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Background: The incidence of Nonalcoholic Fatty Liver (NAFL) is increasing year by year,
growing evidence suggests that the intestinal flora plays a causative role in NAFL. Huazhi
Rougan Granule (HRG) is commonly used in the clinical treatment of NAFL. It is reported that it
can reduce lipids and protect the liver, but no research has confirmedwhether the drug’s effect
is related to the intestinal flora. Therefore, we investigated whether the effect of HRG is related
to the regulation of intestinal flora to further explore the mechanism of HRG in the treatment of
NAFL through intestinal flora.

Methods: In this study, C57BL/6Jmice were fed a high-fat diet for 10 weeks, and the high-fat
diet plus HRGor polyene phosphatidylcholine capsules were each administered by gavage for
5 weeks. High-throughput sequencing, network pharmacology, and molecular docking were
used to explore the mechanism of HRG in the treatment of NAFL through intestinal flora.

Results: HRG treatment can reduce body weight gain, lipid accumulation in liver and
lipogenesis and reduce serum biochemical indexes in high-fat-fed mice. Analysis of
intestinal flora showed that HRG changed the composition of intestinal flora, which was
characterized by a decrease in the Firmicutes/Bacteroidetes ratio. Moreover, the species
distribution was significantly correlated with AKP, HDL-C, and TG. Metagenetic analysis
showed that HRG altered the functional composition and functional diversity of
microorganisms, which was mainly characterized by an increase in the abundance of
metabolic pathways. The network pharmacology results show that the mechanism of
HRG in the treatment of NAFL through intestinal flora is mainly reflected in the biological
process of gene function and related to infectious diseases, immune systems, and signal
transduction pathways, such as cytokine-cytokine receptor interaction, Chagas disease, IL-17
signaling pathway and other signaling pathways.
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Conclusion: These results strongly suggest that HRG may alleviate NAFL by
preventing IFD.

Keywords: nonalcoholic simple fatty liver, high-fat diet, intestinal flora disorder, 16s sequencing, network
pharmacology

BACKGROUND

Nonalcoholic Fatty Liver (NAFL) is a common, multifactorial,
and less significant liver disease whose incidence is increasing
worldwide. The occurrence of NAFL is mainly related to

unhealthy dietary habits and lifestyles. This leads to
pathological accumulation of fat droplets in hepatocytes
(Cobbina and Akhlaghi, 2017; Romero-Gómez et al., 2017).
There is increasing evidence that obesity, cardiovascular
disease, and type 2 diabetes are closely related to the
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progression of NAFL and represent an increasing burden to
society (Eckel et al., 2010; Yang et al., 2015; Graffy and
Pickhardt, 2016; Younossi et al., 2019; de Vries et al., 2020;
Deprince et al., 2020). Although NAFL is usually clinically
asymptomatic, it can progress over time to non-alcoholic
steatohepatitis, cirrhosis, and end-stage liver disease
(Papatheodoridi and Cholongitas, 2018; Zhou et al., 2020).
Currently, lifestyle changes are the mainstay of treatment,
including dietary changes and exercise (Younossi et al., 2018;
Kořínková et al., 2020). Therefore, the development of drugs and
nutraceuticals for NAFL remains a challenge for all scientists
(Targher et al., 2020).

In recent years, intestinal flora has gradually attracted the
attention of scientists. A growing number of studies show that
intestinal flora is closely related to human health homeostasis,
which opens a new direction for us to understand the occurrence
and progression of NAFL (Milani et al., 2017; Mohajeri et al.,
2018; Gomaa, 2020; Kim et al., 2020; Manor et al., 2020). Studies
have shown that intestinal flora can affect lipid metabolism and
lipid levels in blood and tissues in mice and humans (Zhou et al.,
2017; Wang et al., 2018; Kong et al., 2019; Yuan et al., 2019; Hong
et al., 2020; Yiu et al., 2020). In addition, animal and clinical
studies have shown that regulation of intestinal flora and its
metabolites can influence the degree of a high-fat diet-induced
hepatic steatosis in NAFL mice and NAFL patients, thereby
interfering with the occurrence and development of NAFL
(Jiang et al., 2015; Moreira et al., 2018; Wu et al., 2019;
Nakano et al., 2020; Zhang et al., 2021). Therefore, there are
good reasons to believe that the composition of intestinal flora
may help predict the severity of NAFL and may be a new
therapeutic target for NAFL.

Huazhi Rougan Granule (HRG) is widely used to treat
dampness-heat obstruction of NAFL. It has the function of
clearing heat and detoxifying, eliminating blood stasis, and
softening the liver. The composition of HRG is Yinchen (YC),
Juemingzi (JMZ), Dahuang (DH), Zexie (ZX), Zhuling (ZL),
Shanzha (SZ), Cangzhu (CZ), Baizhu (BZ), Chenpi (CP),
Gualou (GL), Nvzhenzi (NZZ), Mohanlian (MHL), Gouqizi
(GQZ), Xiaoji (XJ), Chaihu (CH), Gancao (GC). Studies have
shown that this formula can not only improve lipid deposition in
the liver, protect liver cell membranes and reduce liver damage
but also protect the intestinal barrier and regulate intestinal flora
(Niu et al., 2011; Chen et al., 2015; Gao et al., 2021; Zhang et al.,
2021; Zhang et al., 2021).

Since intestinal flora disorder is the breakthrough point in
network pharmacology, the treatment of NAFL-related intestinal
flora disorder by HRGwas investigated to explore the mechanism
of HRG in the treatment of NAFL by intestinal flora in multiple
dimensions. Therefore, this study not only explored the
mechanism of HRG in the treatment of NAFL by intestinal
flora using network pharmacology but also established a
NAFL model for experiments. The intervention effect in
NAFL mice was analyzed by the high-throughput sequencing
method to analyze the diversity of intestinal flora in mice to
provide a better basis for further exploration of the mechanism of
HRG in the treatment of NAFL through intestinal flora.

