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In mammalian systems, hydrogen sulfide (H2S)—one of the three known

gaseous signaling molecules in mammals—has been found to have a variety

of physiological functions. Existing studies have demonstrated that endogenous

H2S is produced through enzymatic and non-enzymatic pathways. The liver is

the body’s largest solid organ and is essential for H2S synthesis and elimination.

Mounting evidence suggests H2S has essential roles in various aspects of liver

physiological processes and pathological conditions, such as hepatic lipid

metabolism, liver fibrosis, liver ischemia‒reperfusion injury, hepatocellular

carcinoma, hepatotoxicity, and acute liver failure. In this review, we discuss

the functions and underlying molecular mechanisms of H2S in multiple liver

pathophysiological conditions.
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Introduction

Hydrogen sulfide (H2S) is one of the three recognized gaseous signaling molecules in

mammals (Yang et al., 2019b). Existing studies have demonstrated that endogenous H2S is

created in mammalian systems by enzymatic and non-enzymatic mechanisms (Yang

et al., 2019b; Loiselle et al., 2020). The enzymatic delivery pathways in mammalian cells

and tissues are those related to cystathionine gamma-lyase (CSE) (Jia et al., 2022),

cystathionine β-synthase (CBS) (Roy et al., 2012; Zuhra et al., 2020a), and 3-

mercaptopyruvate sulfotransferase (3-MST) (Roy et al., 2012; Abdollahi Govar et al.,

2020; Dilek et al., 2020) (Figure 1). Moreover, some microorganisms located in the

intestine are also capable of producing H2S (Loiselle et al., 2020; Scammahorn et al., 2021).

Furthermore, hepatic stellate cells can boost H2S production (Ma et al., 2022).

Mounting evidence shows that H2S plays a critical role in a variety of physiological

and pathological processes, including the respiratory, cardiovascular, gastrointestinal, and
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central nervous systems, as well as in the kidneys (Shackelford

et al., 2021) and in the inflammatory response and antioxidant

defense systems (Shi et al., 2019).

The liver is the body’s largest organ, and it plays an important

role in lipid, glucose, and xenobiotic metabolism and in

resistance to oxidative stress and defense against invading

microorganisms (Norris et al., 2011; Andrade et al., 2019;

Chen et al., 2019). It is also important for H2S synthesis and

removal (Dilek et al., 2020). Moreover, CSE, CBS, and 3-MST,

which are responsible for H2S production to varying degrees,

have been found in the liver (Bełtowski, 2019). H2S metabolism

in the liver is linked to insulin sensitivity, glucose metabolism,

lipoprotein production, and mitochondrial bioenergetics and

biogenesis (Sun et al., 2021). Most importantly, H2S synthesis

and signal transmission in the liver are disrupted in a variety of

liver disorders, such as non-alcoholic fatty liver disease

(NAFLD), liver fibrosis, hepatic ischemia/reperfusion (I/R)

injury, and liver cancer (Loiselle et al., 2020).

In recent decades, studies have focused on the importance of

H2S in liver growth and development, and the relationship

between H2S and both liver functions and diseases have

partially been explored; thus, the underlying mechanisms of

H2S-mediated hepatoprotection or injury have been gradually

revealed. For this article, we retrospectively reviewed recent

studies of H2S in various liver diseases and found that H2S

not only has a positive protective effect against liver disease

but also has a non-negligible pathogenic role in certain liver

diseases. In particular, we highlight the mechanisms by which

H2S is involved in these metabolic processes and relevant

therapeutic targets.

The effects of H2S in non-alcoholic
fatty liver disease

H2S acts as an essential novel regulator in lipid metabolism

and plays a role in many diseases, such as diabetes, obesity, and

cardiovascular disorders (Wu et al., 2019; Corvino et al., 2021;

Zhao et al., 2022). The liver is an important organ for lipid

metabolism in the body and is responsible for the accumulation,

storage, and consumption of lipids (Stefan et al., 2019).

Researchers have recently given special attention to H2S and

the control of lipid metabolism in the liver—a relationship which

has important consequences for the progression of liver disease.

