br><b>Std. Mean Difference</b><br>tudy or Subaroup differences: Chi <sup>2</sup> = 21.37, df = 2 ( $P < 0.0001$ ), P = 90.6%<br><b>Std. Mean Difference</b><br>tudy or Subaroup differences: Chi <sup>2</sup> = 21.37, df = 2 ( $P < 0.0001$ ), P = 90.6%<br><b>Std. Mean Difference</b><br>tudy or Subaroup differences: Chi <sup>2</sup> = 21.37, df = 2 ( $P < 0.0001$ ), P = 90.6%<br><b>Std. Mean Difference</b><br>tudy or Subaroup differences: Chi <sup>2</sup> = 21.37, df = 2 ( $P < 0.0001$ ), P = 90.6%<br><b>Std. Mean Difference</b><br>tudy or Subaroup differences: Chi <sup>2</sup> = 21.37, df = 2 ( $P < 0.0001$ ), P = 90.6%<br><b>Std. Mean Difference</b><br>tudy or Subaroup differences: Chi <sup>2</sup> = 1.23, 26, 9.8%, -9.44 [-1.143, -7.62]<br><b>t</b> = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 'u H 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.58                                                                                                                                                          | 3.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                                                                                                            | 23.09                                                                                                                                         | 3.84                                                                                                                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.3%                                                                                                                                                        | -3.18 [-3.95, -2.40]                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                    |  |
| leterogeneity: Tau <sup>2</sup> = 1.42; Ch <sup>2</sup> = 96 < 0.00001); P = 90%<br>est for overall effect Z = 7.46 (P < 0.00001)<br>:10.2 GC+Tac+TGP VS GC+Tac<br>I2 2018 16.45 2.48 45 22.39 3.02 45 8.8% -2.13 [-2.65, -1.61]<br>ubtotal (95% Cl) 16.4 2.48 45 22.39 3.02 45 8.8% -2.13 [-2.65, -1.61]<br>ubtotal (95% Cl) 17.4 5 45 45 2.25 11.6 30 8.8% -0.94 [-1.46, -0.43]<br>ubtotal (95% Cl) 35 36 100.0%<br>est for overall effect Z = 3.59 (P = 0.0003)<br>otal (95% Cl) 365 356 100.0%<br>est for overall effect Z = 7.64 (P < 0.00001); P = 92%<br>est for overall effect Z = 7.64 (P < 0.00001)<br>est for subaroup differences: Ch <sup>2</sup> = 21.37. df = 2 (P < 0.0001). P = 90.8%<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 285                                                                                                                                                                                                                           |                                                                                                                                               |                                                                                                                        | 281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82.4%                                                                                                                                                       | -3.04 [-3.83, -2.24]                                                                                                                                                                                                                                                                                                                                    | ◆                                                                                                                                                                                                                                                                                                  |  |
| est for overall effect $Z = 7.46 (P < 0.00001)$<br>10.2 GC+Tac+TGP VS GC+Tac<br>12 2018 16.45 2.48 45 22.39 3.02 45 8.8% -2.13 [-2.65, -1.61]<br>12 018 16.45 2.48 45 22.39 3.02 45 8.8% -2.13 [-2.65, -1.61]<br>12 018 16.45 2.48 45 22.39 3.02 45 8.8% -2.13 [-2.65, -1.61]<br>14 017 8.70 VS GC<br>10 36 C+TGP VS GC<br>10 30 GC+TGP VS GC<br>10 10 45 12 8.01 (P < 0.00001)<br>10.3 GC+TGP VS GC<br>10 10 45 12 8.01 (P < 0.00001)<br>10.3 GC+TGP VS GC<br>10 10 45 12 8.01 (P < 0.00001)<br>10.3 GC+TGP VS GC<br>10 10 45 12 8.01 (P < 0.00001)<br>10 35 35 356 100.0%<br>10 10 45 12 8.8% -0.94 [-1.46, -0.43]<br>10 10 45 12 8.8%<br>10 10 45 12 8.8%<br>10 10 45 12 8.8%<br>10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | leterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.48; CI                                                                                                                                                       | hi² = 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .57, df                                                                                                                                                                                                                       | = 9 (P <                                                                                                                                      | < 0.000                                                                                                                | 001); I <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 90%                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                    |  |
| $\frac{10.2 \text{ GC} + \text{Tac} + \text{TGP VS GC} + \text{Tac}}{12 2018 	 16.45 2.48 	 45 22.39 	 3.02 	 45 	 8.8\% 	 -2.13 [-2.65, -1.61] 	 + \frac{1}{2.205} + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | est for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z=7.46                                                                                                                                                         | (P < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .00001                                                                                                                                                                                                                        | )                                                                                                                                             |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                    |  |
| I = 2018 	 16.45 	 248 	 45 	 22.38 	 3.02 	 45 	 8.8% 	 -2.13 	 [+2.65, -1.61] 	 + I = I + I + I + I + I + I + I + I + I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .10.2 GC+Tac+TGP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VS GC+T                                                                                                                                                        | ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                    |  |
| ubutotal (95% C) 45 45 8.8% -2.13 [-2.65, -1.61]<br>leterogeneity: Not applicable<br>est for overall effect. $Z = 8.01 (P < 0.00001)$<br>.10.3 GC+TGP VS GC<br>hu Y 2009 13.4 7.3 35 22.5 11.6 30 8.8% -0.94 [-1.46, -0.43]<br>ubtotal (95% C) 35 30 8.8% -0.94 [-1.46, -0.43]<br>ubtotal (95% C) 365 356 100.0% -2.77 [-3.48, -2.06]<br>est for overall effect. $Z = 3.59 (P = 0.0003)$<br>otal (95% C) 365 356 100.0% -2.77 [-3.48, -2.06]<br>.10 -5 0 5 10<br>est for overall effect. $Z = 7.64 (P < 0.00001)$ ; $P = 92\%$<br>est for overall effect. $Z = 7.64 (P < 0.00001)$ ; $P = 90.6\%$<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .i Z 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.45                                                                                                                                                          | 2.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45                                                                                                                                                                                                                            | 22.39                                                                                                                                         | 3.02                                                                                                                   | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.8%                                                                                                                                                        | -2.13 [-2.65, -1.61]                                                                                                                                                                                                                                                                                                                                    | <b>T</b>                                                                                                                                                                                                                                                                                           |  |
| leterogeneity: Not applicable<br>est for overall effect: $Z = 8.01 (P < 0.0001)$<br>.t0.3 GC+TGP VS GC<br>huły 2009 13.4 7.3 35 22.5 11.6 30 8.8% -0.94 [-1.46, -0.43]<br>ubtotal (95% C) 35 30 8.8% -0.94 [-1.46, -0.43]<br>.eterogeneity: Not applicable<br>est for overall effect: $Z = 3.59 (P = 0.0003)$<br>otal (95% C) 365 356 100.0%<br>leterogeneity: Tau <sup>2</sup> = 1.42; Chi <sup>2</sup> = 130.96, df = 11 (P < 0.0001); P = 92%<br>est for overall effect: $Z = 7.64 (P < 0.0001)$<br>leterogeneity: Tau <sup>2</sup> = 1.42; Chi <sup>2</sup> = 130.96, df = 11 (P < 0.0001); P = 90.6%<br>3<br><b>3</b><br><b>3</b><br><b>5</b><br><b>5</b><br><b>5</b><br><b>5</b><br><b>5</b><br><b>5</b><br><b>5</b><br><b>5</b><br><b>5</b><br><b>5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45                                                                                                                                                                                                                            |                                                                                                                                               |                                                                                                                        | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.8%                                                                                                                                                        | -2.13 [-2.65, -1.61]                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                  |  |
| est for overall effect. Z = 8.01 ( $P < 0.00001$ )<br>.10.3 GC+TGP VS GC<br>hu Y 2009 13.4 7.3 35 22.5 11.6 30 8.8% -0.94 [1.46, -0.43]<br>eterogeneity. Not applicable<br>est for overall effect. Z = 3.59 ( $P = 0.0003$ )<br>otal (95% CI) 365 356 100.0%<br>est for overall effect. Z = 4.64 ( $P < 0.00001$ ); $P = 92\%$<br>est for overall effect. Z = 4.64 ( $P < 0.00001$ ); $P = 92\%$<br>est for overall effect. Z = 6.46 ( $P < 0.00001$ )<br>est for overall effect. Z = 6.46 ( $P < 0.00001$ ); $P = 90.6\%$<br>3<br><b>S</b><br><b>S</b><br><b>Experimental</b> Control <b>Std. Mean Difference</b><br><b>tudy or Subgroup</b> Mean SD Total Mean SD Total Weight M. (N. Random, 95% CI<br>in G 2016 1.64 0.83 26 9.7 0.72 25 9.6% -0.20 [1.13, -0.09]<br>in G 2016 1.64 0.83 26 9.7 0.72 25 9.6% -0.20 [1.13, -7.52]<br>eng P 2017 1.42 1.24 27 18.1 2.13 26 9.8% -9.48 [1.13, -7.52]<br>eng P 2017 1.42 1.24 27 18.1 2.13 26 9.8% -9.48 [1.13, -7.52]<br>eng P 2018 1.4 1.3 20 18 2.1 20 9.5% -9.32 [1.15, -7.08]<br>in G 2016 1.64 0.83 26 9.7 0.72 25 9.6% -10.20 [1.23, -8.07]<br>eng H 2018 1.4 1.3 20 18 2.1 20 9.5% -9.32 [1.15, -7.08]<br>u Y 2020 0.65 2 9.06 63 1.01 (4.25 3.46 63 61 0.04 (4.3 -3.01 [-3.7, -5.2]<br>u Y 2015 1.42 1.24 27 18.1 2.13 26 9.8% -9.48 [+1.13, -7.52]<br>u Y 2015 1.42 1.24 27 18.1 2.13 26 9.8% -9.48 [+1.37, -7.52]<br>u Y 2015 1.42 1.24 27 18.1 2.13 26 9.8% -9.48 [+1.37, -7.52]<br>u Y 2015 1.42 1.24 27 18.1 2.13 26 9.8% -9.48 [+1.37, -7.52]<br>u Y 2015 1.42 1.24 27 18.1 2.13 26 9.8% -9.48 [+1.43, -7.52]<br>u Y 2015 1.42 1.24 27 18.1 2.13 26 9.8% -9.48 [+1.43, -7.52]<br>u Y 2015 1.42 1.24 27 18.1 2.13 26 9.8% -9.48 [+1.43, -7.52]<br>u Y 2015 1.42 1.24 27 18.1 2.13 26 9.8% -9.48 [+1.43, -7.52]<br>u Y 2015 1.42 1.24 27 18.1 2.13 26 9.8% -9.48 [+1.43, -7.52]<br>u Y 2015 1.42 1.24 27 18.1 2.13 26 9.8% -9.48 [+1.43, -7.52]<br>u Y 2015 1.42 1.24 27 18.1 2.13 26 9.8% -9.48 [+1.43, -7.52]<br>u H 2019 1.84 0.47 30 9.05 1.38 30 10.1% -6.90 [-8.28, -5.53]<br>eterogeneity: Tau <sup>2</sup> = 13.06; Chi <sup>2</sup> = 355.69, df = 9 ( $P < 0.00001$ ); $P = 97\%$<br>est for overall effect. Z = 5.86 ( $P < 0.00001$ ); $P = 97\%$<br>est for overall effect. Z = 5.86 ( $P < 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | leterogeneity: Not ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | plicable                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                    |  |
| $\frac{10.3 \text{ GC} + \text{TGP VS GC}}{100000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | est for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z = 8.01                                                                                                                                                       | (P < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .00001                                                                                                                                                                                                                        | )                                                                                                                                             |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                    |  |
| $\frac{1}{3} = \frac{1}{2} + \frac{1}$                                                                                                                                                                                                                    | .10.3 GC+TGP VS GO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                    |  |
| $\frac{1}{3}$ $\frac{1}{1} = \frac{1}{1} + \frac{1}$                                                                                                                                                                                                                    | nu Y 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.4                                                                                                                                                           | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35                                                                                                                                                                                                                            | 22.5                                                                                                                                          | 11.6                                                                                                                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.8%                                                                                                                                                        | -0.94 [-1.46, -0.43]                                                                                                                                                                                                                                                                                                                                    | ▲                                                                                                                                                                                                                                                                                                  |  |