MATERIALS AND METHODS

Experimental Animals
Seventy-two 6-week-old SPF-grade male C57BL/6J mice, weighing
between 20–22 g, were purchased from Beijing Speifu Biotechnology
Co., Ltd. They were housed in the ICV cage of the Experimental
Animal Center of Beijing University of Traditional Chinese
Medicine (n = 5/cage). Animals were housed at 20 ± 2°C in a
12-h light/12-h dark cycle and had free access to food and water.

Main Reagents in the Experiment
Reagents: Huazhi Rougan Granule (Lunan Pharmaceutical Co.,
Ltd.); Polyene Phosphatidylcholine Capsule (Yishanfu); high-fat
diet [78.8% basic feed +10% lard +10% egg yolk powder +1%
cholesterol +0.2% sodium cholate, product number is SCXK
(Jing) 2019-0010, Beijing Speifu Biotechnology Co., Ltd.];
normal diet [corn, soybean meal, fish meal, flour, bran, salt
calcium ammonium phosphate, stone powder, a variety of
vitamins, a variety of trace elements, amino acids, etc, product
number is SCXK (Jing) 2019-0010, Beijing Speifu Biotechnology
Co., Ltd.]; 4% tissue cell fixative (Beijing Bairuiji Biotechnology
Co., Ltd.); AKP, ALT, AST, TG, TC, HDLC, LDLC assay kit
(Nanjing Jiancheng).

Animal Grouping and Model Establishment
After 1 week of adaptive feeding of male C57 mice, 12 mice were
randomly selected as a blank control group (BC) and fed with a
normal diet (ND); the remaining mice were fed with high-fat diet
(HFD) to replicate the NAFL model. After 10 consecutive weeks,
relevant indicators were evaluated. Mice that passed the
evaluation could be considered successful modeling, gavage at
week 12, and sampled at week 17. Gavage continued for 5 weeks.
The successfully established mice were randomly divided into a
model control group (MC), a positive drug control group (PC),
and a high-medium-low-dose HRG group (TH/TM/TL), with 10
mice in each group. Finally, there were nine mice in each group
after sampling. HRG and Polyene Phosphatidylcholine Capsule
(PPC) were administered at equivalent doses converted from the
upper clinical limits of the human body, with doses of 3.12 g/kg
and 0.18 g/kg respectively. The high, medium and low doses of
HRG were 4, 2, and 1 times, respectively, the equivalent dose after
conversion.

Collection and Preparation of Samples
After collection of mouse feces, the feces were placed in sterile
cryopreservation tubes, quickly frozen in liquid nitrogen, and
stored in an ultra-low temperature refrigerator at −80°C for
subsequent analysis of intestinal flora diversity. After the mice
fasted for 12 h, the eyeballs were removed, and the blood was
collected in a 2 ml sterile centrifuge tube, centrifuged at 3,000 r/
min for 15 min at 4°C. The supernatant was stored in a centrifuge
tube for subsequent biochemical index analysis. One-third of
mouse liver lobes were fixed in 4% paraformaldehyde fixative,
routinely processed, embedded in paraffin, 3 μm sections were
stained with hematoxylin and eosin (HE) for histological analysis,
and frozen sections (8 μm) were stained with oil red O. The fat
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accumulation and inflammatory response of liver tissue were
observed under the microscope.

16S rRNA and Metagenomic Sequencing
16S rRNA sequencing: After extraction of the total DNA from the
sample, all primers were designed according to the conserved
region. 338F (5′- ACTCCTACGGGAGGCAGCA-3′) and 806R
(5′- GGACTACHVGGGTWTCTAAT-3′) were used for PCR
amplification of the V3-V4 region of the 16S rDNA gene to

perform the Illumina deep sequencing. PCR products were
detected by 1.8% agarose gel electrophoresis. Metagenome
sequencing: extract DNA from fecal samples, detect the DNA
of the sample, and fragment the DNA with ultrasonic waves after
passing the test. Then, the fragmented DNA is purified, the end
repaired, A is added to the three ends, and the sequencing adapter
is ligated. Fragment size selection was performed by agarose gel
electrophoresis, and PCR amplification was performed to form a
sequencing library. The constructed libraries are first checked for

FIGURE 1 | Effects of HRG on liver morphology, liver histopathology (HE staining, ×20) and fatty lesions in mice (oil red O staining, ×20).

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 8757004

Liu et al. HRG in Treatment of NAFL

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


quality, and qualified libraries are sequenced on the Illumina
sequencing platform. Beijing BioMarker Technologies Co., Ltd.
provided library construction and sequencing Beijing BioMarker
Technologies Co., Ltd. (Beijing, China).

Network Pharmacology Analysis
Through the Traditional Chinese Medicine Systems
Pharmacology Platform (TCMSP, https://tcmspw.com/tcmsp.
php) (Ru et al., 2014; Zhang et al., 2020) and the Integrative
Pharmacology-based Research Platform of Traditional Chinese
Medicine (TCMIP v2.0, http://www.tcmip.cn/TCMIP/index.
php/Home/) (Wang et al., 2021), the active ingredients of
HRG were screened. The TCMSP database and the Swiss
Target Prediction platform (http://www.swisstargetprediction.
ch/) (Daina et al., 2019) were used to identify the targets of
the main active ingredients. The Uniprot database (https://www.
uniprot.org/) (UniProt Consortium, 2021) is used to find the gene
information corresponding to the targets. After integration, the
active components and related target information of HRG were
obtained. The Gene Cards database (https://www.genecards.org)
(Stelzer et al., 2016), DigSee database (http://210.107.182.61/
geneSearch/) (Kim et al., 2013) and NCBI Gene (https://www.
ncbi.nlm.nih.gov/gene/) (NCBI Resource Coordinators, 2018)
were used to search for targets related to NAFL and IFD. The
above targets were respectively integrated and duplicate genes
were removed. A total of 198 targets related to IFD and 1,395
targets related to NAFL were obtained.