Non-alcoholic fatty liver disease (NAFLD) is a broad class of liver

diseases that range from steatosis to the more severe form of non-

alcoholic steatohepatitis (NASH), a condition that can aggravate

liver fibrosis and liver cirrhosis (Abd El-Kader and El-Den

Ashmawy, 2015). NASH is now considered a common

chronic liver disease that is present in 25% of the global

population (Wu et al., 2020).

The involvement of H2S in liver health has been explored in

many studies. A previous study on NAFLD showed that

endogenous H2S levels in hepatocytes of oleic acid-treated

mice were lower than the levels in an untreated group. Next,

the authors investigated the effect of exogenous H2S on cell

growth in the oleic acid group. The results showed that H2S

slowed liver lipid deposition through the activation of farnesol X

receptors and increased the proliferation and survival of oleic

acid-treated cells (Ruan et al., 2019; Loiselle et al., 2020; Xu et al.,

2022). In addition, oleic acid treatment resulted in the arrest of

hepatocytes in the G1 phase of the cell cycle—a process which

was then reversed by H2S (Loiselle et al., 2020; Xu et al., 2022).

Related experimental results demonstrated that H2S could

promote autophagy and inhibit apoptosis in human

hepatocytes through the ROS/PI3K/AKT/mTOR pathway that

is mediated by reactive oxygen species (ROS), thereby alleviating

the high-fat diet (HFD)-induced NAFLD (Wu et al., 2020). This

research shows that H2S could be applied to treat NAFLD. It is

also worth noting that exogenous NaHS can alleviate lipid

accumulation and that the 3-MST knockdown has been

shown to significantly improve hepatic steatosis in high-fat

diet-fed mice (Li et al., 2018). Therefore, further research is

needed to fully understand the impact of H2S on NAFLD.

However, in vitro systems cannot accurately simulate the

natural in vivo physiological environment; therefore, research has

increasingly focused on in vivo models, which are believed to

provide various types of vital evidence for the relationship

between H2S and lipid metabolism that cannot be realized

in vitro. Various knockout (KO) animal models, including

CBS-KO, CSE-KO, and 3-MST-KO mouse models, have

revealed critical roles of H2S-producing enzymes in hepatic

lipid metabolism (Loiselle et al., 2020).

A study that used a rat fatty liver ischemia/reperfusion

injury (IRI) model revealed that the homozygous CBS mutant

mice died within 5 weeks of birth, and further histological

examination revealed an enlarged and lipid droplet-filled liver

(Zhang et al., 2012). Similar results were shown in another

study. Compared to the control group, the CBS-deficient mice

had more lipid accumulation in the liver (Li et al., 2018). These

results suggested that fatty acids reduced endogenous H2S

levels by inhibiting the CSE-dependent pathway in the liver,

which would promote fat accumulation and subsequently lead

to NAFLD (Mani et al., 2015). S Mani noted that, in

comparison to the wild-type mice, the CSE-KO mice had

much higher cholesterol levels in the plasma and liver

when fed a HFD. Dyslipidemia, microvascular fat

accumulation, changes in liver pigments, and hepatic

damage were all observed in the mice. Finally, the CSE-KO

mice that were fed a HFD developed a fatty liver (Roehlen

et al., 2020).

In conclusion, the effects and mechanisms of H2S in hepatic

lipid metabolism have become increasingly clear. H2S and its

synthase have important protective effects on hepatic lipid

metabolism, significantly improving hepatic lipid deposition.

Otherwise, the level of H2S is reduced, which increases lipid
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deposition and promotes the development of NAFLD. To date,

the precise mechanism and clinical significance of H2S and its

synthase have yet to be elucidated.

