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Stroke remains one of the leading reasons of mortality and physical disability

worldwide. The treatment of cerebral ischemic stroke faces challenges, partly

due to a lack of effective treatments. In this study, we demonstrated that

autophagy was stimulated by transient middle cerebral artery occlusion/

reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation

(OGD/R). Treatment with (−)-epigallocatechin-3-gallate (EGCG), a bioactive

ingredient in green tea, was able to mitigate cerebral ischemia/reperfusion

injury (CIRI), given the evidence that EGCG administration could reduce the

infarct volume and protect poststroke neuronal loss in MCAO/R mice in vivo

and attenuate cell loss in OGD/R-challenged HT22 cells in vitro through

suppressing autophagy activity. Mechanistically, EGCG inhibited autophagy

via modulating the AKT/AMPK/mTOR phosphorylation pathway both in vivo

and in vitro models of stroke, which was further confirmed by the results that

the administration of GSK690693, an AKT/AMPK inhibitor, and rapamycin, an

inhibitor of mTOR, reversed aforementioned changes in autophagy and AKT/

AMPK/mTOR signaling pathway. Overall, the application of EGCG relieved CIRI

by suppressing autophagy via the AKT/AMPK/mTOR phosphorylation pathway.
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Introduction

The world is facing an epidemic of stroke. Of all strokes, cerebral ischemic stroke

(CIS) accounts for almost 87% (Virani et al., 2021) with a high risk of mortality and severe

long-term disability, placing an increasing economic burden on family and society (Feigin

et al., 2018). Tissue plasminogen activator (tPA) is the only supported pharmacological

thrombolytic medicine because of its ability to recanalize arteries and improve clinical
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outcomes (National Institute of Neurological Disorders and

Stroke rt-PA Stroke Study Group, 1995). Restoration of the

blood supply into the ischemic stroke region may also induce

cerebral ischemia/reperfusion injury (CIRI) (Lim et al., 2021).

Moreover, only a shortage of patients with CIS benefits from tPA

treatment due to the narrow therapeutic time window, tendency

to transform into a hemorrhage, and other side effects (Bansal

et al., 2013; Yeo et al., 2013; Bhaskar et al., 2018). Thus, there is a

compelling need to explore more effective therapies to promote

ischemic tissue recovery and ameliorate patient prognosis after

stroke.

In the pathophysiological process of stroke, several types of

neuronal death can be triggered, involving autophagy,

apoptosis, necrosis, necroptosis, and pyroptosis (He et al.,

2020). Among them, autophagy has been extensively studied

in CIRI over the past decades. As a regulated intracellular

degradation process, autophagy is demonstrated to maintain

normal cellular functions and cellular homeostasis and is

involved in some neurodegenerative diseases by degrading

and recycling dysfunctional or damaged organelles or

proteins (Srivastava et al., 2017; Wang P. et al., 2018; Zhang

et al., 2019). Basal autophagic activity exists in cells under

physiological conditions, while the process turns more active

induced by various stress events including CIRI and plays

complex roles (Wirawan et al., 2012). Some studies

demonstrated that the activation of autophagy ameliorated

CIRI (Sun et al., 2020b; Xu et al., 2020; Zhang B. et al.,

2020; Chen et al., 2021; Jin et al., 2021; Yihao et al., 2021;

Zha et al., 2021), while more research supported that the

inhibition of autophagy activation exerted a neuroprotective

effect in brain stroke (Sun et al., 2020a; Zhang et al., 2020b; Li

and Huang, 2020; Mei et al., 2020; Shi et al., 2020; Wang L. et al.,

2020; Gu et al., 2021; Liu N. et al., 2021; Shao et al., 2021; Wang

C. et al., 2021; Xu et al., 2021; Yao et al., 2021; Zhang et al., 2021;

Zhao et al., 2021). Obviously, the controversial dual role of the

induction of autophagy in the ischemic brain is still a hot topic

in research and remains to be further investigated.

There is a growing focus on treating stroke with natural

medicines (Jahan et al., 2018), which could assist the body to

regain and retain internal balance by providing external stimuli

(Tao et al., 2020). Green tea is a celebrated traditional herbal

medicine and is popular in the world, with many potentially

beneficial effects on human health for its anti-cancer and anti-

inflammatory properties (Saeed et al., 2017; Musial et al., 2020).