Herb-compound-target network, PPI network and multi-
element network of “herb-key compound-key target-disease-
KEGG pathway” of HRG were constructed by Cytoscape 3.7.2.
(Otasek et al., 2019). Comprehensive modular analysis and
cytoHubba analysis were used to screen the key targets of
HRG in the treatment of NAFL through the intestinal flora.
GO enrichment analysis and KEGG pathway enrichment analysis
were performed on the targets in the intersection network using R
4.0.3 (Layeghifard et al., 2018; The Gene Ontology Consortium,
2019; Kanehisa and Sato, 2020). The potential active ingredients
obtained by the analysis were docked onto the potential targets.
Autodock Tools 1.5.6 was used to perform preprocessing such as
water removal, hydrogenation, and atom typesetting for proteins
and small molecule compounds, Autodock Vina 1.1.2 was used to
perform molecular docking calculations, and Pymol 2.3.2
(https://pymol.org/2/) was used to visualize the result (Trott
and Olson, 2010; Mooers, 2020; Eberhardt et al., 2021).

Bioinformatics Analysis
Microbial diversity analysis: FLASH v1.2.11 was used to stitch the
original data. The spliced sequences were quality filtered and
chimeras were removed to obtain high-quality Tags sequences.
Sequences were clustered at a similarity level of 97%, and OTUs
were filtered with a threshold of 0.005% of all sequenced
sequences. Alpha diversity and beta diversity were analyzed
using the BMK Cloud platform (www.biocloud.ent).

Metagenome analysis: use of Trimmomatic (version 0.33)
software to filter raw data (Raw Tags); use of bowtie2 (version
2.2.4) to align with host genome sequence to remove host
contamination; MEGAHIT (Version 1.1.2) was used for
metagenomic assembly to filter contig sequences shorter than
300 bp; MetaGeneMark (Version 3.26) was used for gene
prediction; cd-hit (Version 4.6.6) was used to remove
redundancy. The similarity threshold was set a 95%, and the
coverage threshold was set at 90%. Both functional diversity
analysis and species diversity analysis are analyzed on the
BMK Cloud platform (www.biocloud.ent).

Statistical Analysis
The relevant results are expressed as mean ± SE. SPSS software
was used for data analysis and GraphPad Prism was used for
visualization. p values of less than 0.05 were considered
statistically significant.

RESULTS

Lipid Accumulation in Mice Induced by HFD
As shown in Figure 1, in the model group compared with the BC
group, the fat accumulation in the liver increased, the liver
volume increased, white color, and the edge became blunt.
After administration, the degree of redness of the liver
improved in each group, especially in the group TH. The
results of HE and oil red O staining showed more balloon
denatured hepatocytes and more red lipids in the liver tissue
of the model group but less in the administration group. The
pathological degree of the MC group was the most severe, that of
the TH group was the mildest, and there was no significant
difference between the TL group and the PC group. Therefore,
HRG ameliorates HFD-induced hepatic fat accumulation and
weight gain, and HRG may improve liver lesions in a dose-
dependent manner.

TABLE 1 | Comparison of serum biochemical indexes of mice in each group after 5 weeks of gavage (‾x±se, n = 9).

Group HDLC (mmol/L) LDLC (mmol/L) TG (mmol/L) TC (mmol/L) AST (U/L) ALT (U/L) AKP(King unit/100 ml)

BC 4.48 ± 0.15* 0.71 ± 0.07**** 1.41 ± 0.06 4.69 ± 0.21*** 35.31 ± 5.27 24.11 ± 3.40 11.55 ± 0.39*
MC 5.22 ± 0.13 1.19 ± 0.11 1.62 ± 0.15 6.87 ± 0.35 50.25 ± 5.15 34.61 ± 4.08 13.56 ± 0.53#

TL 2.13 ± 0.17**,## 0.84 ± 0.08** 1.10 ± 0.05*,##,▲ 6.17 ± 0.45## 32.38 ± 3.91 17.57 ± 1.06* 11.96 ± 0.70▲

TM 2.20 ± 0.23**,## 0.96 ± 0.07#,▲ 1.34 ± 0.12 6.40 ± 0.57## 34.35 ± 2.19▲ 15.39 ± 2.43* 7.80 ± 0.65***,###,▲

TH 2.10 ± 0.15**,## 0.95 ± 0.11▲ 1.02 ± 0.05##,*,▲ 6.24 ± 0.50## 31.02 ± 4.48 18.25 ± 3.07 8.03 ± 0.87***,###,▲

PC 2.43 ± 0.08**,## 0.66 ± 0.06** 1.34 ± 0.10 6.23 ± 0.39## 22.67 ± 1.99** 15.58 ± 1.49* 9.97 ± 0.34***

Compared with the model group, *p < 0.05, **p < 0.01, ***p < 0.001.
Compared with the blank group, #p < 0.05, ##p < 0.01, ###p < 0.001.
Compared with the PC, group, ▲p < 0.05, ▲▲p < 0.01, ▲▲▲p < 0.001.
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FIGURE 2 | Effect of HRG on biochemical indexes and statistical histogram of organ index in mice. (A) Effects of HRG on serum AKP level in mice. (B) Effects of
HRG on serum ALT level in mice. (C) Effects of HRG on serum AST level in mice. (D) Effects of HRG on serum HDL-C level in mice. (E) Effects of HRG on serum LDL-C
level in mice. (F) Effects of HRG on serum TC level in mice. (G) Effects of HRG on serum TG level in mice. (H) Effects of HRG on liver index in mice. Compared with the
model group, *p < 0.05, **p < 0.01, ***p < 0.001; compared with the blank group, #p < 0.05, ##p < 0.01, ###p < 0.001).
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Serum Analysis
Compared with the blank group, the indexes of liver enzymes and
blood lipids were higher in the model group, among which there
were significant differences in TC, HDL-C, LDL-C, AKP, ALT,
and AST. However, there was no significant difference in TG.
After administration, liver enzymes and blood lipids were lower
than in the model group. There were significant differences in

ALT, AST and HDL-C between the MC and administration
groups. There were no significant differences in TC, ALT and
HDL-C between the administration groups. There were
differences in AKP, AST, TG and LDL-C between the HRG
group and the PC group.