| $\frac{1}{2} = \frac{1}{2} = \frac{1}$                                                                                                                                                                                                                    | Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ulia a la la                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                                                                                                                                                                                                                            |                                                                                                                                               |                                                                                                                        | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.8%                                                                                                                                                        | -0.94 [-1.46, -0.43]                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | selenineneme Mint an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                    |  |
| 303 100 % - 2.17 [3.43, -2.05]         303 100 % - 2.17 [3.43, -2.05]         - 2.17 [3.43, -2.05]         - 2.17 [3.43, -2.05]         - 2.17 [3.43, -2.05]         - 2.17 [3.43, -2.05]         - 2.17 [3.43, -2.05]         - 2.17 [3.43, -2.05]         - 2.17 [3.43, -2.05]         - 2.17 [3.43, -2.05]         - 2.17 [3.43, -2.05]         - 2.17 [3.43, -2.05]         - 2.17 [3.43, -2.05]         - 2.17 [3.46 (P < 0.00001); P = 90.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <th>est for overall effect:</th> <th>Z = 3.59</th> <th>(P = 0</th> <th>.0003)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | est for overall effect:                                                                                                                                        | Z = 3.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (P = 0                                                                                                                                                                                                                        | .0003)                                                                                                                                        |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                    |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | est for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z = 3.59                                                                                                                                                       | (P = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0003)                                                                                                                                                                                                                        |                                                                                                                                               |                                                                                                                        | 356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.0%                                                                                                                                                      | 2771348 2061                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                  |  |
| $3 \\ \hline \\ \textbf{Std. Mean Difference} \\ \textbf{Std. Mean Difference} \\ \textbf{tudy or Subgroup} \\ \hline \textbf{Mean}  \textbf{SD}  \textbf{Total}  \textbf{Mean}  \textbf{Mean}  \textbf{SD}  \textbf{Total}  \textbf{Mean}  \textbf{Mean}  \textbf{SD}  \textbf{Total}  \textbf{Mean}  M$ | Fest for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z = 3.59                                                                                                                                                       | (P = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0003)<br><b>365</b>                                                                                                                                                                                                          | f= 11 (                                                                                                                                       | P≼∩í                                                                                                                   | 356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.0%                                                                                                                                                      | -2.77 [-3.48, -2.06]                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                  |  |
| $ \frac{1}{3} $ $ \frac{1}{3} $ $ \frac{1}{3} 1$                  | ieterogeneity: retra;<br>ieterogeneity: Tau <sup>2</sup> =<br>ieterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z = 3.59<br>1.42; Cl<br>7 = 7.64                                                                                                                               | (P = 0<br>hi² = 13<br>(P < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0003)<br><b>365</b><br>80.96, c                                                                                                                                                                                              | if= 11 (i                                                                                                                                     | P < 0.(                                                                                                                | <b>356</b><br>)0001);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>100.0</b> %<br>  <sup>2</sup> = 92%                                                                                                                      | -2.77 [-3.48, -2.06]                                                                                                                                                                                                                                                                                                                                    | ◆<br>-10 -5 0 5 10                                                                                                                                                                                                                                                                                 |  |
| Std. Mean Difference         Std. Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | est for overall effect:<br>otal (95% CI)<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>est for subaroup diff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences                                                                                                                    | (P = 0<br>hi <sup>2</sup> = 13<br>(P < 0<br>: Chi <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .0003)<br><b>365</b><br>0.96, c<br>.00001<br>: 21.37                                                                                                                                                                          | lf=11 ()<br>)<br>. df=2 (                                                                                                                     | P < 0.(<br>(P < 0.                                                                                                     | <b>356</b><br>)0001);<br>0001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>100.0%</b><br>  <sup>2</sup> = 92%<br>  <sup>2</sup> = 90.6%                                                                                             | -2.77 [-3.48, -2.06]                                                                                                                                                                                                                                                                                                                                    | +<br>-10 -5 0 5 10<br>experimental control                                                                                                                                                                                                                                                         |  |
| Experimental         Control         Std. Mean Difference         Std. Mean Difference         Std. Mean Difference         Std. Mean Difference         V, Random, 95% Cl           tudy or Subgroup         Mean         SD         Total         Mean         SD         Total         Weight         N, Random, 95% Cl         N, Random, 95% Cl           tai H 2017         8.79         0.63         30         9.23         0.78         30         10.4%         -0.61 [-1.13, -0.09]         N, Random, 95% Cl         N, Rando                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test for overall effect:<br>otal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>est for subαroup diff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences                                                                                                                    | (P = 0<br>hi <sup>2</sup> = 13<br>(P < 0<br>: Chi <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .0003)<br><b>365</b><br>0.96, c<br>.00001<br>: 21.37                                                                                                                                                                          | if=11 ()<br>)<br>. df=2 (                                                                                                                     | P < 0.(<br>(P < 0.                                                                                                     | <b>356</b><br>)0001);<br>0001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>100.0%</b><br>  <sup>2</sup> = 92%<br>  <sup>2</sup> = 90.6%                                                                                             | -2.77 [-3.48, -2.06]                                                                                                                                                                                                                                                                                                                                    | -10 -5 0 5 10<br>experimental control                                                                                                                                                                                                                                                              |  |
| tudy or Subgroup         Mean         SD         Total         Mean         SD         Total         Weight         IV, Random, 95% CI         IV, Random, 95% CI           cai H 2017         8.79         0.63         30         9.23         0.78         30         10.4%         -0.61 [-1.13, -0.09]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | est for overall effect:<br>otal (95% Cl)<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>est for subαroup diff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences                                                                                                                    | (P = 0<br>hi <sup>2</sup> = 13<br>(P < 0<br>: Chi <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .0003)<br><b>365</b><br>80.96, c<br>.00001<br>: 21.37                                                                                                                                                                         | if=11 (<br>)<br>.df=2 (                                                                                                                       | P < 0.(<br>(P < 0.                                                                                                     | <b>356</b><br>)0001);<br>0001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>100.0%</b><br>  <sup>2</sup> = 92%<br>  <sup>2</sup> = 90.6%                                                                                             | -2.77 [-3.48, -2.06]                                                                                                                                                                                                                                                                                                                                    | ←<br>-10 -5 0 5 10<br>experimental control                                                                                                                                                                                                                                                         |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iest for overall effect:<br>otal (95% Cl)<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>est for subαroup diff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences<br>Expe                                                                                                            | (P = 0<br>hi <sup>2</sup> = 13<br>(P < 0<br>: Chi <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .0003)<br>365<br>0.96, c<br>.00001<br>: 21.37<br>tal                                                                                                                                                                          | lf = 11 ()<br>)<br>. df = 2 (<br>C                                                                                                            | P < 0.(<br>(P < 0.<br><b>ontrol</b>                                                                                    | <b>356</b><br>)0001);<br>0001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>100.0%</b><br>  <sup>2</sup> = 92%<br>  <sup>2</sup> = 90.6%                                                                                             | -2.77 [-3.48, -2.06]                                                                                                                                                                                                                                                                                                                                    | +<br>-10 -5 0 5 10<br>experimental control<br>Std. Mean Difference                                                                                                                                                                                                                                 |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iest for overall effect:<br>otal (95% Cl)<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>est for subaroup diff<br>B<br>tudy or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences<br>Expe<br><u>Mean</u>                                                                                             | (P = 0<br>hi <sup>2</sup> = 13<br>(P < 0<br>: Chi <sup>2</sup> =<br>eriment<br>SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0003)<br>365<br>0.96, c<br>.00001<br>: 21.37<br>tal<br>Total                                                                                                                                                                 | if = 11 (i<br>)<br>. df = 2 (<br>C<br><u>Mean</u>                                                                                             | P < 0.(<br>(P < 0.<br>ontrol<br>SD                                                                                     | 356<br>)0001);<br>0001).<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>100.0%</b><br>  <sup>2</sup> = 92%<br>  <sup>2</sup> = 90.6%<br><u>Weight</u>                                                                            | -2.77 [-3.48, -2.06]<br>,<br>Std. Mean Difference<br><u>IV, Random, 95% CI</u>                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                    |  |