The effects of H2S in liver fibrosis

In developed countries, death from fibrotic diseases including

chronic kidney disease, liver cirrhosis, idiopathic pulmonary

fibrosis, and chronic disease accounts for 45% of human

mortality, posing a serious danger to health worldwide (Zou

et al., 2009; Song et al., 2015; Ni et al., 2018). Liver fibrosis

accounts for a large proportion of these fibrotic diseases. The

persistent buildup of extracellular matrix (ECM) over type I

collagen is the primary cause of liver fibrosis (Lambrecht et al.,

2015). Many molecules are involved in its development, with

inflammation and oxidative stress being well-known regulatory

targets. In many chronic liver illnesses, such as viral hepatitis,

NASH, and NAFLD, liver fibrosis is an unavoidable pathological

process (Song et al., 2015). A growing number of studies are

demonstrating that the suppression of endogenous H2S might be

related to the progression of fibrosis in humans and that H2S

supplementation has protective and therapeutic effects against

fibroproliferative diseases and syndromes of common organs

(liver, lung, kidney, and heart), mainly due to its anti-

inflammatory, antioxidant, and antifibrotic effects (Kabil et al.,

2014; Pant et al., 2016; Bai et al., 2019).

H2S may affect hepatic fibrosis development in two ways

(Mohammed et al., 2021): 1) H2S has been shown to act as an

antifibrotic molecule by significantly reducing the levels of TNF-

α, IL-1β, IL-6, and soluble intercellular adhesion molecule

(ICAM)-1 in the rat serum to suppress the inflammatory

response (Tan et al., 2011; Mohammed et al., 2021) and 2) it

exerts antioxidant effects by increasing the activity and

expression of the catalase, copper−zinc superoxide dismutase

and manganese superoxide dismutase, thereby effectively

inhibiting the progression of fibrosis (Jung et al., 2013). An in

vivo study found that S-allyl-cysteine (SAC), an endogenous

provider of H2S, could relieve CCl4-induced liver fibrosis in

rats by inhibiting the STAT3/SMAD3 pathway (Gong et al.,

2018). Further experimental studies have shown that SAC

treatment reduces the expression of both inflammatory factors

and fibrogenic cytokines and increases the expression of

antioxidant enzymes (Kodai et al., 2007). H2S has been shown

to induce cell cycle arrest, apoptosis, and vasodilation by

activating p53, p21, caspase-3, and MMP-2, by promoting

their overexpression and by downregulating the Bcl-xL

expression (Ma et al., 2018). H2S also ameliorates liver fibrosis

through its anti-inflammatory and antioxidant properties,

thereby alleviating portal hypertension (Zou et al., 2009; Gong

et al., 2018; Ma et al., 2018; Damba et al., 2019; Ali et al., 2020).

However, there are several factors associated with H2S that

contribute to the formation of liver fibrosis. A perspective, taking

this aspect into account was proposed by C.G. Zou et al., who

found that the precursor of H2S synthesis, homocysteine,

enhances the activation of human hepatic stellate cells by

activating the PI3K/Akt signaling pathway (Ali et al., 2020).

The T. Damba team further verified this hypothesis. They found

that both endogenous and exogenous H2S can increase the

proliferation and activation of hepatic stellate cells by

increasing the glycolysis extracellular acidification rate (ECAR)

and the oxygen consumption rate (OCR) of mitochondrial

oxidative phosphorylation, thus promoting the metabolic

activity of hepatic stellate cells (Jiménez-Castro et al., 2019)

and further promoting liver fibrosis formation.

These various reports show that additional studies

investigating the importance of H2S in liver fibrosis and H2S

chemical pathways are necessary and that future works should

include confirmation with animal experiments and cellular

studies.

The effects of H2S on liver ischemia‒
reperfusion injury

Ischemia‒reperfusion (I/R) is a well-known pathological

condition marked by a temporary decrease in blood supply to

an organ or region, followed by vascular recovery and

downstream tissue damage (Yang et al., 2018b). It is a

consequence of hemorrhagic shock and resuscitation, trauma,

liver resections, liver transplantation, bowel infarction, and,

especially, liver failure. Hepatic I/R damage has become a

global health issue (Nastos et al., 2014). Various clinical

experiments and basic studies point to diverse molecular

mechanisms in this process, including those related to

neutrophils and liver Kupffer cells, proinflammatory

cytokines, adhesion molecules, mitochondria, oxidative stress,

anaerobic metabolism, and intracellular calcium overload (Kang

et al., 2009; Zhai et al., 2013). Thus, novel drugs that have anti-

oxidative, anti-inflammatory, and cytoprotective effects may

protect the liver from I/R injury (Krylatov et al., 2021).