The effect of reducing AKP in the TM and TH group was
better than in the TL group, and the effect of lowering in the TG
group was better than in the TM group. The effect of lowering
AKP in the PC group was better than in the TL group but worse
than in the TM and TH groups. In addition, the effect of LDL-C
lowering in the PC group was better than in the TM and TH
groups. The above differences were statistically significant. This
suggest that HFD can lead to abnormal metabolism of blood
lipids and liver enzymes, and that HRG can improve this.
Compared with positive drugs, HRG has advantages in
improving HDL-C, TG, and AKP, and the degree of
improvement may be dose-dependent. There was no
significant difference in organ index between groups. The
comparison of the different indexes of each group is shown in
Table 1, and the effects of HRG on the biochemical indexes and
organ index of mice are shown in Figure 2.

Microbial Diversity Analysis
The intestinal flora is considered to play a causal role in the
pathogenesis of NAFL.We evaluated the effects of administration
on intestinal flora composition by high-throughput sequencing of
the bacterial 16S rRNA V3 + V4 region. High-throughput
sequencing generated a total of 4,191,545 raw reads from 54
samples. After screening, a total of 4,178,702 high-quality reads
were obtained. Based on a similarity level of 97%, all effective
reads were clustered into OTUs for OTU cluster analysis and
species taxonomy analysis. The quality evaluation of the
sequencing data is shown in Supplementary Table S1.

In this study, the flora was identified and analyzed at the
phylum, class, order, family, and genus levels. Finally, a total of
17 phyla, 26 classes, 56 orders, 86 families and 187 genera were
identified. The figure shows the annotation of species and the
taxonomic analysis. The histogram of species distribution (Figures
3A–D) shows that species are mainly distributed in Firmicutes and
Bacteroidetes, followed by Actinobacteria, Verrucomicrobia and
Proteobacteria. In addition, is they are mainly distributed in the
genera of uncultured_bacterium_f_Muribaculacea and
lachnospiraceae NK4A136 group, followed by
uncultured_bacterium_f_Lachnospirae, Lactobacillus and
Akkermansia.

At the phylum level (Figures 3A,B), the levels of Firmicutes,
Proteobacteria and Actinobacteria were higher in the MC group
than in the BC group, whereas the levels of Bacteroidetes and
Verrucomicrobia were lower. Compared to the BC group, the
levels of Firmicutes and Proteobacteria decreased in the
administration group, especially in the TH group;
Actinobacteria decreased in the TH and TM groups, most
significantly in the TM group, but increased in the PC and TL
groups. Bacteroidetes were significantly higher in the TH and TM
groups than in the MC group, and Verrucomicrobia increased
most significantly in the TH and TM groups. Compared with the
BC group, the proportion of Lactobacillus and Desulfovibrio was

FIGURE 3 | The results of microbial diversity analysis. (Ⅰ: Histogram of
species distribution. Ⅱ: Dilution curve and Shannon curve. Ⅲ: Beta analysis
based on OTU. Ⅳ: LEfSe analysis. Ⅴ: RDA analysis.)
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TABLE 2 | Alpha diversity statistics (‾x±se, n = 9).

Group BC MC PC TH TL TM

Shannon index 5.5847 ± 0.1425 5.4356 ± 0.2673 5.3317 ± 0.2126 5.4967 ± 0.2489 5.4752 ± 0.187 6.0296 ± 0.2885▲

Simpson index 0.9445 ± 0.0089 0.9311 ± 0.0208 0.9228 ± 0.0157 0.9346 ± 0.0158 0.9412 ± 0.0115 0.9509 ± 0.0147
ACE index 464.1403 ± 7.6454 452.5716 ± 6.7194 457.6025 ± 5.263 472.0735 ± 9.1531 492.6638 ± 7.061**,#,▲▲ 496.8799 ± 9.3045***,##,▲▲

Chao1 index 472.0195 ± 10.5494 457.5262 ± 8.1369 464.9995 ± 5.4769 477.7676 ± 9.7134 492.5886 ± 7.293**,▲ 505.3993 ± 9.6354***,##,▲▲

PD whole tree index 25.1176 ± 0.3986 24.8614 ± 0.3622 25.3351 ± 0.2404 26.193 ± 0.4081*,# 26.721 ± 0.3868**,##,▲▲ 26.9273 ± 0.2881***,##,▲▲

OTU 414.56 ± 8.056 402.89 ± 9.137 420.11 ± 5.397 434.44 ± 11.973* 446.22 ± 7.240**,#,▲ 457.11 ± 8.389***,##,▲▲

Coverage (%) 99.8878 ± 0.0128 99.9056 ± 0.0112 99.9167 ± 0.0058# 99.9167 ± 0.0071# 99.9078 ± 0.0040 99.9111 ± 0.0102

Compared with the model group, *p < 0.05, **p < 0.01, ***p < 0.001.
Compared with the blank group, #p < 0.05, ##p < 0.01, ###p < 0.001.
Compared with the PC, group, ▲p < 0.05, ▲▲p < 0.01, ▲▲▲p < 0.001.