(−)-Epigallocatechin-3-gallate (EGCG) is the most abundant and

active polyphenol, accounting for 50%–80% of all catechins, and

is believed to make a major contribution to the various benefits of

green tea (Prasanth et al., 2019). Accumulating evidence

suggested that EGCG conferred a neuroprotective effect in the

acute and delayed states of stroke (Han et al., 2014; Zhang et al.,

2015; You, 2016; Bai et al., 2017; Wang and You, 2017; Zhang

et al., 2017; Park et al., 2020). The effect of EGCG on autophagy

has been described in myocardial ischemia/reperfusion injury

(MIRI) (Xuan and Jian, 2016; Zhang C. et al., 2020; Liu P. et al.,

2021) and some other diseases (Musial et al., 2021; Du et al., 2022;

Wang et al., 2022). However, it is not clear whether EGCG

ameliorates CIRI through modulating autophagy, which needs to

be elucidated. Moreover, there is a long way to go to translate the

success of EGCG in animal research to humans. Thus, more

consideration should be taken to further elucidate the detailed

mechanisms by which EGCG exerts a neuroprotective effect on

stroke.

Herein, we investigated the potential effect of EGCG on

neuronal injury and autophagy activation. The present results

indicated that EGCG exerted a protective effect on ischemic

injury through the suppression of autophagy, which was induced

by MCAO/R models of mice in vivo and OGD/R models of

HT22 cells in vitro. In addition, the AKT/AMPK/mTOR

phosphorylation pathway might be related to the inhibitory

influence of EGCG on autophagy activation, which remains to

be elucidated.

Materials and methods

Reagents

EGCG, anti-LC3B antibody, and anti-NeuN antibody were

purchased from Sigma-Aldrich (USA). Donkey anti-mouse IgG

secondary antibody was obtained from Life Technologies

(Thermo Fisher Scientific, United States). Phosphor-AKT

(p-AKT), AKT, p-AMPK, AMPK, p-mTOR, mTOR, beclin1,

β-actin, and GAPDH were obtained from ABclonal Technology

Co., Ltd. (China). P62/SQSTM1 polyclonal antibody was

obtained from Proteintech (China). Horseradish peroxidase

(HRP)-conjugated secondary antibody was obtained from

Cell Signaling Technology (United States). GSK690693,

rapamycin, and LY294002 were obtained from

MedChemExpress (United States). Fetal bovine serum (FBS)

and 4′,6-diamidino-2-phenylindole (DAPI) were purchased

from Gibco (Thermo Fisher Scientific, United States). The

antifade mounting medium was obtained from Solarbio

(China). RIPA lysis buffer was obtained from Beyotime

(China). Protease and phosphatase inhibitor cocktails and

NcmBlot blocking buffer were obtained from New Cell and

Molecular Biotech (China). BCA protein assay kit was obtained

from CWBIO (China). Cell Counting Kit-8 (CCK8) and ECL

chemiluminescent HRP substrate A&B were obtained from

Antgene (China). All other reagents, unless stated otherwise,

were obtained from Biosharp (China).

Experimental animals and treatments

Adult male wild-type (WT) C57BL/6 mice were obtained

from BeijingWeitong Lihua Experimental Animal Technical Co.,
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Ltd., China. Throughout the experiment, the mice were kept in

the SPF conditions in the Laboratory Animal Center, having food

and water freely and avoiding sound and light stimulation.

MCAO/R model was established as our previous protocols

(Ge et al., 2022). After anesthetizing intraperitoneally (i.p.) in

mice (8–12 weeks old, 23–26 g), a 6–0 silicone-coated nylon

monofilament was used to obstruct the origin of the MCA to

induce focal cerebral ischemia and establish MCAO model.

Reperfusion was achieved by gently withdrawing the

monofilament after 1 h of occlusion. Body temperature was

sustained at 37 ± 0.5°C with an electric blanket until the mice

had recovered from surgery. After waking from anesthesia, mice

were housed in their cages with conditions as before. Sham group

mice underwent the same surgical procedures as MCAO/R

models without the obstruction of MCA. The experiment was

approved by the Institutional Animal Care andUse Committee at

Tongji Medical College, Huazhong University of Science and

Technology.