Currently, H2S is known to be critical in the treatment of

liver I/R injury (Wu et al., 2015). Due to the thorough

investigation of H2S and liver I/R injury, the mechanism by

which H2S protects against I/R injury has begun to be elucidated.

There have been significant advances in animal studies

focusing on the molecular pathways of H2S in I/R injury (Lu

et al., 2018; Fu et al., 2019; Ibrahim et al., 2021). Recent studies

have found that fatty livers are more susceptible to ischemia/

reperfusion (I/R) damage during liver surgery and

transplantation (Varela et al., 2011). In a rat fatty liver IRI

model, the influence of H2S on IRI was thoroughly

investigated. According to the findings, H2S mitigated changes

in liver pathology and lowered the levels of aspartate

aminotransferase (AST), alanine aminotransferase (ALT), and

malondialdehyde (MDA). Moreover, H2S decreased oxidative

Frontiers in Pharmacology frontiersin.org03

Liu et al. 10.3389/fphar.2022.899859

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.899859


stress levels and the expression of inflammatory factors and

slowed the apoptosis of hepatocytes (Younis et al., 2016). In

addition, treatment with silymarin protected against hepatic I/R

in insulin-resistant rats through anti-inflammatory, antioxidant,

and anti-apoptotic effects and the inhibition of H2S synthesis (Lu

et al., 2018; Liu et al., 2020). Therefore, retaining an appropriate

level of H2S in ischemia‒reperfusion (I/R) is imperative in

protecting the liver from injury. NaHS protects the liver

against I/R and, as a donor of H2S, is protective against

hepatic I/R injury, a process associated with the activation of

antioxidant enzymes and decreased expression of hepatic tumor

necrosis factor-α (TNF-α), MDA, and caspase-3 (Fu et al., 2019).

Cold ischemia‒reperfusion injury (IRI) poses a significant

threat to the success of solid organ transplantation (SOT) (Muller

et al., 2022). A study discussing the molecular mechanisms

underlying the role of H2S donor molecules in liver

transplantation showed that H2S could significantly attenuate

IRI during liver transplantation by inhibiting a range of

interrelated cells and molecules, including those related to

microcirculatory dysfunction and microvascular dysfunction,

mitochondrial damage, inflammatory responses, cellular

injury, cell death, and other destructive molecular pathways,

while promoting the protective pathways (Balaban et al., 2011; Fu

et al., 2019). These promising findings will be the basis of the

clinical application of H2S in the future (Dugbartey et al., 2021).

In addition, another piece of evidence from an experimental

model of organ transplantation in mice suggests that exogenous

administration of H2S donor molecules during graft preservation

significantly improves liver microcirculation, morphology, and

function. Moreover, a significant increase in liver antioxidant

enzyme levels and activity was also observed. In contrast, lactate

dehydrogenase, malondialdehyde (an indicator of lipid

peroxidation byproducts and ROS production), and other

markers of liver injury were significantly reduced. These new

findings suggest that adding H2S donor molecules during liver

transplantation can play an important role in significantly

increasing the survival rate of transplanted organs, mitigating

liver IRI injury during transplantation, reducing complications,

and improving patient prognosis (Balaban et al., 2015).

These findings imply that focusing on H2S could be a promising

new strategy for combating I/R-induced liver damage. The

molecular targets of H2S in liver I/R damage, however, are still

unknown. Since different doses of H2S generated by the donor may

have varying therapeutic effects, the optimum dose range should be

investigated further for improved efficacy.

The effect of H2S in hepatocellular
carcinoma

Liver cancer is the world’s sixth most prevalent malignancy and

the fourth leading cause of cancer-related death (Yang et al., 2019c;

Li et al., 2021b). Among liver cancers, the most common kind is

hepatocellular carcinoma (HCC). The primary risk factors for HCC

include viral infection, chronic alcohol consumption, and obesity-

related NASH. HCC pathophysiology is a complex multistep

process (Cao et al., 2019). Currently, HCC continues to be a

global health threat, with morbidity and mortality rates

increasing dramatically. As a consequence, the monitoring of

HCC and early detection are regarded as vital methods to

improve the effectiveness of treatment (Malik et al., 2020).