FIGURE 4 | Network construction and correlation analysis. [(A) Herb-compound-target network of HRG. (B) PPI network related to NAFL. (C) PPI network related
to IFD. (D) PPI network of HRG-IFD-NAFL merge targets. (E) Module 1. (F) Module 2. (G) Hub gene. (H) Herb-key compound-potential target-pathway network. (I)
Illustration of crucial putative biological progress caused by key targets].
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higher in the MC group at the genus level (Figures 3C,D). In
comparison, Akkermansia and Ruminococcaceae UGG-014
accounted for a lower proportion. After administration,
Lactobacillus (decreased the most in TH group) and Desulfovibrio
(decreased the most in TH group) decreased, Akkermansia
(increased the most in TH group) and ruminococcaceae UGG-
014 (increased the most in PC group) increased. After
administration, Lactobacillus and Desulfovibrio decreased and
Akkermansia increased, especially in the TH group;
Ruminococcaceae UGG-014 increased, especially in the PC group.
Therefore, it is tentatively suggested that HRG can increase
Bacteroidetes, Verrucomicrobia, uncultured bacterium f
Lachnospiceae and Akkermansia, and reduce Firmicutes and
Proteobacteria, Lactobacillus and Desulfovibrio. HRG can improve
NAFL by changing the structure of intestinal flora of NAFL mice.

The analysis of alpha diversity can be represented by the index
in Table 2. The larger the index, the higher the diversity of the
sample. The results showed no significant difference between the
Shannon index and the Simpson index in the community
diversity evaluation. The ACE index and the Chao index in
community richness evaluation showed that the richness of
the TL and TM groups was significantly higher than that of
the BC group, the MC group and the PC group. Shannon index
from large to small TM > BC > TH > TL > MC > PC, Simpson
index from large to small TM > BC > TL > TH >MC > PC, ACE
index from large to small TM > TL > TH > BC > PC > MC, PD
whole tree index from large to small TM > TL > TH > PC > BC >
MC, Chao1 index from large to small TM > TL > TH > BC > PC >
MC. Various indexes of alpha diversity showed that HRG could
improve the diversity of NAFL mice, and the curative effect was
better than that of the PC group. At the same time, the coverage
rate of each group of samples is greater than 99%, indicating that
the probability of undetected sequences in the samples is very low,
and the sequencing depth can accurately reflect the composition
diversity of the flora. The dilution curve shows that when the
curve becomes gradually flat, increasing the sequencing depth has
no significant impact on alpha diversity, as shown in Figures
3E,F. The Shannon index curve shows that when the curve tends
to become flat, the characteristic species do not increase with the
increase of sequencing quantity, as shown in Figures 3G,H.

The comparison of the changing trend of β diversity of
intestinal flora in each group is based on visual analysis of
ecological differences by the Jaccard and Bray-Curtis PCoA
algorithm based on independent OTU. As shown in the
Jaccard PCoA in Figure 3I, the contribution of principal
coordinates 1 (PC1) and PC2 to the distribution of samples is
11.92 and 8.46%, respectively. The clustering of the intestinal
flora shows that there are obvious differences in the microbial
community between the samples of BC andMC groups, and there
are obvious differences in the microbial community between the
administration group, BC group and MC group. In addition, the
Bray-Curtis PCoA confirms these findings (Figure 3J). PC1
(15.21%) can better distinguish the microecology of BC and
MC group, MC and TM, TH group. When PC2 (10.78%) was
introduced, PC and BC, PC and MC, TH and BC, and TH and
MC could also be significantly separated (Figure 3J). Community
similarity analysis is another method that uses hierarchical
clustering of the distance matrix to represent β diversity. The
similarity and differences between samples can be described by
the dendritic structure (Figures 3K,L). These data further
indicated that the BC and MC groups had large differences in
microbial community structure and that the HRG administration
group and the control group had large differences in microbial
community structure.

In order to find the biomarker flora with statistical abundance
differences between the different groups, LEfSe analysis of the
samples between the groups was performed. Figure 3M shows the
evolutionary branch diagram of LEfSe analysis. The results
showed that Bacteroidetes, Actinobacteria, Firmicutes, and
Verrucomicrobia were significantly different species at the
phylum level. At the genus level, Bifidobacterium, Bacteroides,
Alloprevotella, Lactobacillus, Lachnospiraceae_ NK4A136_
group, Dubosiella, Faecalibaculum and Akkermansiaceae were
significantly different species. t-test at the phylum and genus
levels between the groups showed (Supplementary Tables S2,
S3) that the dominant bacterial groups of NAFL mice and HRG
group were mainly Firmicutes, Proteobacteria, Actinobacteria,
and Bacteroidetes. At the genus levels, they were mainly
Adlercreutzia and Ruminococcaceae_ UCG-013,
Sphingomonas, etc. It is suggested that HRG may improve

TABLE 3 | Compound information in the top 20 nodes in the “herb-compound-target” network of HRG.

Number Compound TCMSP ID Pubchem ID Degree OB(%) DL Herb source

HRG65 Quercetin MOL000098 5280343 238 46.43 0.28 YC, SZ, NZZ, MHL, GQZ, CH, XJ, GC
HRG185 Kaempferol MOL000422 5280863 158 41.88 0.24 DH, NZZ, CH, GC
HRG107 Luteolin MOL000006 5280445 150 36.16 0.25 MHL, NZZ
HRG3 7-Methoxy-2-methyl isoflavone MOL003896 354368 144 42.56 0.2 GC
HRG76 wogonin MOL000173 5281703 142 30.68 0.23 CZ
HRG53 Glabridin MOL004908 124052 138 53.25 0.47 GC
HRG81 7-Acetoxy-2-methylisoflavone MOL004991 268208 136 38.92 0.26 GC
HRG189 licochalcone a MOL000497 5318998 135 40.79 0.29 GC
HRG88 Glyasperins M MOL005007 NA 134 72.67 0.59 GC
HRG74 4′-O-Methylglabridin MOL004978 9927807 134 36.21 0.52 GC
HRG70 1-Methoxyphaseollidin MOL004959 480873 134 69.98 0.64 GC
HRG86 Licoagrocarpin MOL005003 15840593 133 58.81 0.58 GC
HRG239 Medicarpin MOL002565 336327 133 49.22 0.34 GC
HRG179 isorhamnetin MOL000354 5281654 133 49.6 0.31 YC, CH, GC
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TABLE 4 | Information of molecular docking.