| eng P 2017 $1.42$ $1.24$ $27$ $18.1$ $2.13$ $26$ $9.8\%$ $-9.48$ $[-11.43, -7.52]$ iX 2020 $2.21$ $1.12$ $33$ $19.2$ $2.21$ $33$ $9.9\%$ $-9.58$ $[-11.34, -7.83]$ in G 2016 $1.64$ $0.83$ $26$ $9.7$ $0.72$ $25$ $9.6\%$ $-10.20$ $[-12.33, -8.07]$ eng H 2018 $1.4$ $1.3$ $20$ $18$ $2.1$ $20$ $9.5\%$ $-9.32$ $[-11.55, -7.08]$ iang S 2020 $1.85$ $0.46$ $35$ $9.06$ $1.37$ $35$ $10.2\%$ $-6.98$ $[-8.26, -5.70]$ u F 2015 $1.42$ $1.24$ $27$ $18.1$ $2.13$ $26$ $9.8\%$ $-9.48$ $[-11.43, -7.52]$ u Y 2020 $6.52$ $0.96$ $36$ $14.25$ $3.46$ $36$ $10.4\%$ $-3.01$ $[-3.70, -2.33]$ u H 2019 $1.84$ $0.47$ $30$ $9.05$ $1.38$ $30$ $10.1\%$ $-6.90$ $[-8.28, -5.53]$ otal (95% CI)285281 $100.0\%$ $-6.86$ $[-9.15, -4.56]$ $-20$ $-10$ $0$ $10$ $20$ ext for overall effect: $Z = 5.86$ (P < 0.00001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test for overall effect:<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Test for subaroup diff<br>B<br><u> Hudy or Subgroup</u><br>Sai H 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences<br><u>Expe</u><br><u>Mean</u><br>8.79                                                                              | (P = 0<br>hi <sup>2</sup> = 13<br>(P < 0<br>: Chi <sup>2</sup> =<br>eriment<br><u>SD</u><br>0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .0003)<br>365<br>0.96, c<br>.00001<br>21.37<br>tal<br><u>Total</u><br>30                                                                                                                                                      | if = 11 (i<br>)<br>. df = 2 (<br>C<br><u>Mean</u><br>9.23                                                                                     | P < 0.(<br>(P < 0.)<br>ontrol<br><u>SD</u><br>0.78                                                                     | <b>356</b><br>)0001);<br>0001).<br><u>Total</u><br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>100.0%</b><br> ² = 92%<br> ² = 90.6%<br><u>Weight</u><br>10.4%                                                                                           | -2.77 [-3.48, -2.06]<br>,<br>Std. Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.61 [-1.13, -0.09]                                                                                                                                                                                                                                                  | +<br>-10 -5 0 5 10<br>experimental control<br>Std. Mean Difference<br>IV. Random, 95% Cl<br>+                                                                                                                                                                                                      |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rest for overall effect:<br>rotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>rest for overall effect:<br>rest for suboroup diff<br>B<br><u> Hudty or Subgroup</u><br>het J 2017<br>het J 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences<br>Expe<br><u>Mean</u><br>8.79<br>9.8                                                                              | (P = 0<br>hi <sup>2</sup> = 13<br>(P < 0<br>: Chi <sup>2</sup> =<br>criment<br><u>SD</u><br>0.63<br>1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .0003)<br>365<br>0.96, c<br>.00001<br>21.37<br>tal<br><u>Total</u><br>30<br>21                                                                                                                                                | if = 11 (i<br>)<br>. df = 2 (<br><u>Mean</u><br>9.23<br>17.6                                                                                  | P < 0.0<br>(P < 0.<br>ontrol<br><u>SD</u><br>0.78<br>2.61                                                              | 356<br>00001);<br>0001).<br><u>Total</u><br>30<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>100.0</b> %<br>  <sup>2</sup> = 92%<br>  <sup>2</sup> = 90.6%<br><u>Weight</u><br>10.4%<br>10.3%                                                         | -2.77 [-3.48, -2.06]<br>Std. Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.61 [-1.13, -0.09]<br>-3.90 [-4.98, -2.82]                                                                                                                                                                                                                               | +<br>-10 -5 0 5 10<br>experimental control<br>Std. Mean Difference<br>IV. Random, 95% Cl                                                                                                                                                                                                           |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rest for overall effect:<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Test for subaroup diff<br>B<br>Hudy or Subgroup<br>Nen J 2013<br>Ten P 2017<br>Ten P 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences<br><u>Expe</u><br><u>Mean</u><br>8.79<br>9.8<br>1.42                                                               | (P = 0<br>hi <sup>2</sup> = 13<br>(P < 0<br>: Chi <sup>2</sup> =<br>0.63<br>1.02<br>1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .0003)<br><b>365</b><br>80.96, c<br>.00001<br>21.37<br>tal<br><u>Total</u><br>30<br>21<br>27                                                                                                                                  | lf = 11 ()<br>)<br>. df = 2 (<br><u>Mean</u><br>9.23<br>17.6<br>18.1                                                                          | P < 0.0<br>(P < 0.<br>ontrol<br><u>SD</u><br>0.78<br>2.61<br>2.13                                                      | 356<br>00001);<br>0001).<br><u>Total</u><br>30<br>20<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>100.0%</b><br>  <sup>2</sup> = 92%<br>  <sup>2</sup> = 90.6%<br><b>Weight</b><br>10.4%<br>10.3%<br>9.8%                                                  | -2.77 [-3.48, -2.06]<br>Std. Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.61 [-1.13, -0.09]<br>-3.90 [-4.98, -2.82]<br>-9.48 [-11.43, -7.52]                                                                                                                                                                                                      | -10 -5 0 5 10 experimental control  Std. Mean Difference IV, Random, 95% Cl                                                                                                                                                                                                                        |  |
| teng H 2018       1.4       1.3       20       18       2.1       20       9.5% $-9.32$ [-11.55, -7.08]         tiang S 2020       1.85       0.46       35       9.06       1.37       35       10.2% $-6.98$ [-8.26, -5.70]         u F 2015       1.42       1.24       27       18.1       2.13       26       9.8% $-9.48$ [-11.43, -7.52]         u Y 2020       6.52       0.96       36       14.25       3.46       36       10.4% $-3.01$ [-3.70, -2.33]         u H 2019       1.84       0.47       30       9.05       1.38       30       10.1% $-6.90$ [-8.28, -5.53]         otal (95% Cl)       285       281       100.0% $-6.86$ [-9.15, -4.56] $-20$ $-10$ $0$ $10$ $20$ est for overall effect: $Z = 5.86$ (P < 0.00001)       P < 0.00001)       P = 97% $-20$ $-10$ $0$ $10$ $20$ urg x 8       URE 8       S       S $20.00001$ $20$ $20$ $20$ $-10$ $10$ $20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fest for overall effect:<br>Fotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Fest for overall effect:<br>Fest for subaroup diff<br>B<br>Study or Subgroup<br>Nen J 2013<br>Hen J 2013<br>Hen J 2013<br>Hen J 2017<br>JX 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences<br><u>Expe</u><br><u>Mean</u><br>8.79<br>9.8<br>1.42<br>2.21                                                       | (P = 0<br>(P < 0)<br>: Chi <sup>2</sup> =<br>0.63<br>1.02<br>1.24<br>1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .0003)<br><b>365</b><br>80.96, c<br>.00001<br>: 21.37<br>tal<br><u>Total</u><br>30<br>21<br>27<br>33                                                                                                                          | lf = 11 ()<br>)<br>. df = 2 (<br><u>Mean</u><br>9.23<br>17.6<br>18.1<br>19.2                                                                  | P < 0.0<br>(P < 0.<br>ontrol<br><u>SD</u><br>0.78<br>2.61<br>2.13<br>2.21                                              | 356<br>)0001);<br>0001).<br><u>Total</u><br>30<br>20<br>26<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>100.0%</b><br>  <sup>2</sup> = 92%<br>  <sup>2</sup> = 90.6%<br><b>Weight</b><br>10.4%<br>10.3%<br>9.8%<br>9.9%                                          | -2.77 [-3.48, -2.06]<br>Std. Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.61 [-1.13, -0.09]<br>-3.90 [-4.98, -2.82]<br>-9.48 [-11.43, -7.52]<br>-9.58 [-11.34, -7.53]                                                                                                                                                                             | -10 -5 0 5 10 experimental control  Std. Mean Difference IV, Random, 95% Cl                                                                                                                                                                                                                        |  |
| liang S 2020 1.85 0.46 35 9.06 1.37 35 10.2% -6.98 [-8.26, -5.70]<br>u F 2015 1.42 1.24 27 18.1 2.13 26 9.8% -9.48 [-11.43, -7.52]<br>u Y 2020 6.52 0.96 36 14.25 3.46 36 10.4% -3.01 [-3.70, -2.33]<br>u H 2019 1.84 0.47 30 9.05 1.38 30 10.1% -6.90 [-8.28, -5.53]<br>otal (95% Cl) 285 281 100.0%<br>leterogeneity: Tau <sup>2</sup> = 13.05; Chi <sup>2</sup> = 355.69, df = 9 (P < 0.00001); P = 97%<br>est for overall effect: Z = 5.86 (P < 0.00001)<br>URE 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fest for overall effect:<br>Fotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Fest for overall effect:<br>Fest for suboroup diff<br>B<br>Hudy or Subgroup<br>Sai H 2017<br>Shen J 2013<br>Feng P 2017<br>JX 2020<br>Jn G 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences<br><u>Expe</u><br><u>Mean</u><br>8.79<br>9.8<br>1.42<br>2.21<br>1.64                                               | (P = 0<br>(P < 0<br>(P < 0<br>: Chi <sup>2</sup> =<br>0.63<br>1.02<br>1.24<br>1.12<br>0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .0003)<br><b>365</b><br>.0.96, c<br>.00001<br>: 21.37<br>tal<br><u>Total</u><br>30<br>21<br>27<br>33<br>26                                                                                                                    | if = 11 (i<br>)<br>. df = 2 (<br><u>Mean</u><br>9.23<br>17.6<br>18.1<br>19.2<br>9.7                                                           | P < 0.0<br>(P < 0.<br>ontrol<br><u>SD</u><br>0.78<br>2.61<br>2.13<br>2.21<br>0.72                                      | 356<br>)0001);<br>0001).<br><u>Total</u><br>30<br>20<br>26<br>33<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>100.0%</b><br>  <sup>2</sup> = 92%<br>  <sup>2</sup> = 90.6%<br><b>Weight</b><br>10.4%<br>10.3%<br>9.8%<br>9.6%                                          | -2.77 [-3.48, -2.06]<br>Std. Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.61 [-1.13, -0.09]<br>-3.90 [-4.98, -2.82]<br>-9.48 [-11.43, -7.52]<br>-9.58 [-11.34, -7.53]<br>-10.20 [-12.33, -8.07]                                                                                                                                                   | -10 -5 0 5 10 experimental control  Std. Mean Difference IV, Random, 95% Cl                                                                                                                                                                                                                        |  |
| u F 2015       1.42       1.24       27       18.1       2.13       26       9.8%       -9.48 [-11.43, -7.52]         u Y 2020       6.52       0.96       36       14.25       3.46       36       10.4%       -3.01 [-3.70, -2.33]         u H 2019       1.84       0.47       30       9.05       1.38       30       10.1%       -6.90 [-8.28, -5.53]         otal (95% Cl)       285       281       100.0%       -6.86 [-9.15, -4.56]       -20       -10       0       10       20         est for overall effect: Z = 5.86 (P < 0.00001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fest for overall effect:<br>Fotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Fest for overall effect:<br>Fest for suboroup diff<br>B<br>Study or Subgroup<br>Sai H 2017<br>Shen J 2013<br>Feng P 2017<br>J X 2020<br>J in G 2016<br>Peng H 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences<br><u>Expe</u><br><u>Mean</u><br>8.79<br>9.8<br>1.42<br>2.21<br>1.64<br>1.64                                       | (P = 0<br>(P < 0<br>(P < 0<br>: Chi <sup>2</sup> =<br>0.63<br>1.02<br>1.24<br>1.12<br>0.83<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0003)<br><b>365</b><br>.0.96, c<br>.00001<br>: 21.37<br>tal<br><u>Total</u><br>30<br>21<br>37<br>33<br>26<br>20                                                                                                              | if = 11 ()<br>)<br>. df = 2 ()<br><u>Mean</u><br>9.23<br>17.6<br>18.1<br>19.2<br>9.7<br>18                                                    | P < 0.(<br>(P < 0.<br>(P < 0.<br>0.78<br>2.61<br>2.13<br>2.21<br>0.72<br>2.1                                           | 356<br>00001);<br>00001).<br><u>Total</u><br>30<br>20<br>26<br>333<br>25<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>100.0%</b><br>  <sup>2</sup> = 92%<br>  <sup>2</sup> = 90.6%<br>(Weight<br>10.4%<br>10.3%<br>9.8%<br>9.8%<br>9.6%                                        | -2.77 [-3.48, -2.06]<br>Std. Mean Difference<br><u>IV. Random, 95% CI</u><br>-0.61 [-1.13, -0.09]<br>-3.90 [-4.98, -2.82]<br>-9.48 [-11.43, -7.52]<br>-9.58 [-11.34, -7.83]<br>-10.20 [-12.33, -8.07]<br>-9.32 [-11.55, -7.08]                                                                                                                          | -10 -5 0 5 10 experimental control  Std. Mean Difference IV. Random, 95% Cl                                                                                                                                                                                                                        |  |
| u Y 2020       6.52       0.96       36       14.25       3.46       36       10.4%       -3.01 [-3.70, -2.33]         u H 2019       1.84       0.47       30       9.05       1.38       30       10.1%       -6.90 [-8.28, -5.53]         otal (95% Cl)       285       281       100.0%       -6.86 [-9.15, -4.56]       -20       -10       0       10       20         eterogeneity: Tau <sup>2</sup> = 13.05; Chi <sup>2</sup> = 355.69, df = 9 (P < 0.00001); I <sup>2</sup> = 97%       -20       -10       0       10       20         est for overall effect: Z = 5.86 (P < 0.00001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fest for overall effect:<br>Fotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Fest for overall effect:<br>Test for subaroup diff<br>B<br>Study or Subgroup<br>Cai H 2017<br>Chen J 2013<br>Teng P 2017<br>Li X 2020<br>Lin G 2016<br>Peng H 2018<br>Gang S 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences<br><u>Expe</u><br><u>Mean</u><br>8.79<br>9.8<br>1.42<br>2.21<br>1.64<br>1.4<br>1.85                                | (P = 0<br>hi <sup>2</sup> = 13<br>(P < 0<br>: Chi <sup>2</sup> =<br>0.63<br>1.02<br>1.24<br>1.12<br>0.83<br>1.3<br>0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0003)<br><b>365</b><br>0.96, c<br>.00001<br>21.37<br>tal<br><u>Total</u><br>30<br>21<br>27<br>33<br>26<br>20<br>35                                                                                                           | if = 11 (i<br>)<br>. df = 2 (<br><u>Mean</u><br>9.23<br>17.6<br>18.1<br>19.2<br>9.7<br>18<br>9.06                                             | P < 0.0<br>(P < 0.<br>0.78<br>2.61<br>2.13<br>2.21<br>0.72<br>2.1<br>1.37                                              | 356<br>00001);<br>00001).<br><u>Total</u><br>30<br>20<br>26<br>33<br>25<br>20<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>100.0%</b><br>  <sup>2</sup> = 92%<br>  <sup>2</sup> = 90.6%<br><b>Weight</b><br>10.4%<br>10.3%<br>9.8%<br>9.6%<br>9.5%<br>10.2%                         | -2.77 [-3.48, -2.06]<br>Std. Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.61 [-1.13, -0.09]<br>-3.90 [-4.98, -2.82]<br>-9.48 [-11.43, -7.52]<br>-9.58 [-11.34, -7.83]<br>-10.20 [-12.33, -8.07]<br>-9.32 [-11.55, -7.08]<br>-6.98 [-8.26, -5.70]                                                                                                  | Std. Mean Difference<br>N. Random, 95% Cl                                                                                                                                                                                                                                                          |  |