Experimental groups were distributed randomly. Reagents

were injected slowly (0.1 μl/min) into the right ventricle

(1.5 mm laterally, 0.6 mm posteriorly, 3.1 mm deep from the

anterior fontanelle). Mice were randomly divided into seven

groups: 1) Sham group: mice received a surgical operation

without MCAO/R; 2) MCAO/R group: mice received

MCAO/R; 3) MCAO/R + vehicle group: mice were subjected

to MCAO/R followed by vehicle (4 μl) injection 1 h later; 4)

MCAO/R + EGCG group: mice were subjected to MCAO/R

followed by EGCG (1 μg/μl, 4 μl) injection 1 h later; 5) vehicle +

MCAO/R + EGCG group: the vehicle (4 μl) was injected 10 min

before MCAO/R, followed by EGCG (1 μg/μl, 4 μl) injection 1 h

later; 6) GSK690693 + MCAO/R + EGCG group: GSK690693

(10 μM, 4 μl) was injected 10 min before MCAO/R, followed by

EGCG (1 μg/μl, 4 μl) injection 1 h later; and 7) rapamycin +

MCAO/R + EGCG group: rapamycin (10 μM, 4 μl) was injected

10 min before MCAO/R, followed by EGCG (1 μg/μl, 4 μl)

injection 1 h later.

Cell culture and treatments

HT22 cells were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) with glucose, added with 10% FBS and 1%

penicillin–streptomycin solution at 37°C in 95% air and 5%

CO2. To simulate CIS in vitro, HT22 cells were challenged by

OGD/R. In brief, HT22 cells were cultured in DMEM with no

glucose and FBS at 37°C in 1% O2, 5% CO2, and 94% N2 for

12 h and then reoxygenated in the aforementioned normal

growth environment. Vehicle and EGCG (20 μM) were

added to HT22 cells at the time of reoxygenation and

incubated for 2 and 4 h. LY294002 (25 μM), GSK690693

(25 μM), and rapamycin (25 μM) were added into

HT22 cells at 0.5 h before the administration of EGCG

and incubated for 2 h.

2, 3, 5-Triphenyltetrazolium chloride
(TTC) staining

On post-surgery day (PSD) 1, infarct volume was assessed by

TTC staining. Mice were anesthetized and then killed by the

cervical dislocation method. The brains were dissected carefully

and rapidly and refrigerated for 20 min at −20°C. After that, each

brain was cut coronally into 2-mm-thick thin slices. And slices

were put into a 6-well plate and immersed in 2% TTC for 15 min

at 37°C. Gentle stirring ensured even staining exposure. Viable

brain tissue was stained into deep red by TTC staining, while

infarcted tissues kept the original pale color. Slices were fixed in

4% paraformaldehyde in phosphate buffer overnight and then

recorded with pictures. An ImageJ analysis system (Version:

2.1.0) was used to quantify the infarct volume and total brain

volume. The cerebral infarct volume was calculated as the

percentage of the infarcted tissue volume to the total brain

tissue volume.

Immunofluorescence staining

On PSD 1, total brain tissues were firstly perfused with

saline solution, and then replaced the saline with 4%

paraformaldehyde in phosphate buffer and continued

perfusing. Afterward, the brains were dissected quickly and

then fixed in 4% paraformaldehyde overnight at 4°C. Going

through dehydration, transparency, waxing, and embedding

successively, the fixed brains were then sliced into 4-μm-thick

coronal slices. After dewaxed and antigen repaired at high

temperature and high pressure, the sections were incubated in

10% donkey serum at room temperature for 20 min; next, the

sections were incubated with primary antibodies, light chain 3

(LC3) antibody (1:200), and NeuN antibody (1:100),

overnight at 4°C. After washing with phosphate-buffered

saline (PBS) three times, slices were treated with donkey

anti-mouse IgG secondary antibody (1:400) at room

temperature in a dark place for 30 min, and next washed

with PBS three times. DAPI was used to counterstain nuclei.

The sections were finally observed and pictured under

fluorescence photography and then analyzed by utilizing

ImageJ software.

Western blotting assay

The Western blotting assay was completed as our previous

protocols (Ge et al., 2022). After the homogenization of the

ischemic brain tissue, the BCA Protein Assay Kit was used to

quantify the protein concentration of samples and then

adjusted the protein concentration to 2 μg/μl with the RIPA

lysis buffer. Proteins were analyzed by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and turned
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onto PVDF membranes. After blocking with an NcmBlot

blocking buffer for 20 min, the membranes are incubated

with primary antibodies, phosphor-AKT (p-AKT) (1:1,000),

AKT (1:1,000), p-AMPK (1:1,000), AMPK (1:1,000), p-mTOR

(1:1,000), mTOR (1:1,000), p62 (1:1,000), LC3 (1:1,000),

beclin1 (1:1,500) β-actin (1:5,000), and GAPDH (1:5,000)

overnight at 4°C. After washing, the membranes were

incubated with the corresponding horseradish peroxidase

(HRP)-conjugated secondary antibody (1:5,000) for 1.5 h at

room temperature. Chemiluminescence detection was carried

out with ECL chemiluminescent HRP substrate A&B and

captured through an imager machine. Band optical intensity

was quantified with ImageJ software.