Structure PDB ID Target Compound ID Compound name Affinity (kcal/mol)

1O80 CXCL10 HRG65 Quercetin −6.5

3IL8 CXCL8 HRG65 Quercetin −6.8

1P53 ICAM1 HRG107 Luteolin −7.3
1P53 ICAM1 HRG185 Kaempferol −7
1P53 ICAM1 HRG65 Quercetin −7.3

1FYH IFNG HRG107 Luteolin −8.1
1FYH IFNG HRG65 Quercetin −8

2H24 IL10 HRG107 Luteolin −6.6
2H24 IL10 HRG65 Quercetin −6.5

5R86 IL1B HRG65 Quercetin −6.8

(Continued on following page)
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NAFL by changing the flora of Firmicutes, Proteobacteria,
Actinobacteria and Bacteroidetes.

RDA analysis was performed for intestinal flora abundance
and serum index parameters (Figure 3N: phylum level,
Figure 3O: genus level). The results showed that AKP, HDLC,
TC, and TG were highly correlated with species distribution, and
they were distributed in the same direction. At the genus level,
they were positively correlated with Faecalibaculum,
Desulfovibrio, Dubosiella and Lactobacillus, and negatively
correlated with Bacteroides, Akkermansia and Alloprevotella.
At the phylum level, AKP, HDL-C and TG were highly
correlated with species distribution, positively correlated with
Firmicutes and Actinobacteria, and negatively correlated with
Epsilonbacteraeota and Verrucomicrobia. Acidobacteria and
Proteobacteria were negatively correlated with AKP and HDL-
C and positively correlated with TG. Bacteroidetes were positively
correlated with HDL-C and negatively correlated with AKP and
TG. The results showed that these changes in colony abundance

were closely related to the structural changes of intestinal flora in
NAFL mice before and after administration.

Network Pharmacology
249 effective compounds were obtained by screening and removing
the repetitive compounds among the herbs. The above compounds
were used for target prediction, correction, and deletion of
duplicate targets, and a total of 1,186 standard gene names for
the targets were obtained. The “herb-compound-target” network of
HRG is shown in Figure 4A (the yellow nodes represent drug
targets, the green nodes represent compounds, and the red nodes
represent herb), and 14 compounds in the 20 nodes with the
highest degree value were selected as key compounds (Table 3).
The PPI network of NAFL is shown in Figure 4B and the PPI
network of IFD is shown in Figure 4C. The targets related to
NAFL, the targets related to IFD, and the targets corresponding to
the compounds were merged simultaneously, and the targets of
HRG to treat NAFL through intestinal flora were obtained

TABLE 4 | (Continued) Information of molecular docking.

Structure PDB ID Target Compound ID Compound name Affinity (kcal/mol)

4NEM IL2 HRG107 Luteolin −7
4NEM IL2 HRG65 Quercetin −6.8

5FHX IL4 HRG107 Luteolin −7.9

5FUC IL6 HRG107 Luteolin −8.9
5FUC IL6 HRG65 Quercetin −9

7KPA TNF HRG107 Luteolin −8.3
7KPA TNF HRG185 Kaempferol −9.5
7KPA TNF HRG65 Quercetin −10
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(Figure 4D). Module analysis and cytoHubba analysis were
performed with this merged network. Module analysis shows
module one (Figure 4E, score = 7.2) and module two
(Figure 4F, score = 7.0), and cytoHubba analysis shows the top
10 targets (Figure 4G). Finally, 10 key potential therapeutic targets
were obtained: CXCL10, CXCL8, ICAM1, IFNG, IL10, IL1B, IL2,
IL4, IL6, TNF. The node size in Figures 4A–F is positively
correlated with the degree value. Node colors in Figures 4B–F
are positively correlated with degree values.

GO and KEGG enrichment analysis were performed for the
intersection targets, and a total of 184 pathways
(Supplementary Table S4) and 980 GO entries

(Supplementary Table S5) were enriched. The KEGG
enrichment results showed that there were 59 pathways
related to Organic Systems, eight pathways related to
Metabolism, 80 pathways related to Human Diseases, one
pathway related to Genetic Information Processing, and 25
pathways related to Environmental Information Processing
and 11 pathways related to Cellular Processes. The enrichment
results showed that Cytokine-cytokine receptor interaction,
Chagas disease, Influenza A and other pathways had better
enrichment results. The GO enrichment results showed that
the BP entries accounted for 97.04%, the MF entries accounted
for 2.65%, and the CC entries accounted for 0.31%. BP mainly

FIGURE 5 | Molecular docking simulation.
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related to metabolic process of reactive oxygen species,
response to molecules of bacterial origin, regulation of
inflammatory response, etc. MF mainly related to Receptor

ligand activity, signaling receptor activator activity, cytokine
receptor binding, etc. CC mainly related to membrane raft,
membrane microdomain and membrane region.

FIGURE 6 | The results of metagenomics sequencing. (Ⅰ: Functional annotation analysis. Ⅱ: Histogram of KEGG pathway composition and abundance. Ⅲ: Heat
map of metagenomeSeq differential pathway abundance).
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The 10 key therapeutic targets, 14 key compounds, and related
pathways were used to construct a network diagram of “herb-key
compound-potential target-pathway” through Cytoscape
(Figure 4H). The top three compounds were selected as
potential compounds (quercetin, Luteolin, Kaempferol). The
top three signaling pathways were selected as key pathways
(Cytokine-cytokine receptor interaction, Chagas disease, IL-17
signaling pathway). Pathway Builder Tool 2.0 was used to draw
the cartoon pathway mechanism of HRG in the treatment of
NAFL through the intestinal flora (Figure 4I). The 10 key targets
were molecularly docked with three potential compounds, and a
total of 18 pairs of docking results were obtained (Table 4). The
results were visualized using Pymol (Figure 5).