Studies have revealed that angiogenesis and immune evasion are

key core issues in the tumor microenvironment for liver cancer

progression and treatment failure (Motz and Coukos, 2011; Fousek

et al., 2021; Pinter et al., 2021; Zhou et al., 2021). In a complex tumor

microenvironment composed of hepatocytes, liver sinusoidal

endothelial cells (LSECs), hepatic stellate cells (HSCs), immune

cells, and extracellular matrix, the development of HCC is closely

related to the infiltration of immune cells and immune evasion in the

tumor microenvironment (TME) (Muñoz et al., 2021). Increasing

evidence has shown that H2S plays a key role in the occurrence and

development of HCC. Recently, CBS was found to inhibit Treg cell

infiltration and induce apoptosis in human HCC cells by

suppressing the PRRX2/IL-6/STAT3 signaling pathway. CBS

deficiency promoted Treg-mediated immune evasion and tumor

growth in mice, suggesting that the CBS/H2S axis may control

immune evasion in the TME (Xu et al., 2021; Zhou et al., 2021). The

overexpression and overactivation of the immunosuppressive

enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is a key

mechanism of immune escape from cancer. In a mouse liver

cancer model, exogenous H2S inhibited IDO1 expression by

blocking the STAT3 and NF-κB pathways and reduced

IDO1 activity through the H2S/NO crosstalk, effectively stopping

tumor progression in mice (Yang et al., 2019a). Furthermore, the

H2S donor effectively suppresses tumor development in mice with

hepatocellular carcinoma models (Ngowi et al., 2021). These

findings suggest that targeting the CBS/H2S axis might be a

novel method for therapeutic immunotherapy in HCC.

In addition to immunotherapy, H2S can also promote

apoptosis of HCC cells directly (Wang et al., 2017). Our

previous research revealed that exogenous H2S could induce

HCC cell autophagy and further promote apoptosis by inhibiting

the PI3K/AKT signaling pathway (Wang et al., 2017). In the

TME, hepatic stellate cells activate the JNK/JunB signaling

pathway through the release of H2S, upregulate the expression

of TNFSF14, and promote apoptosis in hepatocellular carcinoma

cells (Ma et al., 2022). A similar result was found for endogenous

H2S; Zhou et al. found that the activation of the CBS/H2S axis in

HCC cells upregulated the expression of cleaved caspase-3 and

promoted HCC cell apoptosis (Sakuma et al., 2019).

In addition, H2S donors are able to regulate apoptosis by

interacting with signaling pathways related to apoptosis in cancer

cells (Szadvari et al., 2019). Treatment with GYY4137, an H2S

donor, increased the expression of caspase-9, a marker of

apoptosis, in human HCC cells (Zhao et al., 2015). Moreover,

treatment with NaHS suppressed the anti-apoptotic markers in
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B-cell lymphoma 2 (Bcl-2) by regulating the p53 and p38 MAPK

pathways (Pan et al., 2014; Zhao et al., 2015), thus promoting

cancer cell apoptosis (Zuhra et al., 2020b; Xia et al., 2021).

Moreover, H2S acts as a stimulator of mitochondrial electron

transfer, and endogenous H2S stimulates adenosine triphosphate

(ATP) production in cancer cells, which plays an important role

in preventing mitochondrial fission and maintaining

mitochondrial DNA repair (Fortibui et al., 2021).

There is evidence that metabolic reprogramming of cancer is a

determinant in the anticancer-related immune response (Zhang

et al., 2020). For example, sulfur-related metabolism is still a novel

direction of research in human HCC tumor tissues. Recent studies

that focused on gene expression profiling in HCC via Gene Set

Enrichment Analysis (GSEA) revealed that sulfur amino acid

metabolism in HCC was downregulated. Cell viability

experiments showed that H2S had notable anticancer effects in

human HCC cells. H2S can also provide sulfane sulfur, which

mediates reactive sulfur species (RSS)-induced anti-HCC effects

in tumor cells. Finally, it was shown that sulfur metabolism in

HCC had been reprogrammed and a potential therapeutic strategy

for HCC was proposed (Wang et al., 2020b). Acetaldehyde

dehydrogenase (ALDH) is the primary enzyme in the liver that

regulates acetaldehyde metabolism (Toledo-Guzmán et al., 2019). It

has been shown that ALDH can alter a variety of biological features

in cancer stem cells and could be used as a cancer stem cell

diagnostic marker (Duan et al., 2016; Iciek et al., 2018). Evidence

suggests that ALDH plays a significant role in cancer recurrence

(Yang et al., 2018a). Based on these findings, it is possible that ALDH

is regulated by sulfur substances, which inhibit its enzymatic activity,

thus making cancer cells more sensitive to conservative treatment.