| u H 2019       1.84       0.47       30       9.05       1.38       30       10.1%       -6.90 [-8.28, -5.53]         otal (95% Cl)       285       281       100.0%       -6.86 [-9.15, -4.56]         leterogeneity: Tau² = 13.05; Chi² = 355.69, df = 9 (P < 0.00001); I² = 97%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | First for overall effect:<br>Fotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Fest for overall effect:<br>Test for suboroup diff<br>B<br>Study or Subgroup<br>Sai H 2017<br>Shen J 2013<br>Teng P 2017<br>Jin G 2016<br>Peng H 2018<br>Gang S 2020<br>(u F 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences<br><u>Expe</u><br><u>Mean</u><br>8.79<br>9.8<br>1.42<br>2.21<br>1.64<br>1.42<br>1.42<br>1.42                       | (P = 0<br>hi <sup>2</sup> = 13<br>(P < 0<br>: Chi <sup>2</sup> =<br>0.63<br>1.02<br>1.24<br>1.12<br>0.83<br>1.3<br>0.46<br>1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .0003)<br><b>365</b><br>0.96, c<br>.00001<br>21.37<br>tal<br><u>Total</u><br>30<br>21<br>27<br>33<br>26<br>20<br>35<br>27                                                                                                     | if = 11 (i<br>)<br>. df = 2 (<br><u>Mean</u><br>9.23<br>17.6<br>18.1<br>19.2<br>9.7<br>18<br>9.06<br>18.1                                     | P < 0.0<br>(P < 0.<br>5D<br>0.78<br>2.61<br>2.13<br>0.72<br>2.11<br>1.37<br>2.13                                       | 356<br>00001);<br>0001).<br><u>Total</u><br>30<br>20<br>26<br>33<br>25<br>25<br>25<br>25<br>25<br>25<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>100.0%</b><br>  <sup>2</sup> = 92%<br>  <sup>2</sup> = 90.6%<br><b>Weight</b><br>10.4%<br>10.3%<br>9.8%<br>9.6%<br>9.5%<br>10.2%<br>9.8%                 | -2.77 [-3.48, -2.06]<br>Std. Mean Difference<br>IV, Random, 95% CI<br>-0.61 [-1.13, -0.09]<br>-3.90 [-4.98, -2.82]<br>-9.48 [-11.43, -7.52]<br>-9.58 [-11.34, -7.83]<br>-10.20 [-12.33, -8.07]<br>-9.32 [-11.55, -7.08]<br>-6.98 [-8.26, -5.70]<br>-9.48 [-11.43, -7.52]                                                                                | Std. Mean Difference<br>V. Random, 95% Cl                                                                                                                                                                                                                                                          |  |
| otal (95% CI)         285         281         100.0%         -6.86 [-9.15, -4.56]           leterogeneity: Tau <sup>2</sup> = 13.05; Chi <sup>2</sup> = 355.69, df = 9 (P < 0.00001); I <sup>2</sup> = 97%         -20         -10         0         10         20           est for overall effect: Z = 5.86 (P < 0.00001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fiest for overall effect:<br>Fiest for overall effect:<br>Fiest for overall effect:<br>Fiest for overall effect:<br>Fiest for subgroup diff<br>B<br>Findy or Subgroup<br>Cai H 2017<br>Chen J 2013<br>Fieng P 2017<br>Chen J 2013<br>Fieng P 2017<br>Chen J 2013<br>Fieng P 2017<br>Chen J 2013<br>Fieng P 2017<br>Chen J 2013<br>Chen J 2013<br>Chen J 2013<br>Chen J 2015<br>Chen J 2020<br>Chen J 2020<br>Che | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences<br>Expe<br><u>Mean</u><br>8.79<br>9.8<br>1.42<br>2.21<br>1.64<br>1.42<br>1.42<br>1.42<br>1.42<br>6.52              | (P = 0<br>hi <sup>#</sup> = 13<br>(P < 0<br>: Chi <sup>#</sup> =<br>Chi <sup>#</sup> =<br>0.63<br>1.02<br>1.24<br>1.12<br>0.83<br>1.3<br>0.46<br>1.24<br>1.22<br>0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 365<br>0.96, c<br>.00001<br>21.37<br>tal<br>Total<br>30<br>21<br>27<br>33<br>26<br>20<br>35<br>27<br>36                                                                                                                       | ff = 11 (i<br>)<br>. df = 2 (<br><u>Mean</u><br>9.23<br>17.6<br>18.1<br>19.2<br>9.7<br>18<br>9.06<br>18.1<br>14.25                            | P < 0.0<br>(P < 0.<br>0.78<br>2.61<br>2.13<br>2.21<br>1.37<br>2.13<br>3.46                                             | 356<br>00001);<br>0001).<br>0001).<br>20<br>20<br>26<br>33<br>25<br>20<br>26<br>33<br>25<br>20<br>35<br>20<br>35<br>20<br>35<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100.0%<br>  <sup>2</sup> = 92%<br>  <sup>2</sup> = 90.6%<br>(10.4%<br>10.3%<br>9.8%<br>9.8%<br>9.6%<br>9.6%<br>10.2%<br>9.8%<br>10.2%<br>9.8%<br>10.4%      | -2.77 [-3.48, -2.06]<br>Std. Mean Difference<br>IV, Random, 95% CI<br>-0.61 [-1.13, -0.09]<br>-3.90 [-4.98, -2.82]<br>-9.48 [-11.43, -7.52]<br>-9.58 [-11.34, -7.83]<br>-10.20 [-12.33, -8.07]<br>-9.32 [-11.55, -7.08]<br>-6.98 [-8.26, -5.70]<br>-9.48 [-11.43, -7.52]<br>-3.01 [-3.70, -2.33]                                                        | -10 -5 0 5 10 experimental control  Std. Mean Difference IV, Random, 95% Cl                                                                                                                                                                                                                        |  |
| Iderogeneity: Tau² = 13.05; Chi² = 355.69, df = 9 (P < 0.00001); I² = 97%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | First for overall effect:<br>Fotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Fest for overall effect:<br>Fest for suboroup diff<br>B<br>Study or Subgroup<br>Sai H 2017<br>Chen J 2013<br>Feng P 2017<br>Li X 2020<br>Lin G 2016<br>Peng H 2018<br>Gang S 2020<br>Gu F 2015<br>Gu Y 2020<br>Yu H 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences<br><u>Expe</u><br><u>Mean</u><br>8.79<br>9.8<br>1.42<br>2.21<br>1.64<br>1.42<br>1.65<br>1.42<br>6.52<br>1.84       | (P = 0<br>hi <sup>2</sup> = 13<br>(P < 0<br>: Chi <sup>2</sup> =<br>0.63<br>1.02<br>1.24<br>1.12<br>0.83<br>1.3<br>0.46<br>1.24<br>0.96<br>0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00003)<br>365<br>00.96, c<br>00001<br>21.37<br>tal<br>Total<br>30<br>21<br>27<br>33<br>26<br>20<br>35<br>27<br>36<br>30<br>30<br>30<br>30<br>30<br>31<br>32<br>32<br>33<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | ff = 11 (i<br>)<br>. df = 2 (<br><u>Mean</u><br>9.23<br>17.6<br>18.1<br>19.2<br>9.7<br>18<br>9.06<br>18.1<br>14.25<br>9.05                    | P < 0.(<br>P < 0.<br>0.78<br>2.61<br>2.13<br>0.72<br>2.1<br>1.37<br>2.13<br>3.46<br>1.38                               | 356<br>00001);<br>00001).<br>00001).<br>30<br>20<br>20<br>20<br>20<br>20<br>20<br>35<br>20<br>35<br>20<br>35<br>26<br>36<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.0%<br>  <sup>2</sup> = 92%<br>  <sup>2</sup> = 90.6%<br>(10.4%<br>10.3%<br>9.8%<br>9.8%<br>9.5%<br>10.2%<br>9.8%<br>10.4%<br>10.4%<br>10.1%             | -2.77 [-3.48, -2.06]<br>Std. Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.61 [-1.13, -0.09]<br>-3.90 [-4.98, -2.82]<br>-9.48 [-11.43, -7.52]<br>-9.58 [-11.34, -7.53]<br>-10.20 [-12.33, -8.07]<br>-9.32 [-11.55, -7.08]<br>-6.98 [-8.26, -5.70]<br>-9.48 [-11.43, -7.52]<br>-3.01 [-3.70, -2.33]<br>-6.90 [-8.28, -5.53]                         | Std. Mean Difference<br>N. Random, 95% CI                                                                                                                                                                                                                                                          |  |
| est for overall effect: Z = 5.86 (P < 0.00001) -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -20 -10 -20 -20 -20 -20 -20 -20 -20 -20 -20 -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | First for overall effect:<br>Fotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Fest for overall effect:<br>Fest for subaroup diff<br>B<br>Study or Subgroup<br>Cai H 2017<br>Chen J 2013<br>Seng P 2017<br>JX 2020<br>Jin G 2016<br>Seng H 2018<br>Gang S 2020<br>Gur F 2015<br>Gur S 2020<br>Gur F 2015<br>Gur Y 2020<br>Gur H 2019<br>Sotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences<br><u>Expe</u><br><u>Mean</u><br>8.79<br>9.8<br>1.42<br>2.21<br>1.64<br>1.42<br>1.42<br>1.42<br>6.52<br>1.84       | (P = 0<br>hi <sup>2</sup> = 13<br>(P < 0<br>: Chi <sup>2</sup> =<br><b>SD</b><br>0.63<br>1.02<br>1.24<br>1.22<br>0.83<br>1.3<br>0.46<br>1.24<br>0.96<br>0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0003)<br><b>365</b><br>10.96, c<br>.00001<br>: 21.37<br><b>tal</b><br><b>Total</b><br>30<br>21<br>37<br>33<br>26<br>20<br>35<br>27<br>36<br>30<br><b>285</b>                                                                 | ff = 11 ((<br>)<br>. df = 2 (<br><u>Mean</u><br>9.23<br>17.6<br>18.1<br>19.2<br>9.7<br>18<br>9.06<br>18.1<br>14.25<br>9.05                    | P < 0.(<br>P < 0.<br>(P < 0.<br>0.78<br>2.61<br>2.13<br>2.21<br>0.72<br>2.13<br>3.46<br>1.38                           | 356<br>)0001);<br>0001).<br>0001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>10001).<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100010.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000.<br>100000000.<br>100000 | 100.0%<br>  <sup>2</sup> = 92%<br>  <sup>2</sup> = 90.6%<br>(10.4%)<br>10.4%<br>9.8%<br>9.5%<br>10.2%<br>9.8%<br>10.4%<br>10.4%<br>10.1%<br>100.0%          | -2.77 [-3.48, -2.06]<br>Std. Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.61 [-1.13, -0.09]<br>-3.90 [-4.98, -2.82]<br>-9.48 [-11.43, -7.52]<br>-9.58 [-11.34, -7.83]<br>-10.20 [-12.33, -8.07]<br>-9.32 [-11.55, -7.08]<br>-6.98 [-8.26, -5.70]<br>-9.48 [-11.43, -7.52]<br>-3.01 [-3.70, -2.33]<br>-6.90 [-8.28, -5.53]<br>-6.86 [-9.15, -4.56] | Std. Mean Difference<br>V, Random, 95% Cl                                                                                                                                                                                                                                                          |  |
| URE 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fest for overall effect:<br>Fotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Fest for overall effect:<br>Fest for subaroup diff<br>B<br><u>Study or Subgroup</u><br>Cai H 2017<br>Chen J 2013<br>Eeng P 2017<br>Li X 2020<br>Lin G 2016<br>Peng H 2018<br>Gang S 2020<br>Cu F 2015<br>Cu Y 2020<br>Yu H 2019<br>Tau <sup>2</sup> =<br>Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences<br>Expe<br>Mean<br>8.79<br>9.8<br>1.42<br>2.21<br>1.64<br>1.42<br>6.52<br>1.84<br>1.3.05; (                        | (P = 0)<br>$hi^2 = 13$<br>(P < 0)<br>$: Chi^2 =$<br>$I = 10^{-1}$<br>$: Chi^2 =$<br>$I = 10^{-1}$<br>$I = 10^{-1}$<br>I = | .0003)<br><b>365</b><br>10.96, c<br>.00001<br><b>21.37</b><br><b>tal</b><br><b>Total</b><br>30<br>21<br>27<br>33<br>26<br>20<br>35<br>27<br>36<br>30<br><b>285</b><br>305.69, c                                               | ff = 11 (()<br>)<br>. df = 2 (<br><u>Mean</u><br>9.23<br>17.6<br>18.1<br>19.2<br>9.7<br>18<br>9.06<br>18.1<br>14.25<br>9.05                   | P < 0.(<br>P < 0.<br>(P < 0.<br>0.78<br>2.61<br>2.13<br>2.21<br>0.72<br>2.1<br>1.37<br>2.13<br>3.46<br>1.38<br>(P < 0. | 356<br>)0001);<br>0001).<br><u>Total</u><br>30<br>20<br>20<br>33<br>25<br>20<br>35<br>26<br>36<br>30<br>281<br>00001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.0%<br> ² = 92%<br> ² = 90.6%<br> ² = 90.6%<br>10.4%<br>9.8%<br>9.6%<br>9.8%<br>10.2%<br>9.8%<br>10.4%<br>10.4%<br>10.1%<br>100.0%<br>;  ² = 97%         | -2.77 [-3.48, -2.06]<br>Std. Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.61 [-1.13, -0.09]<br>-3.90 [-4.98, -2.82]<br>-9.48 [-11.43, -7.52]<br>-9.32 [-11.55, -7.08]<br>-6.98 [-8.26, -5.70]<br>-9.48 [-11.43, -7.52]<br>-3.01 [-3.70, -2.33]<br>-6.90 [-8.28, -5.53]<br>-6.86 [-9.15, -4.56]                                                    | Std. Mean Difference<br>N, Random, 95% Cl<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+                                                                                                                                                                                         |  |
| URE 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fest for overall effect:<br>Fotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Fest for overall effect:<br>Test for suboroup diff<br>B<br>Study or Subgroup<br>Cai H 2017<br>Chen J 2013<br>Feng P 2017<br>Cai H 2017<br>Chen J 2013<br>Cai H 2017<br>Cai H 2017<br>Cai H 2018<br>Cang B 2020<br>Cui F 2015<br>Cui F 2015<br>Cui F 2015<br>Cui F 2019<br>Cui H 2019<br>Cotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Set for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences<br>Expe<br>Mean<br>8.79<br>9.8<br>1.42<br>2.21<br>1.64<br>1.85<br>1.42<br>6.52<br>1.84<br>:13.05; (<br>Z = 5.86    | (P = 0)<br>$hi^2 = 13$<br>(P < 0)<br>$: Chi^2 =$<br>1.24<br>1.22<br>1.24<br>0.83<br>1.3<br>0.46<br>1.24<br>0.96<br>0.47<br>$Chi^2 = 3$<br>i (P < 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .0003)<br><b>365</b><br>10.96, c<br>.00001<br>21.37<br><b>tal</b><br><b>Total</b><br>30<br>21<br>27<br>326<br>20<br>35<br>27<br>36<br>30<br><b>285</b><br>355.69<br>.00001                                                    | ff = 11 (()<br>)<br>. df = 2 ()<br>9.23<br>17.6<br>18.1<br>19.2<br>9.7<br>18<br>9.06<br>18.1<br>14.25<br>9.05<br>, df = 9 ()                  | P < 0.(<br>P < 0.<br>0.78<br>2.61<br>2.13<br>2.21<br>0.72<br>2.1<br>1.37<br>2.13<br>3.46<br>1.38<br>(P < 0.)           | 356<br>)0001);<br>0001).<br>0001).<br>30<br>20<br>26<br>33<br>325<br>20<br>35<br>26<br>36<br>36<br>30<br>30<br>281<br>000001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.0%<br> ² = 92%<br> ² = 90.6%<br> ² = 90.6%<br>10.4%<br>9.8%<br>9.8%<br>9.6%<br>9.5%<br>10.2%<br>9.8%<br>10.4%<br>10.4%<br>10.1%<br>100.0%<br>;  ² = 97% | -2.77 [-3.48, -2.06]<br>Std. Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.61 [-1.13, -0.09]<br>-3.90 [-4.98, -2.82]<br>-9.48 [-11.43, -7.52]<br>-9.58 [-11.34, -7.83]<br>-10.20 [-12.33, -8.07]<br>-9.32 [-11.55, -7.08]<br>-6.98 [-8.26, -5.70]<br>-9.48 [-11.43, -7.52]<br>-3.01 [-3.70, -2.33]<br>-6.90 [-8.28, -5.53]<br>-6.86 [-9.15, -4.56] | Std. Mean Difference<br>N, Random, 95% Cl<br>-10<br>-20<br>-20<br>-10<br>-10<br>-5<br>0<br>5<br>10<br>-5<br>10<br>-5<br>10<br>-5<br>10<br>-5<br>10<br>-5<br>10<br>-5<br>10<br>-5<br>10<br>-5<br>10<br>-5<br>10<br>-5<br>10<br>-5<br>10<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | est for overall effect:<br>otal (95% CI)<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>est for suboroup diff<br>3<br>tudy or Subgroup<br>is H 2017<br>then J 2013<br>eng P 2017<br>ix 2020<br>in G 2016<br>eng H 2018<br>iang S 2020<br>u F 2015<br>u Y 2020<br>u H 2019<br>otal (95% CI)<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z = 3.59<br>1.42; Cl<br>Z = 7.64<br>erences<br>Expe<br>Mean<br>8.79<br>9.8<br>1.42<br>2.21<br>1.64<br>1.42<br>1.62<br>1.84<br>1.85<br>1.42<br>6.52<br>1.84<br> | (P = 0)<br>$hi^2 = 13$<br>(P < 0)<br>$: Chi^2 =$<br>1.24<br>1.12<br>1.24<br>1.24<br>1.24<br>0.83<br>0.83<br>0.83<br>0.46<br>1.24<br>0.96<br>0.47<br>$Chi^2 = 3$<br>(P < 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .0003)<br><b>365</b><br>10.96, c<br>.00001<br>21.37<br><b>tal</b><br>30<br>21<br>27<br>33<br>26<br>20<br>35<br>27<br>36<br>30<br><b>285</b><br>355.69<br>.00001                                                               | ff = 11 ((<br>)<br>. df = 2 (<br><u>Mean</u><br>9.23<br>17.6<br>18.1<br>19.2<br>9.7<br>18<br>9.06<br>18.1<br>14.25<br>9.05<br>, df = 9 (<br>) | P < 0.(<br>P < 0.<br>0.78<br>2.61<br>2.13<br>2.21<br>0.72<br>2.1<br>1.37<br>2.13<br>3.46<br>1.38<br>(P < 0.            | 356<br>00001);<br>0001).<br>0001).<br>30<br>20<br>20<br>20<br>20<br>25<br>20<br>35<br>26<br>36<br>36<br>30<br>281<br>200001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.0%<br> ² = 92%<br> ² = 90.6%<br>10.4%<br>10.4%<br>9.8%<br>9.6%<br>9.5%<br>10.2%<br>9.8%<br>10.4%<br>10.4%<br>10.1%<br>100.0%<br>;  ² = 97%              | -2.77 [-3.48, -2.06]<br>Std. Mean Difference<br><u>W, Random, 95% Cl</u><br>-0.61 [-1.13, -0.09]<br>-3.90 [-4.98, -2.82]<br>-9.48 [-11.43, -7.52]<br>-9.58 [-11.34, -7.52]<br>-9.32 [-11.55, -7.08]<br>-6.98 [-8.26, -5.70]<br>-9.48 [-11.43, -7.52]<br>-3.01 [-3.70, -2.33]<br>-6.90 [-8.28, -5.53]<br>-6.86 [-9.15, -4.56]                            | Std. Mean Difference<br>N. Random, 95% CI                                                                                                                                                                                                                                                          |  |