Metagenomics Sequencing
The functional diversity of the environmental samples is analyzed
from the perspective of gene function, and the species diversity
contained in the environmental samples is analyzed from the
perspective of species. The original sequence was filtered by fastp
software to obtain high-quality sequencing data. Bowtie2 was
used to align with the host genome sequence to remove host
contamination. MEGAHIT software was used for macrogenome
assembly, and contig sequences shorter than 300 bp were filtered.
QUAST software was used to evaluate the assembly results. A
total of 360,000,366,878 bp of clean reads were obtained through
quality control, and the final number of effective reads was
914,019,667 bp. 15,830,378 contigs were obtained with a total
length of 16,591,141,994 bp. MMseqs2 software was used to
remove redundancy. The similarity threshold was set at 95%
and the coverage threshold was set at 90%. The statistical results
of the quality control of the sequencing data of each group can be
found in Supplementary Table S6, and the statistical information
of the assembly results can be found in Supplementary Table S7.

Function annotation is based on the KEGG (Figures 6A,B),
GO (Figure 6C), eggNOG (Figure 6D), CARD (Figure 6E), and
CAZy (Figure 6F) databases. A total of 6055 KO (KEGG
Ontology) and 2104 EC (enzyme) were annotated. Function
was enriched in the pathways, resulting in four pathways at
level 1, 22 pathways at level 2 and 167 pathways at level 3.
The KEGG functional genes are closely related to metabolism
related pathways, and the abundance of global and overviewmaps
is highest for secondary pathways. Go annotated three categories,
42 secondary classifications, and 1,558 entries. EggNOG was
annotated in four categories, 25 secondary classifications and
31039 eggNOG. The results showed that the number of
corresponding functional genes of Replication,
recommendation and repair and General function prediction
only accounted for a relatively high proportion. Cell wall/
membrane/envelope biogenesis and Carbohydrate transport
and metabolism ranked second. The annotation results of the
CARD database showed that the relative content of resistance
genes corresponding to Tetracycline and Multidrug of antibiotic
resistance is high, followed by Fluoroquinolone and
Aminoglycoside. The annotation results of the CAZy database
show that the top three carbohydrate enzymes are glycoside
hydrolase (GH), glycosyltransferase (GT) and non-catalytic
carbohydrate binding module (CBM).

Figures 6G–L shows the composition of the KEGG pathways
at different levels of each group and sample. At level 1 of each
group, the abundance of Metabolic was the highest and the
abundance of Cellular processes was the lowest. At level 2 of
each group, the abundance of Global and overview maps is the
highest, followed by Carbohydrate metabolism and Amino acid
metabolism. The abundances of Translation, Nucleoside
metabolism, Membrane transport and Metabolism of cofactors
and vitamins are similar. Among the levels 3 of each group, the
abundance of metabolic pathways was the highest, followed by
biosynthesis of secondary metals, and third was Biosynthesis of
antibiotics. Biosynthesis of amino acids and Microbial
metabolism in diverse environments have little difference in
abundance. In contrast, Carbon metabolism, ABC transporters,
Purine metabolism, Ribosome and Pyrimidine metabolism have
little difference in abundance. The results showed that compared
with the blank group and the model group, the abundance of
Metabolism at level 1, Global and overview maps at level 2 and
Metabolic pathways at level 3 increases to some extent in the
HRG group. It is speculated that HRG can improve NAFL by
increasing metabolic pathways associated with metabolic
regulation.

MetagenomeSeq was used to test the difference in abundance
of KEGG at level 3 (p < 0.05), and the analyzed difference was
plotted according to abundance, as shown in Figures 6M–X. The
results showed that the abundance of Proteasome in the MC
group was significantly higher than that in the BC group, and the
Sesquiterpenoid and triterpenoid biosynthesis in the MC group
was significantly lower than that in the BC group. Compared with
the MC group, the PC group changed this trend. Compared with
the BC group, the abundance of Fluorobenzoate degradation and
Toluene degradation was higher in the HRG group. Compared
with the MC group, the metabolic pathways with higher
abundance in the HRG group include Aminobenzoate
degradation, Carotenoid biosynthesis, Sesquiterpenoid and
triterpenoid biosynthesis, Steroid biosynthesis,
Glycosaminoglycan degradation, Phagosome, mRNA
surveillance pathway, Tetracycline biosynthesis, Biosynthesis of
vancomycin group antibiotics, Carotenoid biosynthesis,
Aminobenzoate degradation, Sesquiterpenoid and triterpenoid
biosynthesis. Therefore, HRG may improve NAFL through
Metabolism and Cellular processes in which metabolism
related pathways play an important role. Aminobenzoate
degradation, Steroid biosynthesis, and Sesquiterpenoid and
triterpenoid biosynthesis are important metabolic pathways.

DISCUSSION

Nonalcoholic Fatty Liver (NAFL), a common chronic disease in
the clinic, can develop into nonalcoholic steatohepatitis, which
can progress to cirrhosis or even liver cancer and is also related
with the occurrence and development of other chronic diseases
(Wang and Malhi, 2018; Aron-Wisnewsky et al., 2020). When
liver tissue is diseased or liver cells are damaged, the activity of
related liver enzymes and serum concentrations, such as AKP,
ALT and AST, is increased (Zhou et al., 2017; Eshraghian et al.,
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2020; Choudhary et al., 2021; Nielsen et al., 2021). NAFL itself is
also a metabolic disease that may be manifested by abnormal lipid
metabolism and a significant or insignificant increase in blood
lipids, such as HDLC, LDL-C, TC and TG (Jimenez-Rivera et al.,
2017; Chen et al., 2020; Liu et al., 2020; Mohammadi et al., 2020).
In our study, serum HDL-C in model mice increased and
decreased after administration, which was similar to the results
of Sheng et al. (Sheng et al., 2019). Changes in serum levels may be
related to the degree of NAFLD, species and individual
differences. A number of studies have shown that adjuvant
therapy regulated by intestinal flora can effectively improve
liver function, blood lipids, BMI and other levels of NAFL
patients, suggesting that intestinal flora plays an important
role in NAFL treatment (Tsai et al., 2020; Burz et al., 2021;
Fernandez-Botran et al., 2021; Pan et al., 2021; Yang et al., 2021).
The results of this study showed that Huazhi Rougan granules
(HRG) could improve liver enzymes and lipid indexes of NAFL
mice. The improvement effect of HDL-C, TG and AKP was better
than that of the positive control group, and the therapeutic effect
was related to the concentration. In addition, HRG can improve
the accumulation of liver lipids in NAFL model mice, and the
improvement of liver lesions may be dose-dependent.