Cell viability assay

The cell viability of HT22 cells was assessed with a cell

counting kit (CCK-8) by the manufacturer’s protocols.

Statistical analysis

Multiple comparisons were performed by a one-way analysis

of variance (ANOVA) followed by Tukey’s multiple comparison

tests for multiple comparisons (GraphPad Prism statistics

software version 9.0.2, La Jolla, CA, United States). A p-value

of <0.05 was considered statistically significant.

FIGURE 1
EGCG treatment mitigated cerebral ischemia/reperfusion injury (CIRI) in the mice model of middle cerebral artery occlusion/reperfusion
(MCAO/R). (A,B) 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining assay was performed to evaluate the infarct volume. (C,D) Immunofluorescent
staining for NeuN. Data were shown in the semi-brain from the ipsilateral side of surgery on post-surgery day (PSD) 1 (scale bar = 1,000 μm). Each
experimental datum was presented as mean ± standard deviation (n = 3 animals per group). *p < 0.05, **p < 0.01, ***p < 0.001 versus the
specified group.
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Results

EGCG mitigated CIRI in MCAO/R mice

To determine the neuroprotective capacity of EGCG in

stroke, TTC staining was conducted to evaluate the volume of

infarction on PSD 1. TTC staining results showed that, compared

with the sham group, the volume of infarction in the MCAO/R

group was larger obviously, suggesting a severe brain ischemia

injury, whereas administration with EGCG 1 h after reperfusion

evidently decreased the infarct volume of MCAO/R mice

(Figures 1A,B), indicating that treatment with EGCG relieved

brain stroke injury in mice, which was similar to the previous

research (Choi et al., 2004; Han et al., 2014; Zhang et al., 2015;

Park et al., 2020).

In addition, to further verify the neuroprotective role of

EGCG in stroke, immunofluorescent staining for the level of

NeuN was conducted to evaluate neuron loss on PSD 1

(Wang H.-K. et al., 2021). As presented in Figures 1C,D, a

semi-brain section screening was used, and the results

showed that ischemia intrusion distinctly reduced the

number of cells with immunoreactive NeuN, and this

result was prevented by EGCG administration, indicating

that EGCG treatment protected poststroke neuronal loss,

which was consistent with the TTC results (Figures 1A,B).

Thus, these data suggested that EGCG owned a

neuroprotective potential in mice challenged with

MCAO/R.

EGCG mitigated CIRI through attenuating
autophagy

After confirming the protective potential of EGCG in MCAO/

R mice, the autophagic activity after stroke and the effect of EGCG

on MCAO/R-induced autophagy were then examined by

FIGURE 2
EGCG inhibited middle cerebral artery occlusion/reperfusion (MCAO/R)-induced autophagy. (A,B) The expression of LC3 was detected by
immunofluorescent staining assay. Data were shown in the cortical penumbra area from the ipsilateral side of surgery on post-surgery day (PSD) 1
(scale bar = 20 μm). (C) The expression of beclin1 (D) and p62 (E)was assessed bywestern blotting assay. Each experimental datumwas presented as
mean ± standard deviation (n = 3 animals per group). *p < 0.05, **p < 0.01 versus the specified group.
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evaluating the expression of autophagy-associated proteins, LC3,

beclin1, and p62. The expression of LC3, a specific marker for

autophagy, was measured by immunofluorescent staining. As

shown in Figures 2A,B, in comparison with the sham group,

the expression of LC3 protein in the cortical penumbra area

markedly increased after stroke, while EGCG administration

considerably attenuated MCAO/R-induced increase in the

LC3 level. Meanwhile, beclin1 and p62 protein levels were

evaluated by Western blotting assay. As illustrated in Figures

2C–E, compared with the sham group, the expression level of

beclin1 significantly increased on PSD 1, while the elevated

expression of beclin1 induced by MCAO/R was prevented by

EGCG treatment. In addition, the p62 level decreased after stroke,

and the MCAO/R-induced down-regulated expression of p62 was

also prevented by EGCG administration. The above results

indicated that autophagy was activated by stroke, and EGCG

was able to counteract the activation of poststroke autophagy to

exert a neuroprotective effect.