#### 3.4.9 24 h urine protein

Ten studies reported 24 h urine protein as the outcome, including 294 patients overall in the experimental group and 288 patients overall in the control group. All the ten studies (Chen, 2013; Sun, 2013; Xu, 2015; Lin and Liu, 2016; Cai et al., 2017; Feng et al., 2017; Peng, 2018; Li and Zheng, 2020; Xiang, 2020; Xu, 2020) used TGP in combination with GC and CTX. A fixed-effects model was applied for analysis because of low heterogeneity

(I<sup>2</sup> = 39%, *p* = 0.10). Subgroup analysis showed that the 24 h urine protein in the experimental group was significantly lower than that in the control group (SMD = -0.73, 95% Cl = [-0.90, -0.57], *p* < 0.001). The difference was statistically significant (Figure 7C).

#### 3.4.10 Average daily dosage of GC

Twelve studies reported the average daily dosage of GC as the outcome, including 365 patients overall in the experimental

group and 356 patients overall in the control group. Subgroup analysis was performed according to different treatment drugs. Ten studies (Chen, 2013; Xu, 2015; Lin and Liu, 2016; Cai et al., 2017; Feng et al., 2017; Peng, 2018; Yu et al., 2019; Li and Zheng, 2020; Xiang, 2020; Xu, 2020) used TGP in combination with GC and CTX. One study (Li Z. et al., 2018) used TGP in combination with GC and TAC. One study (Zhu and Wei, 2009) used TGP in combination with GC and TAC. One study (Zhu and Wei, 2009) used TGP in combination with GC. A random-effects model was applied for analysis because of the existence of heterogeneity ( $I^2 = 92\%$ , p < 0.001). Subgroup analysis showed that the average daily dosage of GC in the experimental group was lower than that of the control group (SMD = -3.04, 95% Cl = [-3.83, -2.24], p < 0.001; SMD = -0.94, 95% Cl = [-1.46, -0.43], p < 0.001). The difference was statistically significant (Figure 8A).

Sensitivity analysis was performed to explore the source of heterogeneity by excluding articles sequentially and reading the full text. It was found that three studies (Zhu and Wei, 2009; Cai et al., 2017; Li Z. et al., 2018) had a significant impact on the result. The heterogeneity was reduced after excluding the three articles (I<sup>2</sup> = 28%, p = 0.20). We merged the data of other studies to analyze (SMD = -3.30, 95% Cl = [-3.62, -2.97], p < 0.001). One study (Cai et al., 2017) had a shorter average course of disease, and the other two studies (Zhu and Wei, 2009; Li Z. et al., 2018) were combined with different drugs, which may be the main reason for heterogeneity. (Supplementary Figure S5).

#### 3.4.11 Cumulative dosage of CTX

Ten studies reported the cumulative dosage of CTX, including 285 patients overall in the experimental group and 281 patients overall in the control group. All the ten studies (Chen, 2013; Xu, 2015; Lin and Liu, 2016; Cai et al., 2017; Feng et al., 2017; Peng, 2018; Yu et al., 2019; Li and Zheng, 2020; Xiang, 2020; Xu, 2020) used TGP in combination with GC and CTX. A random-effects model was applied for analysis because of the existence of heterogeneity ( $I^2 = 97\%$ , p < 0.001). Subgroup analysis showed that the cumulative dosage of CTX in the experimental group was significantly lower than that of the control group (SMD = -6.86, 95% Cl = [-9.15, -4.56], p < 0.001). The difference was statistically significant (Figure 8B).

Sensitivity analysis was performed to explore the source of heterogeneity by excluding articles sequentially and reading the full text. It was found that five studies (Chen, 2013; Cai et al., 2017; Yu et al., 2019; Xiang, 2020; Xu, 2020) had a significant impact on the result. The heterogeneity was reduced after excluding the five studies (I<sup>2</sup> = 0%, p = 0.98). We merged the data of other studies to analyze (SMD = -9.60, 95% Cl = [-10.49, -8.72], p < 0.001). The large differences in the mean age and treatment duration of the patients in the five studies compared with the other studies may account for the heterogeneity (Supplementary Figure S6).

#### 3.4.12 Recurrence rate

Ten studies reported the recurrence rate, including 361 patients overall in the experimental group and 359 patients overall in the control group. Subgroup analysis was performed according to different treatment drugs. Six studies (Lin and Liu, 2016; Feng et al., 2017; Peng, 2018; Li and Zheng, 2020; Wu et al., 2020; Xu, 2020) used TGP in combination with GC and CTX. One study (Li Z. et al., 2018) used TGP in combination with GC and TAC. Three studies (Li, 2013; Wang et al., 2013; Liu, 2016) used TGP in combination with GC. A fixed-effects model was applied for analysis because of low heterogeneity ( $I^2 = 0\%$ , p = 0.74). Subgroup analysis showed that the recurrence rate of the experimental group was lower than that of the control group (RR = 0.32, 95% Cl = [0.19,0.53], *p* < 0.001; RR = 0.43, 95% Cl = [0.18, 1.02], *p* < 0.05; RR = 0.14, 95% Cl = [0.06, 0.32], p < 0.001). The difference was statistically significant (Figure 9).

## 3.5 Safety outcomes

#### 3.5.1 Incidence of adverse reactions

Eighteen studies reported the incidence of adverse reactions, including 631 patients overall in the experimental group and 626 patients overall in the control group. Subgroup analysis was performed according to the different treatment drugs. Eleven studies (Chen, 2013; Xu, 2015; Lin and Liu, 2016; Yang, 2016; Cai et al., 2017; Feng et al., 2017; Peng, 2018; Yu et al., 2019; Li and Zheng, 2020; Wu et al., 2020; Xu, 2020) used TGP in combination with GC and CTX. Two studies (Xue and Lyu, 2019; Zhao et al., 2020) used TGP in combination with GC and HCQ. One study (Li Z. et al., 2018) used TGP in combination with GC and TAC. Four studies (Wang et al., 2013; Wang and Wang, 2015; Liu, 2016; Yang and Li, 2019) used TGP in combination with GC. A random-effects model was applied for analysis because of the existence of heterogeneity ( $I^2 = 69\%$ , p < 0.001). Subgroup analysis showed that the incidence of adverse reactions in TGP combined with GC and CTX treatment was lower than that in the control group (RR = 0.37, 95% Cl = [0.21, 0.64], p <0.001), and the difference was statistically significant. The remaining three groups had no significant advantage over the control group in the incidence of adverse reactions (RR = 0.60, 95% Cl = [0.15, 2.44], *p* = 0.48; RR = 1.40, 95% Cl = [0.48, 4.08], *p* = 0.54; RR = 0.54, 95% Cl = [0.18, 1.61], *p* = 0.27) (Figure 10).