In addition, in vitro and in vivo, a combination of kelp and

Curcuma zedoaria inhibited the growth and metastasis of liver

cancer cells by reducing the generation of endogenous H2S and

regulating the pSTAT3/BCL-2 and VEGF pathways, according to

a prior study (Han et al., 2019). Another mechanistic study found

that the inhibition of reactive oxygen species (ROS), the

activation of the STAT3/Akt/Bcl-2 pathway, and the induced

metastatic capacity of HCC cells were the leading causes of

enhanced drug resistance in HCC (Wang et al., 2018). Studies

have also found that human HCC cells with high CBS expression

had low sensitivity to sunitinib and doxorubicin (DOX), while

the knockdown of CBS markedly increased the sensitivity of

HCC fineness to DOX and sunitinib. Therefore (Wang et al.,

2018), it was concluded that CBS overexpression conferred

resistance to HCC cells (Stravitz and Lee, 2019).

These findings imply that H2S has contradictory effects on

HCC. Explicitly speaking, exogenous H2S can cause cancer cell

death, while endogenous H2S can promote cancer. These results

indicate that supplementation and restraint of H2S production

are two different ways to treat cancer. As a result, H2S is expected

to play dual roles in the development of HCC (Wu et al., 2017). In

the future, it is critical to investigate the mechanism of H2S in

HCC in greater depth (Figure 2).

The effects of H2S on acute liver
failure

Acute liver failure (ALF) is an uncommon and serious

complication related to sudden hepatic injury that lasts several

days or weeks and is marked by rapid liver destruction, multi-

organ failure, and a high death rate (Sen, 2017; Kolodziejczyk

et al., 2020). Paracetamol poisoning, hepatic ischemia, viral and

autoimmune hepatitis, drug-induced liver injury from

prescription medicines, and herbal and nutritional

supplements are all potential causes of abrupt liver failure

(Kumar and Sandhir, 2018; Yuan et al., 2020). H2S has been

shown to ameliorate liver complications in previous

investigations (Dong et al., 2020; Kožich and Stabler, 2020). A

recent study explored the possibility of H2S having a protective

impact in ALF. The addition of sodium thiosulfate (STS), an H2S

donor, effectively alleviated D-galactosamine (GalN)- and

lipopolysaccharide (LPS)-induced acute liver failure in the

wild-type mice by activating Akt- and Nrf2-dependent

signaling and by inhibiting GalN/LPS-induced JNK

phosphorylation. This suggests that the inhibition of CSE or

that the introduction of STS can prevent acute inflammatory liver

failure by increasing thiosulfate levels and upregulating

antioxidant and anti-apoptotic defenses in the liver (Shirozu

et al., 2014). In another study, a thioacetamide (TAA)-induced

ALF mouse model was used, and the results showed that NaHS

treatment reduced cognitive deficits, enabled the retention of

TAA-induced spatial orientation learning, and reduced serum

AST and ALT levels and ammonia concentrations in mice

(Milewski et al., 2021). These findings suggest the therapeutic

potential of H2S to reduce cognitive deficits and liver dysfunction

in ALF mice but the exact biological mechanism remains to be

explored (Abo El Gheit et al., 2020; Milewski et al., 2021).

Compared to the wild-type mice, the CSE-deficient mice

showed a significant attenuation of burn-induced elevations in

circulating alkaline aminotransferase and blood urea nitrogen

and creatinine levels, suggesting that CSE deficiency has a

protective effect against burn-induced impairment of the liver

and kidney function. Plasma levels of several burn-induced

inflammatory mediators (TNF-α, IL-1β, IL-4, IL-6, IL-10, and
IL-12) were significantly lower in the CSE-deficient mice after a

burn injury than in the plasma from the wild-type controls. In

conclusion, in a mouse burnmodel, the absence of CSE improved

organ function, attenuated the inflammatory response, and

effectively limited the progression of multi-organ failure.