EGCG modulated the AKT/AMPK/mTOR
phosphorylation pathway in CIRI

To explore the potential molecular mechanisms of EGCG

in stroke, we determined the effect of EGCG on AKT, p-AKT,

AMPK, p-AMPK, mTOR, and p-mTOR in the ischemic

hemisphere brain tissue by Western blotting assay. As

shown in Figure 3, in comparison with the sham group, the

expression of p-AKT, p-AMPK, and p-mTOR was remarkably

reduced on PSD 1, whereas treatment with EGCG prevented

MCAO/R caused the reduced level of p-AKT, p-AMPK, and

p-mTOR. And AKT, AMPK, and mTOR had no change. These

findings suggested that the AKT/AMPK/mTOR

phosphorylation pathway was involved in the underlying

mechanisms of EGCG to exert a neuroprotective effect in

stroke.

GSK690693 and rapamycin reversed the
effect of EGCG on ischemic brain tissue

GSK690693, an AKT/AMPK inhibitor (Rhodes et al., 2008;

Levy et al., 2009; Altomare et al., 2010), and rapamycin, the

inhibitor of mTOR (Edwards and Wandless, 2007), were used to

further confirm that phosphorylated AKT, AMPK, and mTOR

participated in the anti-autophagy effect of EGCG to protect

against ischemic brain damage. As illustrated in Figures 4A–D

and Supplementary Figure S1, administration with

GSK690693 and rapamycin prevented EGCG-induced elevated

levels of p-AKT, p-AMPK, and p-mTOR in MCAO/R mice. And

AKT, AMPK, and mTOR had no change. These data verified the

reversing effect of GSK690693 on p-AKT, p-AMPK, and

rapamycin on p-mTOR in MCAO/R models applicated

with EGCG.

After p-AKT, p-AMPK, and p-mTOR were blocked by

inhibitors in MCAO/R mice treated with EGCG, autophagy-

related proteins were measured. LC3 was measured by

immunofluorescence staining. As presented in Figures 4E,G,

the EGCG treatment-induced down-regulated expression of

LC3 level in MCAO/R mice was prevented by rapamycin

FIGURE 3
EGCG modulated the AKT/AMPK/mTOR phosphorylation pathway in middle cerebral artery occlusion/reperfusion (MCAO/R) mice. (A) The
expression of p-AKT and AKT (B), p-AMPK and AMPK (C), p-mTOR and mTOR (D)was assessed by Western blotting assay. Each experimental datum
was presented as mean ± standard deviation (n = 3 animals per group). *p < 0.05, **p < 0.01, ***p < 0.001 versus the specified group.
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and GSK690693 precondition. In addition, beclin1 and

p62 were measured by Western blotting assay. As illustrated

in Figures 4F,H,I and Supplementary Figure S1, both

GSK690693 and rapamycin precondition were able to

prevent the EGCG-induced decreased expression of

beclin1 and the increased expression of p62 level in MCAO/

R models. Accordingly, these data favored the point that

autophagy-related proteins could be influenced after the

AKT/AMPK/mTOR phosphorylation pathway was inhibited,

further indicating that EGCG inhibited MCAO/R-induced

autophagy in the AKT/AMPK/mTOR phosphorylation-

dependent manner.

EGCG protected HT22 cells from OGD/
R-challenged damage

After OGD/R invasion, immunofluorescent staining for NeuN

was examined to confirm the protective role of EGCG on HT22 cells

challenged by OGD/R. As presented in Figures 5A,C, the OGD/R

challenge markedly reduced the number of HT22 cells with

immunoreactive NeuN, but this effect was prevented by EGCG

treatment, and the number of HT22 cells with immunoreactive

NeuN was more in 4 h than in 2 h of EGCG incubation. Figures

5B,D show the cell pictures in different groups, and the number of

HT22 cells was assessed by ImageJ software. And Figures 5B,D also

FIGURE 4
GSK690693 and rapamycin reversed the effect of EGCG in the ischemic brains of middle cerebral artery occlusion/reperfusion (MCAO/R)mice.
(A) The expression of p-AKT and AKT (B), p-AMPK and AMPK (C), p-mTOR and mTOR (D) was assessed by Western blotting assay. (E,G) The
expression of LC3 was detected by immunofluorescent staining assay. Data were shown in the cortical penumbra area from the ipsilateral side of
surgery on post-surgery day (PSD) 1. (F) The expression of beclin1 (H) and p62 (I) was assessed by Western blotting assay (scale bar = 20 μm).
Each experimental datum was presented as mean ± standard deviation (n = 3 animals per group). *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001 versus the specified group.
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FIGURE 5
EGCG protected HT22 cells from oxygen-glucose deprivation/reoxygenation (OGD/R) damage. (A) Immunofluorescent staining for NeuN (C)
and LC3 (E) (scale bar = 50 μm). (B,D) The number of HT22 cells in different groups. Each experimental datum was presented as mean ± standard
deviation (n = 3 per group). *p < 0.05, **p < 0.01, ****p < 0.0001 versus HT22 group, #p < 0.05, ###p < 0.001, ####p < 0.0001 versus OGD/R
group, ¥ p < 0.05 versus OGD/R + Vehicle (2 h) group, @p < 0.05 versus OGD/R + vehicle (4 h) group.