Sensitivity analysis was performed to explore the source of heterogeneity by excluding articles sequentially and reading the full text. Four studies (Wang and Wang, 2015; Yang, 2016; Yang and Li, 2019; Wu et al., 2020) were found to have a significant impact on the result. The heterogeneity was reduced after excluding the four studies (I<sup>2</sup> = 3%, p = 0.41). We merged the data of other studies to analyze (SMD = 0.34, 95% Cl = [ 0.25, 0.46], p < 0.001). The inconsistency in the evaluation criteria for

|                                   | Experim                  | ental    | Cont       | rol      |                        | Risk Ratio          | Risk Ratio           |
|-----------------------------------|--------------------------|----------|------------|----------|------------------------|---------------------|----------------------|
| Study or Subgroup                 | Events                   | Total    | Events     | Total    | Weight                 | M-H, Random, 95% Cl | M-H, Random, 95% Cl  |
| 2.1.1 GC+CTX+TGP V                | S GC+CTX                 |          |            |          |                        |                     |                      |
| Feng P 2017                       | 2                        | 27       | 8          | 26       | 7.2%                   | 0.24 [0.06, 1.03]   |                      |
| Li X 2020                         | 2                        | 33       | 8          | 33       | 7.0%                   | 0.25 [0.06, 1.09]   |                      |
| Lin G 2016                        | 2                        | 26       | 8          | 25       | 7.2%                   | 0.24 [0.06, 1.02]   |                      |
| Peng H 2018                       | 1                        | 20       | 6          | 20       | 3.7%                   | 0.17 [0.02, 1.26]   |                      |
| Wu X 2020                         | 7                        | 37       | 15         | 37       | 25.3%                  | 0.47 [0.22, 1.01]   |                      |
| Xu Y 2020                         | 2                        | 36       | 8          | 36       | 6.9%                   | 0.25 [0.06, 1.10]   |                      |
| Subtotal (95% CI)                 |                          | 179      |            | 177      | 57.2%                  | 0.32 [0.19, 0.53]   | •                    |
| Total events                      | 16                       |          | 53         |          |                        |                     |                      |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00; Chi <sup>2</sup> | = 1.88,  | df = 5 (P  | = 0.87   | ); I² = 0%             |                     |                      |
| Test for overall effect           | Z = 4.37 (F              | ° < 0.00 | 101)       |          |                        |                     |                      |
| 2.1.2 GC+Tac+TGP V                | S GC+Tac                 |          |            |          |                        |                     |                      |
| Li Z 2018                         | 6                        | 45       | 14         | 45       | 20.3%                  | 0.43 [0.18, 1.02]   |                      |
| Subtotal (95% CI)                 |                          | 45       |            | 45       | 20.3%                  | 0.43 [0.18, 1.02]   | ◆                    |
| Total events                      | 6                        |          | 14         |          |                        |                     |                      |
| Heterogeneity: Not ap             | oplicable                |          |            |          |                        |                     |                      |
| Test for overall effect           | Z = 1.93 (F              | P = 0.05 | i)         |          |                        |                     |                      |
| 2.1.3 GC+TGP VS GC                |                          |          |            |          |                        |                     |                      |
| Li Y 2013                         | 2                        | 47       | 14         | 47       | 7.4%                   | 0.14 (0.03, 0.59)   |                      |
| Liu W 2016                        | 2                        | 43       | 15         | 43       | 7.6%                   | 0.13 [0.03, 0.55]   |                      |
| Wang Z 2013                       | 2                        | 47       | 14         | 47       | 7.4%                   | 0.14 [0.03, 0.59]   |                      |
| Subtotal (95% CI)                 |                          | 137      |            | 137      | 22.4%                  | 0.14 [0.06, 0.32]   | ◆                    |
| Total events                      | 6                        |          | 43         |          |                        |                     |                      |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00; Chi <sup>2</sup> | = 0.01,  | df = 2 (P  | = 1.00   | ); I <sup>2</sup> = 0% |                     |                      |
| Test for overall effect           | Z = 4.70 (F              | ° < 0.00 | 1001)      |          |                        |                     |                      |
| Total (95% CI)                    |                          | 361      |            | 359      | 100.0%                 | 0.28 [0.19, 0.41]   | •                    |
| Total events                      | 28                       |          | 110        |          |                        |                     |                      |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00; Chi <sup>2</sup> | = 6.04   | df = 9 (P  | = 0.74   | );  ² = 0%             |                     |                      |
| Test for overall effect           | Z = 6.40 (F              | < 0.00   | 001)       |          |                        |                     | 0.002 0.1 1 10 500   |
| Test for subaroup dif             | ferences: C              | hi² = 3. | 93. df = 2 | ? (P = 0 | .14), I² = 4           | 19.2%               | experimental control |
| GURE 9                            |                          |          |            |          |                        |                     |                      |
| prest plot of recurrence          | ce rate.                 |          |            |          |                        |                     |                      |
|                                   |                          |          |            |          |                        |                     |                      |

the occurrence of adverse reactions among the four studies may be the main reason for heterogeneity (Supplementary Figure S7).

## 3.6 Publication bias

We used RevMan 5.3 software to draw a funnel plot for the incidence of adverse reactions to analyze publication bias. The results show that the two sides of the funnel plot are asymmetrical, indicating some publication bias in the included literature, which may be related to the evaluation criteria for the incidence of adverse reactions, the small sample size of individual studies, and unpublished negative results (Figure 11).

## 3.7 GRADE assessment

According to the GRADE methodology, the SLEDAI score, the incidence of adverse reactions, and the recurrence rate of TGP combined with different drugs for SLE were evaluated with evidence levels of "medium" and "low." The results of the GRADE evaluation are shown in Table 2.

# 4 Discussion

SLE is a chronic autoimmune disease that requires clinical monitoring of multiple indicators to assess disease activity to guide clinical treatment. Among the SLE disease activity assessment tools, SLEDAI is widely adopted by clinicians because of its relatively easy and time-consuming assessment process (Chinese Rheumatology Association, 2020). ESR is a non-specific inflammatory index, but it is a valid indicator for the disease activity assessment in patients with non-infectious SLE (Dima et al., 2016). Low complement is an important serological manifestation of SLE and decreased C3 and C4 can predict SLE flares (Durcan and Petri, 2020). Urine protein reflects renal pathology, and studies have found a positive correlation between 24 h urine protein and SLE disease activity (Li M. et al., 2018). In this study, we evaluated the efficacy and safety

|                                                                                                                                                    | Experime                 | ntal              | Contro             | ol                 |             | Risk Ratio          | Risk Ratio          |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|--------------------|--------------------|-------------|---------------------|---------------------|--|--|--|
| Study or Subgroup                                                                                                                                  | Events                   | Total             | Events             | Total              | Weight      | M-H, Random, 95% Cl | M-H, Random, 95% Cl |  |  |  |
| 2.2.1 GC+CTX+TGP V                                                                                                                                 | S GC+CTX                 |                   |                    |                    |             |                     |                     |  |  |  |
| Cai H 2017                                                                                                                                         | 2                        | 30                | 7                  | 30                 | 4.2%        | 0.29 [0.06, 1.26]   |                     |  |  |  |
| Chen J 2013                                                                                                                                        | 2                        | 47                | 11                 | 47                 | 4.3%        | 0.18 [0.04, 0.78]   |                     |  |  |  |
| Feng P 2017                                                                                                                                        | 4                        | 27                | 14                 | 26                 | 6.2%        | 0.28 [0.10, 0.73]   |                     |  |  |  |
| Li X 2020                                                                                                                                          | 3                        | 33                | 18                 | 33                 | 5.6%        | 0.17 [0.05, 0.51]   |                     |  |  |  |
| Lin G 2016                                                                                                                                         | 5                        | 26                | 12                 | 25                 | 6.6%        | 0.40 [0.16, 0.97]   |                     |  |  |  |
| Peng H 2018                                                                                                                                        | 2                        | 20                | 9                  | 20                 | 4.5%        | 0.22 [0.05, 0.90]   |                     |  |  |  |
| Wu X 2020                                                                                                                                          | 6                        | 37                | 5                  | 37                 | 5.7%        | 1.20 (0.40, 3.59)   | _ <b>-</b>          |  |  |  |
| Xu F 2015                                                                                                                                          | 4                        | 27                | 14                 | 26                 | 6.2%        | 0.28 (0.10, 0.73)   | _ <b>-</b> _        |  |  |  |
| Xu Y 2020                                                                                                                                          | 3                        | 36                | 11                 | 36                 | 5.3%        | 0.27 (0.08, 0.90)   | <b>_</b> _          |  |  |  |
| Yang M 2016                                                                                                                                        | 20                       | 26                | 20                 | 24                 | 9.2%        | 0.92 (0.20, 0.00)   | +                   |  |  |  |
| Vu ⊔ 2010                                                                                                                                          | 20                       | 20                | 17                 | 20                 | 7 6%        | 0.32 [0.70, 1.22]   |                     |  |  |  |
| Subtotal (05% CI)                                                                                                                                  | 0                        | 330               | 17                 | 334                | 65 5%       | 0.37 [0.24, 0.32]   | •                   |  |  |  |
| Total events                                                                                                                                       | 50                       | 333               | 100                | 554                | 03.370      | 0.57 [0.2 1, 0.04]  | •                   |  |  |  |
| Total events                                                                                                                                       | 0.50.01.2                | 10.00             | 130                | (D                 | 000041-17   | - 700               |                     |  |  |  |
| Test for overall effect:                                                                                                                           | Z = 3.52 (P              | = 42.50<br>= 0.00 | 0, af = 101<br>04) | (P < U.            | 00001); F   | -= / 0%             |                     |  |  |  |
| 2.2.2.60+00+100+                                                                                                                                   | IS GC+UCO                |                   |                    |                    |             |                     |                     |  |  |  |
| 2.2.2 0C+HCQ+10P V                                                                                                                                 | SOCTICO                  | ~~                | ~                  | ~~                 | 0.00        | 0.50 10.05 5.00     |                     |  |  |  |
| Xue Y2019                                                                                                                                          | 1                        | 30                | 2                  | 30                 | 2.3%        | 0.50 [0.05, 5.22]   |                     |  |  |  |
| Zhao L2020                                                                                                                                         | 2                        | 53                | 3                  | 53                 | 3.5%        | 0.67 [0.12, 3.83]   |                     |  |  |  |
| Subtotal (95% CI)                                                                                                                                  |                          | 83                |                    | 83                 | 5.8%        | 0.60 [0.15, 2.44]   |                     |  |  |  |
| Total events                                                                                                                                       | 3                        |                   | 5                  |                    |             |                     |                     |  |  |  |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                  | 0.00; Chi <sup>2</sup> : | = 0.04,           | df = 1 (P :        | = 0.85)            | ); I² = 0%  |                     |                     |  |  |  |
| Test for overall effect:                                                                                                                           | Z=0.71 (P                | = 0.48            | )                  |                    |             |                     |                     |  |  |  |
| 2.2.3 GC+Tac+TGP V                                                                                                                                 | S GC+Tac                 |                   |                    |                    |             |                     |                     |  |  |  |
| Li Z 2018                                                                                                                                          | 7                        | 45                | 5                  | 45                 | 5.8%        | 1.40 [0.48, 4.08]   |                     |  |  |  |
| Subtotal (95% CI)                                                                                                                                  |                          | 45                |                    | 45                 | 5.8%        | 1.40 [0.48, 4.08]   | <b>•</b>            |  |  |  |
| Total events                                                                                                                                       | 7                        |                   | 5                  |                    |             |                     |                     |  |  |  |
| Heterogeneity: Not ap                                                                                                                              | plicable                 |                   |                    |                    |             |                     |                     |  |  |  |
| Test for overall effect:                                                                                                                           | Z=0.62 (P                | = 0.54            | )                  |                    |             |                     |                     |  |  |  |
| 2.2.4 GC+TGP VS GC                                                                                                                                 |                          |                   |                    |                    |             |                     |                     |  |  |  |
| Liu W 2016                                                                                                                                         | 2                        | 43                | 12                 | 43                 | 4 4 %       | 0.17 (0.04 / 0.70)  |                     |  |  |  |
| Wang D 2015                                                                                                                                        | 11                       | 21                | .2                 | 21                 | 7 6%        | 1 38 10 70 2 721    | - <b>-</b>          |  |  |  |
| Mang 7 2013                                                                                                                                        | 2                        | 47                | 11                 | 47                 | 1 3%        | 0.18 [0.04 0.79]    |                     |  |  |  |
| Vang 2 2010<br>Vang X 2010                                                                                                                         | 2<br>0                   | 52                |                    | 52                 | 6.70        | 1 13 10 / 7 3 601   | _ <b>_</b>          |  |  |  |
| Subtotal (05% CI)                                                                                                                                  | 5                        | 164               | 0                  | 164                | 23.0%       | 0.54 [0.47, 2.03]   | -                   |  |  |  |
| Total overta                                                                                                                                       | 24                       | 104               | 20                 | 104                | 23.0%       | 0.34 [0.10, 1.01]   | -                   |  |  |  |
| Total events                                                                                                                                       | 24                       | 40.00             | 39<br>36-37        |                    | 0.0.17 - 7  | 70/                 |                     |  |  |  |
| Heterogeneity: I au-=                                                                                                                              | 0.91; Chi+               | = 13.08           | s,ατ= 3 (⊢         | <sup>2</sup> = 0.0 | 04); i* = 7 | /%                  |                     |  |  |  |
| Test for overall effect:                                                                                                                           | Z=1.11 (P                | = 0.27            | )                  |                    |             |                     |                     |  |  |  |
| Total (95% CI)                                                                                                                                     |                          | 631               |                    | 626                | 100.0%      | 0.46 [0.31, 0.70]   | ◆                   |  |  |  |
| Total events                                                                                                                                       | 93                       |                   | 187                |                    |             |                     |                     |  |  |  |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                  | 0.45; Chi <sup>2</sup> : | = 54.08           | 6, df = 17 (       | (P < 0.)           | 00001); l²  | ²= 69%              |                     |  |  |  |
| Test for overall effect: Z = 3.70 (P = 0.0002)<br>Test for subgroup differences: ChiE = 4.75 df = 3 (P = 0.19) IE = 36.9%<br>experimental control] |                          |                   |                    |                    |             |                     |                     |  |  |  |
| . correr cabaroab am                                                                                                                               | 2.011000. VI             | 4.                | 0                  | 0.                 |             | /v                  |                     |  |  |  |
| IGURE 10                                                                                                                                           |                          |                   |                    |                    |             |                     |                     |  |  |  |
| orest plot of adverse r                                                                                                                            | eactions.                |                   |                    |                    |             |                     |                     |  |  |  |
|                                                                                                                                                    |                          |                   |                    |                    |             |                     |                     |  |  |  |

of TGP in combination with different conventional therapeutic agents for the treatment of SLE by SLEDAI and these aforementioned indicators provide an evidence-based basis for the future use of TGP in the clinical management of SLE.