However, the exact mechanism remains to be explored

(Ahmad et al., 2017).

In a study of burn-induced acute liver injury in mice, plasma

H2S levels and H2S synthesis activity were significantly increased

in the liver after a burn injury, and NaHS injections at the time of

burn injury also led to a substantial increase in liver

myeloperoxidase (MPO) activity and a significant increase in

the systemic inflammatory response, inducing multi-organ
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damage, including liver injury. This suggests that H2S can

significantly exacerbate burn-induced acute liver injury

(Zhang et al., 2010).

These findings imply that H2S may play a double-edged role

in acute liver failure, and more in-depth studies are still needed to

validate it further.

FIGURE 1
Effects of liver-derived H2S on various liver diseases. H2S is produced in the liver by the enzymatic reactions of cysteine gamma-catabolase
(CSE) (Jia et al., 2022), cystathionine β-synthase (CBS) (Roy et al., 2012; Zuhra et al., 2020a), and 3-mercaptopyruvate (3-MP) via L-cysteine (Roy et al.,
2012; Abdollahi Govar et al., 2020; Dilek et al., 2020). H2S can have different effects in various liver diseases.

FIGURE 2
Endogenous and exogenous H2S play different roles in HCC through differentmechanisms. (A) EndogenousH2S promotes immune escape and
proliferation and enhances drug resistance in HCC, which may be related to the promotion of Treg-mediated immune evasion (Xu et al., 2021; Zhou
et al., 2021), the stimulation of ATP production (Fortibui et al., 2021), and the activation of the STAT3/Akt/Bcl-2 pathway (Wang et al., 2018). The
inhibition of reactive oxygen species (ROS) (Wang et al., 2018). (B) Treatment of hepatoma cells with exogenous H2S could induce HCC cell
autophagy by activating the JNK/JunB/TNFSF14 signaling pathway (Ma et al., 2022) and the STAT3/Akt/Bcl-2 pathway (Han et al., 2019), upregulating
caspase-3/9 (Sakuma et al., 2019), inhibiting the PI3K/AKT/mTOR signaling pathway (Wang et al., 2017), regulating the p53/p58/MAPK pathway (Zhao
et al., 2015), blocking the STAT3/NF-κB/IDO1 pathway, and suppressing anti-apoptotic markers, thus promoting hepatoma cell apoptosis.
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The effect of H2S on acute liver
pathology

Liver toxicity refers to the damage to the liver produced by a

variety of prescription and over-the-counter medications,

including natural medicines, biologics, dietary supplements,

nutraceuticals, and some traditional Chinese medicines

(Jaeschke, 2015). Drug-induced liver damage is a rare but

serious medical issue (Leise et al., 2014; Wang et al., 2020a).

In a limited number of patients, the use of multiple drugs has

caused serious liver injury and acute liver failure (<1:10,000)
(Chalasani et al., 2008). Although its incidence in the population

is very low, the high likelihood of acute liver failure in patients

with acute liver injury still requires much attention.

A liver toxicity study in mice found that H2S significantly

inhibited oxidative stress, inflammation, and apoptosis induced

by polystyrene microplastics (mic-PS). H2S increased the

expression of NAD(P)H:quinone oxidoreductase 1 (NQOl)

and heme oxygenase-1 (HO-1) by promoting the nuclear

accumulation of the nuclear factor-E2-related factor (Nrf2),

thereby reducing the apoptotic and inflammatory responses

induced by mic-PS in mouse hepatocytes. This revealed the

hepatic toxic effect of mic-PS and the protective effect of H2S

on mic-PS-induced liver injury (Li et al., 2021a). In a study of

acetaminophen (APAP)-induced hepatotoxicity in mice,

treatment with H2S significantly reduced serum levels of AST,

ALT, IL-33, and TNF-α. It attenuated APAP-induced hepatocyte
apoptosis in mice by inhibiting the JNK/MAPK signaling

pathway, thus effectively reducing APAP-induced

hepatotoxicity (Li et al., 2019; Saleh et al., 2021). In addition,

another hepatotoxicity study in rats demonstrated that H2S

protects the liver in methotrexate (MTX)-stimulated rats by

acting as anti-inflammatory, antioxidant, and anti-apoptotic

agent functions, which are most likely mediated by H2S

through the modulation of the IL-6/STAT3 pathway, initiation

of the KATP pathway, and activation of endothelial nitric oxide

synthase (eNOS) and transient receptor potential vanilloid 1

(TRPV1) (Fouad et al., 2020). Thus, H2S has a potential value for

treating hepatotoxicity.