Frontiers in Pharmacology frontiersin.org08

Wang et al. 10.3389/fphar.2022.921394

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.921394


support the protective effect of EGCG on HT22 cells, which is in

accordance with Figures 5A,C. Thus, these results supported the

ability of EGCG in protecting HT22 cells from the OGD/R challenge,

which was consistent with the results in vivo (Figures 1C,D), and the

efficacy of EGCGmight be positively related to the time of incubation.

EGCG suppressed OGD/R-induced
autophagy to protect HT22 cells

Autophagy-related proteins were examined to investigate the

autophagic activity after OGD/R and the role of EGCG on OGD/

R-induced autophagy in HT22 cells. As shown in Figures 5A,E,

6A–D, the LC3 level and beclin1 level increased and p62 level

decreased after OGD/R, suggesting that OGD/R led to autophagic

activation inHT22 cells. In addition, the OGD/R invasion-induced

up-regulated expression of LC3 and beclin1 and down-regulated

expression of p62 were prevented by EGCG treatment, which was

in accordance with the results in vivo (Figures 2A–E). Moreover,

the preventing effects of EGCG on these autophagic proteins were

more evident in 4 h than in 2 h of incubation time. Accordingly,

these results suggested that EGCG substantially inhibited the

autophagic activity to protect HT22 cells against OGD/R damage.

EGCG regulated the AKT/AMPK/mTOR
phosphorylation pathway in OGD/
R-challenged HT22 cells

To confirm the molecular mechanisms by which EGCG

exerted a protective effect on OGD/R-damaged HT22 cells,

p-AKT, p-AMPK, and p-mTOR were determined by

Western blotting assay. As presented in Figures 6A,E–G,

the expressions of p-AKT level and p-mTOR level were

remarkably reduced after OGD/R, and treatment with

EGCG prevented the OGD/R-induced down-regulated

expression of p-AKT and p-mTOR, which were consistent

with animal results (Figures 3A,B,D). In comparison, after

OGD/R invasion, p-AMPK was considerably increased, and

EGCG treatment prevented the elevated expression of

p-AMPK induced by OGD/R, which was inconsistent

with animal results (Figures 3A,C). And the preventing

effects of EGCG on these proteins of the pathway were

more evident in 4 h than in 2 h of incubation time.

Therefore, the above data indicated that the underlying

mechanisms by which EGCG protected HT22 cells from

OGD/R were related to the AKT/AMPK/mTOR

phosphorylation pathway.

FIGURE 6
EGCG suppressed autophagy and modulated the AKT/AMPK/mTOR phosphorylation pathway in oxygen-glucose deprivation/reperfusion
(OGD/R)-challenged HT22 cells. (A) The expression of LC3 II/I (B), beclin1 (C), p62 (D), p-AKT (E), p-AMPK (F), and p-mTOR (G) was assessed by
Western blotting assay. Each experimental datum was presented as mean ± standard deviation (n = 3 per group). **p < 0.01, ***p < 0.001, ****p <
0.0001 versus HT22 group, #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 versus OGD/R group.
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GSK690693 and rapamycin reversed the
effect of EGCG on OGD/R-challenged
HT22 cells

To further confirm that the phosphorylated AKT, AMPK,

and mTOR were required for the anti-autophagy effect of EGCG

to exert the protective effect in OGD/R models, we added

LY294002, GSK690693, and rapamycin to OGD/R-challenged

HT22 cells, respectively, followed by treatment with EGCG.

Autophagy-associated proteins were then examined by

Western blotting assay. As shown in Figures 7A–D, the

EGCG treatment-induced down-regulated expression of

LC3 and beclin1 and the up-regulated expression of p62 in

OGD/R models were prevented by GSK690693 and rapamycin

precondition. In addition, the LY294002 precondition was able to

prevent the EGCG treatment-induced increased expression of

p62 in OGD/R models, while the effect of LY294002 on LC3 and

beclin1 was not statistically significant. Figures 7E–G also show

that the protective effect of EGCG on OGD/R-challenged

HT22 cells can be weakened by LY294002, GSK690693, and

rapamycin precondition. Accordingly, these data suggested that

autophagy-related proteins could be influenced after the AKT/

AMPK/mTOR phosphorylation pathway was inhibited, which

was in accordance with animal experiments (Figures 4E–I),

further indicating that EGCG inhibited the OGD/R-induced

autophagy of HT22 cells in an AKT/AMPK/mTOR

phosphorylation-dependent manner.