Twenty three RCTs involving 1,573 patients were included in this study. The results of the meta-analysis showed that TGP combined with GC and CTX could improve the SLEDAI score, C3, C4, IgA, IgG, IgM, ESR, CRP, 24 h urinary protein, recurrence rate, incidence of adverse reactions, and reduce the average daily dosage of GC and cumulative dosage of CTX. TGP combined with GC and HCQ has more advantages in improving the SLEDAI score, C3, C4, ESR, and 24 h urine protein. TGP combined with GC and TAC improved the SLEDAI score, IgA, IgG, IgM, recurrence rate, and reduced the average daily dosage of GC. TGP combined with GC was more advantageous in improving the SLEDAI score, C3, C4, IgA, IgG, ESR, CRP, 24 h urine protein, recurrence rate, and reduced the average daily dosage of GC. TGP combined with



GC and HCQ or GC and TAC or GC had no significant advantage in terms of the incidence of adverse effects compared with the control group. It shows that TGP combined with different conventional therapeutic agents can effectively and safely reduce SLE disease activity. The certainty of the evidence ranges from low to moderate.

This study strictly follows the PRISMA and GRADE methodology and reports a systematic review of the evidence on the efficacy and safety of TGP in combination with different conventional therapeutic agents for the treatment of SLE. However, our review still has certain limitations: 1) many of the included studies did not describe the implementation process of the randomization protocol, and none of them stated whether the allocationconcealed dosing method was used or whether it was blinded, 2) the efficiency, adverse reaction, and recurrence rate were used as outcome observation indicators, but the evaluation

TABLE 2 GRADE Summary of outcomes of TGP combined with different Western medicines for SLE.

| Outcome                                         | Anticipated a<br>(95% CI) | absolute effect             | Relative<br>effect (95% CI)  | No.<br>of participants<br>(studies) | Certainty<br>of evidence<br>(GRADE)   |
|-------------------------------------------------|---------------------------|-----------------------------|------------------------------|-------------------------------------|---------------------------------------|
|                                                 | Risk with C               | Risk<br>difference with T   |                              |                                     |                                       |
| SLEDAI                                          | mean<br>(2.88–6.84)       | SMD 1.6<br>(1.99 and 1.22)  | -                            | 1,185 (18 RCTs)                     | $\oplus \oplus \oplus O^1 < Moderate$ |
| SLEDAI (GC + CTX + TGP)                         | mean<br>(2.88–6.37)       | SMD 1.98<br>(2.5 and 1.46)  | -                            | 712 (12 RCTs)                       | $\oplus \oplus OO^{1, 2} < Low$       |
| SLEDAI (GC + HCQ + TGP)                         | mean<br>(6.08–6.08)       | SMD 0.65<br>(1.04 and 0.26) | -                            | 106 (1 RCT)                         | $\oplus \oplus \oplus O^1 < Moderate$ |
| SLEDAI (TGP + GC + TAC)                         | mean<br>(6.16–6.17)       | SMD 0.94<br>(1.53 and 0.34) | -                            | 154 (2 RCTs)                        | $\oplus \oplus OO^{1, 2} < Low$       |
| SLEDAI (TGP + GC)                               | mean<br>(4.71–6.84)       | SMD 0.69<br>(1.08 and 0.29) | -                            | 107 (2 RCTs)                        | $\oplus \oplus \oplus O^1 < Moderate$ |
| Incidence of adverse reactions                  | 30 per 100                | 14 per 100 (9 and 21)       | RR = 0.46<br>(0.31 and 0.70) | 1,257 (18 RCTs)                     | $\oplus \oplus OO^{1, 2} < Low$       |
| Incidence of adverse reactions (TGP + GC + CTX) | 41 per 100                | 13 per 100 (9 and 18)       | RR 0.31 (0.22, 0.43)         | 549 (9 RCTs)                        | $\oplus \oplus OO^{1, 2} < Low$       |
| Incidence of adverse reactions (TGP + GC + HCQ) | 6 per 100                 | 4 per 100 (1 and 15)        | RR 0.60 (0.15, and 2.44)     | 166 (2 RCTs)                        | $\oplus \oplus \oplus O^1 < Moderate$ |
| Incidence of adverse reactions (TGP + GC + TAC) | 11 per 100                | 16 per 100 (5 and 45)       | RR 1.40 (0.48, 4.08)         | 90 (1 RCT)                          | $\oplus \oplus \oplus O^1 < Moderate$ |
| Incidence of adverse reactions (TGP + GC)       | 26 per 100                | 4 per 100 (2 and 12)        | RR 0.17<br>(0.06 and 0.48)   | 180 (2 RCTs)                        | $\oplus \oplus OO^{1, 2} < Low$       |
| Recurrence rate                                 | 31 per 100                | 9 per 100 (6 and 13)        | RR 0.28 (0.19, and 0.41)     | 359 (10 RCTs)                       | $\oplus \oplus \oplus O^1 < Moderate$ |

<sup>1</sup>There is a risk of bias in the implementation of random methods.

 $^2\mathrm{I}^2{\geq}50\%$  with large heterogeneity.

criteria were inconsistent, 3) the baseline information of included patients, e.g., age range, cause of disease, extent of SLEDAI, and the duration of treatment had large deviations, 4) the sample size of individual studies was small, 5) potential causal relationships between adverse reactions and TGP were not assessed. In conclusion, the quality of the included studies is relatively low. Therefore, larger and more rigorous RCTs focusing on TGP for the treatment of SLE are needed to verify.

future studies, following For we make the recommendations. First, clinical studies should use enhanced methodological quality, such as proper application of randomization, allocation concealment, and blinding. Second, the design of clinical study protocols is equally important. Investigators should refer to the latest guidelines for controlled trials of SLE treatment. Third, the selection of outcome indicators in clinical studies should clearly specify the criteria for the evaluation of efficacy and adverse effects. Overall, future studies should focus on adopting standardized clinical study designs as a way to improve the methodological and reporting quality of systematic evaluation or meta-analysis, so as to make the conclusion more clinically applicable and provide reliable evidence for clinicians.

## **5** Conclusion

According to the current limited evidence, TGP as an adjuvant therapy, combined with conventional therapeutic agents, may effectively and safely reduce disease activity in SLE patients. Therefore, TGP may become a promising complementary therapy whose long-term efficacy should be explored in the future. However, due to the low quality of both the methods and evidence, we should be cautious about the conclusion drawn from the included studies.

## Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding author.

## References

# Author contributions

GXH, LSW, and LH designed the study, GXH and LCQ searched and screened the literature, WSW and CYM extracted data from the included literature, LH resolved differences, GXH and WSW assessed the bias of risk, LSW and GHT assessed the certainly of evidence, the article was written by GXH, LSW, and LH revised the paper.

## Funding

This study was funded by the National Natural Science Foundation of China (No. 81874465, 81573952), Henan Province Traditional Chinese Medicine Special Research Project (No. 20-21ZYZD16 and 20-21JDZY010), and Research and Innovation Project of Henan University of Chinese Medicine (No.2021KYCX003), Henan Province Science and Technology Research Project (No.222102310392), Henan Provincial Science and Technology Program Joint Fund Project (No. 222301420089).

# **Conflict of interest**

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

# Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

## Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar. 2022.932874/full#supplementary-material

Aringer, M., Costenbader, K., Daikh, D., Brinks, R., Mosca, M., Ramsey-Goldman, R., et al. (2019). 2019 European League against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. *Ann. Rheum. Dis.* 78 (9), 1151–1159. doi:10.1136/annrheumdis-2018-214819

Balshem, H., Helfand, M., Schünemann, H. J., Oxman, A. D., Kunz, R., Brozek, J., et al. (2011). GRADE guidelines: 3. Rating the quality of evidence. *J. Clin. Epidemiol.* 64 (4), 401–406. doi:10.1016/j.jclinepi.2010.07.015

Bultink, I. E. M., de Vries, F., van Vollenhoven, R. F., and Lalmohamed, A. (2021). Mortality, causes of death and influence of medication use in patients with systemic lupus erythematosus vs matched controls. *Rheumatol. Oxf.* 60 (1), 207–216. doi:10. 1093/rheumatology/keaa267

Cai, H. Y., Cai, Z. H., and Shao, L. P. (2017). Therapeutic effect of total glucosides of paeony on systemic lupus erythematosus. *J. Chin. Physician* 19 (3), 445–447. doi:10.3760/cma.j.issn.1008-1372.2017.03.036

Chen, H. L., Shen, L. J., Hsu, P. N., Shen, C. Y., Hall, S. A., and Hsiao, F. Y. (2018). Cumulative burden of glucocorticoid-related adverse events in patients with systemic lupus erythematosus: Findings from a 12-year longitudinal study. J. Rheumatol. 45 (1), 83–89. doi:10.3899/jrheum.160214

Chen, J. (2013). Therapeutic effects and adverse effects of total glucosides of glycoside on systemic lupus erythematosus. *China Med. Front.* 8 (06), 28+27.

Chen, Y., Wang, L., Cao, Y., and Li, N. (2022). Total glucosides of paeonia lactiflora for safely reducing disease activity in systemic lupus erythematosus: A systematic review and meta-analysis. *Front. Pharmacol.* 13, 834947. doi:10.3389/fphar.2022.834947

Chinese Rheumatology Association (2020). 2020 Chinese guidelines for the diagnosis and treatment of systemic lupus erythematosus. *Chin. J. Intern. Med.* 03, 172–185. doi:10.3760/cma.j.issn.0578-1426.2020.03.002

Dima, A., Opris, D., Jurcut, C., and Baicus, C. (2016). Is there still a place for erythrocyte sedimentation rate and C-reactive protein in systemic lupus erythematosus? *Lupus* 25 (11), 1173–1179. doi:10.1177/0961203316651742

Durcan, L., O'Dwyer, T., and Petri, M. (2019). Management strategies and future directions for systemic lupus erythematosus in adults. *Lancet* 393 (10188), 2332–2343. doi:10.1016/s0140-6736(19)30237-5

Durcan, L., and Petri, M. (2020). The clinical and serological associations of hypocomplementemia in a longitudinal sle cohort. *Semin. Arthritis Rheum.* 50 (5), 1081–1086. doi:10.1016/j.semarthrit.2020.06.009

Fanouriakis, A., Kostopoulou, M., Alunno, A., Aringer, M., Bajema, I., Boletis, J., et al. (2019). 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. *Ann. Rheum. Dis.* 78 (6), 736–745. doi:10.1136/ annrheumdis-2019-215089

Fava, A., and Petri, M. (2019). Systemic lupus erythematosus: Diagnosis and clinical management. *J. Autoimmun.* 96, 1–13. doi:10.1016/j.jaut.2018. 11.001

Feng, P. Z., Ji, L. H., and Yu, L. L. (2017). Clinical effect study of cyclophosphamide combined with total glucosides of paeony in the treatment of systemic lupus erythematosus. *Laboratory Med Clin* 14 (2), 113–114. doi:10.3969/j. issn.1672-9455.2017.26.049

Feng, Z., Zhang, B. Q., Zhu, Y. M., Yu, B. B., Fu, L., Zhou, L. L., et al. (2019). The effectiveness and safety of total glucosides of paeony in primary Sjogren's syndrome: A systematic review and meta-analysis. *Front. Pharmacol.* 10, 550. doi:10.3389/fphar.2019.00550

Guyatt, G. H., Oxman, A. D., Kunz, R., Vist, G. E., Falck-Ytter, Y., Schünemann, H. J., et al. (2008). What is "quality of evidence" and why is it important to clinicians? *Bmj* 336 (7651), 995–998. doi:10.1136/bmj.39490.551019.BE

He, D. Y., and Dai, S. M. (2011). Anti-inflammatory and immunomodulatory effects of paeonia lactiflora pall., a traditional Chinese herbal medicine. *Front. Pharmacol.* 2, 10. doi:10.3389/fphar.2011.00010

Hochberg, M. C. (1997). Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. *Arthritis Rheum*. 40 (9), 1725. doi:10.1002/art.1780400928

Huang, S. P., Snedecor, S. J., Nanji, S., Lloyd, E., and Bell, C. F. (2022). Real-world effectiveness of belimumab in systemic lupus erythematosus: A systematic literature review. *Rheumatol. Ther.* 9 (4), 975–991. doi:10.1007/s40744-022-00454-9

Huang, Y., Wang, H., Chen, Z., Wang, Y., Qin, K., Huang, Y., et al. (2019a). Efficacy and safety of total glucosides of paeony combined with methotrexate and leflunomide for active rheumatoid arthritis: A meta-analysis. *Drug Des. devel. Ther.* 13, 1969–1984. doi:10.2147/dddt.S207226

Huang, Y., Wang, H., Chen, Z., Wang, Y., Qin, K., Huang, Y., et al. (2019b). Synergistic and hepatoprotective effect of total glucosides of paeony on ankylosing spondylitis: A systematic review and meta-analysis. *Front. Pharmacol.* 10, 231. doi:10.3389/fphar.2019.00231

Iaccarino, L., Bartoloni, E., Carli, L., Ceccarelli, F., Conti, F., De Vita, S., et al. (2015). Efficacy and safety of off-label use of rituximab in refractory lupus: Data from the Italian multicentre registry. *Clin. Exp. Rheumatol.* 33 (4), 449–456.