Conclusion and perspective

In this review, we summarized and discussed the effects and

potential mechanisms of H2S in the process of liver disease,

including NAFLD, liver I/R injury, liver fibrosis, acute liver

failure, liver toxicity, and hepatocellular carcinoma. Based on

the research results, we found that endogenous and exogenous

high and low concentrations of H2S may exert different effects by

regulating different signaling pathways.

The effects of H2S on NAFLD and liver I/R injury are

relatively clear. Under NAFLD conditions, both endogenous

and exogenous H2S were able to reduce lipid deposition to

inhibit the progression of NAFLD, indicating that H2S plays a

protective role in pathological conditions in the liver. Moreover,

H2S alleviated liver I/R injury by reducing the inflammatory

reaction. However, H2S may act as a negative molecule in

promoting the progression of liver fibrosis. Both endogenous

and exogenous H2S could activate HSCs to increase the secretion

of extracellular matrix, which participates in liver fibrosis.

Beyond its roles in NAFLD and liver fibrosis, the roles of H2S

in other liver diseases remain controversial.

Based on the findings of these studies, we determined that H2S

plays a double-edged role in liver diseases. We suppose that there

may be a certain balance between the protective and pathogenic

effects of H2S in different liver conditions. Since there is no definite

evidence to prove the existence of this balance at present, more

studies are needed in the future. Considering the controversial effects

of H2S in different liver diseases, inhibiting the synthesis of

endogenous H2S or providing exogenous H2S can effectively

alleviate the progression of diseases.

Currently, H2S has been studied as a drug in the

cardiovascular field. However, the dual role of H2S in different

diseases should be considered when using H2S to treat liver

diseases. Inhibition of endogenous H2S synthesis or the

administration of exogenous H2S can play a positive role in

the treatment of liver diseases and are, therefore, promising

treatment strategies. Therefore, a better understanding of the

dual role of H2S will provide a strong experimental basis for the

treatment of different diseases and for drug research.
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Glossary

ALDH acetaldehyde dehydrogenase

ALF acute liver failure

ALT alanine aminotransferase

APAP acetaminophen

AST aspartate aminotransferase

ATP adenosine triphosphate

Bcl-2 B-cell lymphoma 2

CBS cystathionine beta-synthase

CSE cystathionine gamma-lyase

DOX doxorubicin

ECAR glycolysis extracellular acidification rate

ECM extracellular matrix

eNOS endothelial nitric oxide synthase

GalN D-galactosamine

H2S hydrogen sulfide

HCC hepatocellular carcinoma

HFD high-fat diet

HO-1 heme oxygenase-1

HSC hepatic stellate cells

ICAM intercellular adhesion molecule

IDO1 indoleamine 2,3-dioxygenase 1

IRI ischemia/reperfusion injury

KO knockout

LPS lipopolysaccharide

LSEC liver sinusoidal endothelial cell

MDA malondialdehyde

mic-PS microplastics

MPO myeloperoxidase

MTX methotrexate

NAFLD non-alcoholic fatty liver disease

NASH non-alcoholic steatohepatitis

NQO1 NAD(P)H:quinone oxidoreductase 1

Nrf2 nuclear factor-E2-related factor

OCR oxygen consumption rate

ROS reactive oxygen species

RSS reactive sulfur species

SAC S-allyl-cysteine

SOT solid organ transplantation

STS sodium thiosulfate

TAA thioacetamide

TME tumor microenvironment

TNF-α tumor necrosis factor-α
TRPV1 transient receptor potential vanilloid 1

3-MST 3-mercaptopyruvate sulfotransferase
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