Discussion

Stroke is largely related to disability and death all around the

world. Neuron destruction is usually found in stroke, involving

autophagy. Herein, we examined the role of EGCG on ischemic

FIGURE 7
LY294002, GSK690693, and rapamycin reversed the effect of EGCG in HT22 cells challenged by oxygen-glucose deprivation/reperfusion
(OGD/R). (A) The expression of LC3 II/I (B), beclin1 (C), and p62 (D)was assessed byWestern blotting assay. (E) The number (F) and cell viability (G) of
HT22 cells in different groups. Each experimental datum was presented as mean ± standard deviation (n = 3 per group). *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001 versus OGD/R group, #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 versus OGD/R + EGCG group.

Frontiers in Pharmacology frontiersin.org10

Wang et al. 10.3389/fphar.2022.921394

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.921394


injury in MCAO/R models of mice and OGD/R models of

HT22 cells. The results supported the point that EGCG

protected neurons against ischemic injury both in vivo and

in vitro. Furthermore, the neuroprotective effect of EGCG to

ameliorate stroke was associated with the suppression of

autophagic activation. In terms of molecular mechanisms,

EGCG modulated autophagic activity via the AKT/AMPK/

mTOR phosphorylation pathway. In summary, EGCG exerted

a neuroprotective effect by suppressing autophagy in an AKT/

AMPK/mTOR phosphorylation-dependent manner.

Autophagy is a highly regulated process, participating in

multiple pathophysiological processes of many diseases (Wirawan

et al., 2012). Mounting evidence has suggested that autophagy

activation participated in ischemic stroke closely and exerted

divergent roles in stroke’s pathological and physiological changes

(Sheng and Qin, 2015). The research by Sun et al. (2020b) indicated

that eugenol, an active ingredient extracted from traditional herbal

medicine, played a neuroprotective role by the enhancement of

autophagy flux. Besides, Ginkgo biloba leaf extract (EGb-761), also

the extraction of a traditional Chinese herb, was reported to elicit

neuroprotection against ischemic brain injury through enhancing

autophagy (Yihao et al., 2021). The above studies suggested that

enhancing autophagy activation exerted a protective role on the

ischemic injury. However, another voice cannot be ignored for the

harmful role of autophagy activation in CIRI. Wang L. et al. (2020)

demonstrated that Tanshinone IIA (TSA), the major component

extracted from traditional medicine, protected brain tissues from

ischemic injury by suppressing autophagy. The research by Zhang

et al. (2020b) showed that deltonin, an effective ingredient obtained

from a type of Chinese medicine, reduced autophagy activity to play

a beneficial role in brain stroke. These studies supported the point

that the reduction of autophagy activity was beneficial for stroke.

Different types of animals, different disease models, and intensity

and duration time of ischemia were possibly the reasons for the

different roles of autophagy on CIRI (Zhang et al., 2019; Sun et al.,

2020b). In the present study, we revealed that autophagy activation

was deleterious in the acute phase of CIS, and EGCGmitigated CIRI

via inhibition of autophagy activation, given the evidence that EGCG

postcondition could suppress autophagic activity and further reduce

the volume of infarction and protect poststroke neuronal loss.

Multiple autophagy-related proteins are involved in the

process of autophagy. Beclin1, a central component in the

autophagy complex, can bind to ligands and thereby initiate

autophagosome formation and play a central role in the process

of the movement of autophagy-associated proteins to a pre-

autophagosome structure (Kang et al., 2011; Wu et al., 2017).

During autophagy, LC3 is cleaved into LC3 I by autophagy-

related (Atg) genes four proteases and then connected with

phosphatidylethanolamine (PE) to produce LC3 II through

the activation of Atg7, Atg3, and Atg12 complex in order.