Jiang, H., Li, J., Wang, L., Wang, S., Nie, X., Chen, Y., et al. (2020). Total glucosides of paeony: A review of its phytochemistry, role in autoimmune diseases, and mechanisms of action. *J. Ethnopharmacol.* 258, 112913. doi:10.1016/j.jep.2020. 112913

Jorge, A. M., Lu, N., Zhang, Y., Rai, S. K., and Choi, H. K. (2018). Unchanging premature mortality trends in systemic lupus erythematosus: A general populationbased study (1999-2014). *Rheumatol. Oxf.* 57 (2), 337–344. doi:10.1093/ rheumatology/kex412

Kao, J. H., Lai, T. T., Lu, C. H., Lan, T. Y., Hsieh, Y. T., Shen, C. Y., et al. (2022). Characteristics and potential risk factors of hydroxychloroquine retinopathy in patients with systemic lupus erythematosus: Focusing on asian population. *J. Ocul. Pharmacol. Ther.* doi:10.1089/jop.2022.0060 Knight, J. H., Howards, P. P., Spencer, J. B., Tsagaris, K. C., and Lim, S. S. (2016). Characteristics related to early secondary amenorrhoea and pregnancy among women diagnosed with systemic lupus erythematosus: An analysis using the GOAL study. *Lupus Sci. Med.* 3 (1), e000139. doi:10.1136/lupus-2015-000139

Kwon, H. H., Bang, S. Y., Won, S., Park, Y., Yi, J. H., Joo, Y. B., et al. (2018). Synergistic effect of cumulative corticosteroid dose and immunosuppressants on avascular necrosis in patients with systemic lupus erythematosus. *Lupus* 27 (10), 1644–1651. doi:10.1177/0961203318784648

Li, M., Li, J., Wang, J., Li, Y., and Yang, P. (2018a). Serum level of anti- $\alpha$ -enolase antibody in untreated systemic lupus erythematosus patients correlates with 24-hour urine protein and D-dimer. *Lupus* 27 (1), 139–142. doi:10.1177/0961203317721752

Li, M., Zhang, W., Leng, X., Li, Z., Ye, Z., Li, C., et al. (2013). Chinese SLE treatment and research group (CSTAR) registry: I. Major clinical characteristics of Chinese patients with systemic lupus erythematosus. *Lupus* 22 (11), 1192–1199. doi:10.1177/0961203313499086

Li, X. Q., and Zheng, L. Y. (2020). Clinical efficacy of cyclophosphamide combined with total glucosides of paeony in the treatment of systemic lupus erythematosus. *Pract. Clin. Appl. Integr. Tradit. Chin.* 20 (15), 123–124. doi:10. 13638/j.issn.1671-4040.2020.15.063

Li, Y. M. (2013). Clinical effects of Total Glycosides of Paeony in the adjuvant treatment of systemic lupus erythematosus. *J. Clin. Ration. Drug Use* 6 (22), 68–69. doi:10.3969/j.issn.1674-3296.2013.22.054

Li, Z., Yang, H. J., and Xie, Q. (2018b). Clinical study of total glucosides of paeony capsule combined with Tacrolimus in the treatment of systemic lupus erythematosus. *Drugs & Clin.* 33 (6), 1513–1517. doi:10.7501/j.issn.1674-5515.2018.06.050

Lin, G. Y., and Liu, C. X. (2016). Observation of the therapeutic effects and adverse effects of Total Glycosides of Paeony on systemic lupus erythematosus. *North Pharm.* 13 (2), 155.

Liu, W., Cai, M., Wang, X., and Zhou, F. (2016). Magnetite-loaded thermosensitive nanogels for bioinspired lubrication and multimodal friction control. ACS Macro Lett. 5 (4), 144–148. doi:10.1021/acsmacrolett.5b00860

Luo, J., Jin, D. E., Yang, G. Y., Zhang, Y. Z., Wang, J. M., Kong, W. P., et al. (2017). Total glucosides of paeony for rheumatoid arthritis: A systematic review of randomized controlled trials. *Complement. Ther. Med.* 34, 46–56. doi:10.1016/j. ctim.2017.07.010

Martins, N. F. E., Seixas, M. I., Pereira, J. P., Costa, M. M., and Fonseca, J. E. (2017). Anti-müllerian hormone and ovarian reserve in systemic lupus erythematosus. *Clin. Rheumatol.* 36 (12), 2853–2854. doi:10.1007/s10067-017-3797-0

Mu, L., Hao, Y., Fan, Y., Huang, H., Yang, X., Xie, A., et al. (2018). Mortality and prognostic factors in Chinese patients with systemic lupus erythematosus. *Lupus* 27 (10), 1742–1752. doi:10.1177/0961203318789788

Olfat, M., Silverman, E. D., and Levy, D. M. (2015). Rituximab therapy has a rapid and durable response for refractory cytopenia in childhood-onset systemic lupus erythematosus. *Lupus* 24 (9), 966–972. doi:10.1177/0961203315578764

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *Bmj* 372, n71. doi:10.1136/bmj.n71

Peng, H. (2018). Clinical effect of cyclophosphamide combined with total glucosides of paeony in the treatment of systemic lupus erythematosus. *Med. Front.* 8 (15), 148–149. doi:10.3969/j.issn.2095-1752.2018.15.120

Petri, M., Orbai, A. M., Alarcón, G. S., Gordon, C., Merrill, J. T., Fortin, P. R., et al. (2012). Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. *Arthritis Rheum.* 64 (8), 2677–2686. doi:10.1002/art.34473

Rees, F., Doherty, M., Grainge, M. J., Lanyon, P., and Zhang, W. (2017). The worldwide incidence and prevalence of systemic lupus erythematosus: A systematic review of epidemiological studies. *Rheumatol. Oxf.* 56 (11), 1945–1961. doi:10.1093/rheumatology/kex260

Steiger, S., Ehreiser, L., Anders, J., and Anders, H. J. (2022). Biological drugs for systemic lupus erythematosus or active lupus nephritis and rates of infectious complications. Evidence from large clinical trials. *Front. Immunol.* 13, 999704. doi:10.3389/fimmu.2022.999704

Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., et al. (2019). RoB 2: A revised tool for assessing risk of bias in randomised trials. *Bmj* 366, 14898. doi:10.1136/bmj.14898

Sun, X. W. (2013). Evaluation of total glucosides of paeony combined with lowdose hormone in the treatment of 96 cases of systemic lupus erythematosus. *J. Pract. Clin. Med.* 17 (13), 124–125. doi:10.7619/jcmp.201313045

Tamirou, F., Husson, S. N., Gruson, D., Debiève, F., Lauwerys, B. R., and Houssiau, F. A. (2017). Brief report: The euro-lupus low-dose intravenous

cyclophosphamide regimen does not impact the ovarian reserve, as measured by serum levels of anti-müllerian hormone. *Arthritis Rheumatol.* 69 (6), 1267–1271. doi:10.1002/art.40079

Wang, D., and Wang, S. S. (2015). Therapeutic effect of total glucosides of paeony on systemic lupus erythematosus and its effect on CD11a expression. *China J. Lepr. Skin. Dis.* 11, 659–661.

Wang, Y., Han, M., Pedigo, C. E., Xie, Z. M., Wang, W. J., and Liu, J. P. (2021). Chinese herbal medicine for systemic lupus erythematosus: A systematic review and meta-analysis of randomized, placebo-controlled trials. *Chin. J. Integr. Med.* 27 (10), 778–787. doi:10.1007/s11655-021-3497-0

Wang, Z. J., Wang, J., and Li, P. L. (2013). Clinical effect analysis of total glucosides of paeony in the treatment of systemic lupus erythematosus. *Zhejiang Clin. Med.* 15 (3), 369–371.

Wu, Q., Yu, H. H., Luo, R., He, J. T., Luo, S. W., and Yu, Q. (2022). Total glucosides of paeony improve renal injury in mice with systemic lupus erythematosus by regulating TLR9/MyD88/NF-KB pathway. *Chin. J. Exp. Tradit. Med. Formulae* 28 (12), 103–110. doi:10.13422/j.cnki.syfjx.20221239

Wu, X., Shi, S., Chen, Q. Y., and Jiao, L. J. (2020). Effects of total glucosides of paeony combined with cytoxan in the treatment of systemic lupus erythematosus in CD4+CD25+ T cell in peripheral blood. [Effects of total glucosides of paeony combined with cytoxan in the treatment of systemic lupus erythematosus in CD4+CD25+T cell in peripheral blood]. *Chin. J. Dermatovenereol. Integr. Tradit. West. Med.* 19 (1), 52–56.

Xiang, S. (2020). Cyclophosphamide combined with total glucosides of paeony in the treatment of systemic lupus erythematosus. *China Health Care Nutr.* 30 (25), 282.

Xu, F. (2015). Clinical effect of cyclophosphamide combined with total glucosides of paeony in the treatment of systemic lupus erythematosus. *Shaanxi Med. J.* 44 (8), 1081–1082. doi:10.3969/j.issn.1000-7377.2015.08.075

Xu, Y. (2020). Clinical efficacy and safety of cyclophosphamide combined with total glucosides of paeony in the treatment of systemic lupus erythematosus. *China Med. Guide* 18 (10), 83–84. doi:10.15912/j.cnki.gocm.2020.10.036

Xue, Y., and Lyu, Y. X. (2019). Clinical observation of total glucosides of paeony capsule in the treatment of mild systemic lupus erythematosus. *Guangming J. Chin. Med.* 34 (13), 2022–2023. doi:10.3969/j.issn.1003-8914. 2019.13.032

Yang, M. J. (2016). Study of the efficacy of cyclophosphamide in combination with total glycosides of paeony in the treatment of patients with systemic lupus erythematosus. *Psychologist* 22 (24), 41–42.

Yang, S. J., Feng, A. J., Sun, Y., Zhang, L., Bo, F. M., and Li, L. J. (2021). Research progress on mechanism and pharmacological activities of total glucosides of paeony. *Chin. J. Mod. Appl. Pharm.* 38 (13), 1627–1633. doi:10.13748/j.cnki. issn1007-7693.2021.13.015

Yang, X., and Li, H. P. (2019). Clinical efficacy and immune function of total glucosides of paeony in patients with systemic lupus erythematosus. *World Chin. Med.* 14 (5), 1270–1273. doi:10.3969/j.issn.1673-7202.2019.05.045

Yu, H. Y., Peng, J. H., and Ye, X. Y. (2019). Clinical efficacy and side effects of cyclophosphamide combined with total glucosides of paeony on systemic lupus erythematosus. *Shanghai Med. Pharm.* 40 (9), 35–37. doi:10.3969/j.issn.1006-1533. 2019.09.012

Zhang, L., and Wei, W. (2020). Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. *Pharmacol. Ther.* 207, 107452. doi:10.1016/j.pharmthera.2019.107452

Zhang, Y. (2020). Evaluation of total glucosides of paeony capsule combined with Tacrolimus in the treatment of systemic lupus erythematosus. *Contemp. Med. Forum* 18 (6), 146–147. doi:10.3969/j.issn.2095-7629.2020.06.115

Zhao, L., Huang, J. M., and Xuan, X. (2020). Clinical observation of total glucosides of paeony in adjuvant treatment of systemic lupus erythematosus. *J. Pract. Tradit. Chin. Intern. Med.* 34 (8), 89–91. doi:10.13729/j.issn.1671-7813. Z20200543

Zhu, Y. H., and Wei, C. H. (2009). Clinical observation of total glucosides of paeony combined with low-dose hormone in the treatment of 35 cases of systemic lupus erythematosus. *Shandong Med. J.* 49 (5), 100–101. doi:10.3969/j.issn.1002-266X.2009.05.055