AUTHOR=Chen Susu , Wang Wenyan , Cao Qilong , Wu Shen , Wang Ningli , Ji Lixia , Zhu Wei TITLE=Cationic Mechanosensitive Channels Mediate Trabecular Meshwork Responses to Cyclic Mechanical Stretch JOURNAL=Frontiers in Pharmacology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2022.881286 DOI=10.3389/fphar.2022.881286 ISSN=1663-9812 ABSTRACT=
The trabecular meshwork (TM) is responsible for intraocular pressure (IOP) homeostasis in the eye. The tissue senses IOP fluctuations and dynamically adapts to the mechanical changes to either increase or decrease aqueous humor outflow. Cationic mechanosensitive channels (CMCs) have been reported to play critical roles in mediating the TM responses to mechanical forces. However, how CMCs influence TM cellular function affect aqueous humor drainage is still elusive. In this study, human TM (HTM) cells were collected from a Chinese donor and subjected to cyclically equiaxial stretching with an amplitude of 20% at 1 Hz GsMTx4, a non-selective inhibitor for CMCs, was added to investigate the proteomic changes induced by CMCs in response to mechanical stretch of HTM. Gene ontology enrichment analysis demonstrated that inhibition of CMCs significantly influenced several biochemical pathways, including store-operated calcium channel activity, microtubule cytoskeleton polarity, toll-like receptor signaling pathway, and neuron cell fate specification. Through heatmap analysis, we grouped 148 differentially expressed proteins (DEPs) into 21 clusters and focused on four specific patterns associated with Ca2+ homeostasis, autophagy, cell cycle, and cell fate. Our results indicated that they might be the critical downstream signals of CMCs adapting to mechanical forces and mediating AH outflow.