And LC3 II exerts a central role in the biogenesis/maturation

of autophagosomemembrane. Thus, LC3 II is associated with the

amount of the formation of autophagosomes, and LC3 II is

served as the biological marker to detect autophagy (Lee and Lee,

2016). P62, a cargo protein of ubiquitination substrates, is

reported to participate in the degradation process of

autophagy (Jiang et al., 2015). It can combine with

LC3 directly and be selectively delivered into autophagosomes,

and the amount of p62 within the cell is negatively correlated

with the intensity of autophagy (Hou et al., 2021). In brief, when

autophagy occurs, beclin1 is required for the construction of

autophagosomes, and LC3 is cleaved into LC3 I and LC3 II and

combines into autophagosomes simultaneously. And p62 is one

of the proteins that are sequestered and degraded by the process

of autophagy to supply energy to retain metabolic balance within

cells. According to our results, EGCG treatment prevented

ischemia and reperfusion invasion-mediated upregulation of

the expression of beclin1 and LC3 and downregulation of the

expression of p62, in both MCAO/R models of mice and OGD/R

models of HT22 cells, indicating that the suppression of

poststroke autophagy activity was related to the role of EGCG

treatment to ameliorate ischemic brain injury.

Thereafter, the potential molecular mechanisms by which

EGCG modulated autophagy were then explored. So far, the

mammalian target of rapamycin (mTOR) is believed to be the

main regulator of autophagy in the mammalian system (Abdul

et al., 2020). It is reported thatmTOR is critical for autophagosome

formation and maturation, and its inactivation is required for the

process of autophagy (Hou et al., 2021). A multitude of signals is

integrated into the mTOR pathway. AKT is the upstream of

mTOR and modulates mTOR activation (Heras-Sandoval et al.,

2014). AMP-activated protein kinase (AMPK) plays an important

role in keeping the balance of metabolic processes and is reported

to be linked with the regulation of autophagy (Heras-Sandoval

et al., 2014). Some studies suggested that ischemia postcondition

mitigated ischemic stroke by suppressing autophagy via

promoting the phosphorylation of AKT and mTOR (Yang

et al., 2019; Wang H. et al., 2020; Wang M. M. et al., 2020;

Meng et al., 2021), while others revealed that the poststroke

treatment ameliorated CIRI through inhibiting autophagy via

suppressing the phosphorylation of AKT, AMPK, and mTOR

(Wang J. F. et al., 2018; Zhang et al., 2020a; Ma et al., 2020; Liu N.

et al., 2021; Yang et al., 2021; Zhang et al., 2022). Therefore, the

interaction between the phosphorylation of AKT, AMPK, and

mTOR and poststroke treatment-induced autophagy suppression

is complicated and remains to be further elucidated. In the present

study, inMCAO/Rmodels of mice, we revealed that promoting the

phosphorylation of AKT, AMPK, and mTOR was involved in the

protective mechanisms of EGCG administration. Moreover, after

the phosphorylation of AKT, AMPK, and mTOR was blocked by

GSK690693 and rapamycin, we found that EGCG treatment-

induced autophagy suppression could be prevented. In addition,

we obtained similar results in OGD/R models of HT22 cells.

EGCG treatment could inactivate autophagy and promote the

phosphorylation of AKT and mTOR while inhibiting the

phosphorylation of AMPK. And the inhibition of autophagy
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caused by EGCG administration could be prevented by the

blocking effect of GSK690693 and rapamycin on the

phosphorylation of AKT, AMPK, and mTOR. The difference in

the phosphorylated AMPK in MCAO/R mice and OGD/

R-challenged HT22 cells might be contributed to different

pathophysiological environments in vivo and in vitro.

Collectively, these results indicated that EGCG inhibited

ischemia-induced autophagy in an AKT/AMPK/mTOR

phosphorylation-dependent manner to exert a neuroprotective

effect.

Certainly, there remain some limitations in this article. Aging is

the prime culprit for most neurodegenerative events (Uddin et al.,

2020), including stroke; thus, modeling with older mice may be a

better option. Besides, glial and endothelial cells are also important

parts of brain tissues, whether the protective effect of EGCG on glial

and endothelial cells is similar to that of neurons remains to be

further verified. In addition, other types of cell death—necrosis,

necroptosis, and apoptosis—do exist in the pathological process of

stroke, the effect and mechanisms of EGCG on these ways of cell

death, and the crosstalk between these ways of cell death are waiting

to be elucidated. Of course, EGCG can never replace tPA as a specific

drug, but it can become an indispensable adjuvant drug for the

treatment of stroke. Thus, more precise mechanisms of the curative

effect of EGCG in stroke still need to be improved to provide a solid

foundation for its clinical application in the future.

Conclusion

Taken together, our results indicated that the

neuroprotective role of EGCG against CIRI was associated

with the suppression of autophagy through the AKT/AMPK/

mTOR phosphorylation pathway. The findings provide new

insights into the potential mechanisms of the role of EGCG

on autophagy and cerebral ischemic injury and may help design

therapeutic strategies with more efficacy for stroke.
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