The results of microbial diversity analysis showed that HRG
could increase microbial diversity, increase species richness, and
affect the microbial structure of NAFL mice. At the phylum level,
HRG increased Bacteroides and Verrucomicrobia and decreased
Firmicutes and Proteobacteria in NAFL mice. At the genus level,
Akkermansia increased, and Lactobacillus and Desulfovibrio
reduced. RDA analysis showed that species distribution was
significantly correlated with AKP, HDL-C and TG.
Bacteroidetes were negatively correlated with AKP, AST, TG
and TC, while Firmicutes were negatively correlated with ALT,
LDL-C and TC. Other studies have also found that the intestinal
flora composition affects NAFL (Rau et al., 2018; Demir et al.,
2020). Studies have shown that the Firmicutes/Bacteroidetes (F/B)
ratio is related not only to intestinal homeostasis but also related to
NAFL (Porras et al., 2017; Lee et al., 2020; Stojanov et al., 2020;
Jasirwan et al., 2021). The results of the animal experiment by Bao
et al. were similar to ours, and the reduction of F/B ratio could
improve NAFL-related indicators (Bao et al., 2020). Huang et al. ‘s
experiment also showed that the reduction of F/B ratio could
alleviate NAFL in mice (Huang et al., 2019). Metagenomic
sequencing analysis is mainly concerned with functional
information. The results showed that metabolism-related
functions, such as metabolism-related pathways, including
metabolic pathways, secondary metabolites, antibiotics and
amino acid biosynthesis, were increased in the treatment group
compared with the model group. The results showed that
metabolism-related functions increased in the treatment group
compared with the model group, and there were significant
differences in metabolism-related pathways. Analysis of the
differences in metabolic pathways showed that metabolism-
related pathways differed significantly between groups,
indicating that the metabolic activities of bacteria were vigorous.
The application of HRG increased Aminobenzoate degradation,
Steroid biosynthesis, Sesquiterpenoid and triterpenoid
biosynthesis. Many sesquiterpenoids have been isolated from

plants, fungi, marine organisms, and Streptomyces species
(Bertea et al., 2006; Nagegowda et al., 2008; Field et al., 2011).
Furthermore, sesquiterpene pyridine alkaloids from Tripterygium
were predicted to target several proteins and signaling pathways
and may play an important role in curing Alzheimer’s disease,
Chagas disease, and NAFL (Long et al., 2021). The aminobenzoate
degradation pathway could promote tryptophan metabolism and
benzoate degradation (Naidu and Ragsdale, 2001; McLeish et al.,
2003; Toraya et al., 2004). The animal studies by Zhang et al.
showed that the main changes in fecal metabolites of high-fat fed
mice included metabolites related to tryptophan metabolism
(Zhang et al., 2021). Steroid biosynthesis is associated with lipid
metabolism and may increase primary bile acid biosynthesis
(Lange and Ghassemian, 2003; Morikawa et al., 2006). Studies
have shown that key pathways of lipid metabolisms, such as steroid
biosynthesis, fatty acid synthesis, and oxidation, are involved in the
progression of non-alcoholic fatty liver disease (Huang et al., 2020).
A number of studies have also shown that primary bile acid
biosynthesis is closely related to the occurrence and
development of non-alcoholic fatty liver disease, and inhibition
of this metabolic pathway can improve lipid accumulation in
NAFL (Zhong et al., 2018; Na et al., 2019; Zhang et al., 2020).
Therefore, NAFL can be alleviated by decreasing the F/B ratio and
increasing the corresponding metabolic pathways. These results
suggest that HRG may regulate intestinal flora and improve lipid
metabolism in NAFL mice through the above channels.

Three potential compounds (Quercetin, Luteolin, Kaempferol),
10 core targets (CXCL10, CXCL8, ICAM1, IFNG, IL10, IL1B, IL2,
IL4, IL6, TNF) and three key pathways (Cytokine−cytokine
receptor interaction, Chagas disease, IL-17 signaling pathway)
were identified based on the network pharmacology results. The
10 identified core targets are mainly related to inflammation, and
these cytokines play an important role in the inflammatory
response and immune regulation (Ouyang and O’Garra, 2019;
Torretta et al., 2020; Jurdziński et al., 2020; Bui et al., 2020; Zhong
et al., 2020). A number of studies have shown that the occurrence
and progression of NAFL are closely related to the increased
expression level of inflammatory factors (Chakraborty et al.,
2019; Her et al., 2020; Moreno-Fernandez et al., 2021). The rat
experiments by Ogunlana et al. showed that inhibition of oxidative
stress, increase in antioxidant enzyme levels, and decrease in pro-
inflammatory markers (IL-2, IL-6, TNF-α) could reverse NAFL-
induced histological changes in the liver in rats (Ogunlana et al.,
2020). Other studies have reported that these cytokines are
associated with intestinal microflora disorder, intestinal
immunity and intestinal inflammation (Sun et al., 2020). For
example, Hui et al., found that alterations in the bacterial flora
of neonatal necrotizing enterocolitis patients resulted in overt
intestinal inflammation and increased expression of IL-1, IL-2,
IL-4, IL-6, IL-8, IL-10, TNF-α, IFN-γ and IL-17 in the samples
(Hui et al., 2017). Other experiments have also proved that
inflammatory factors have an important relationship with
intestinal flora disorder in NAFL mice, and improving intestinal
flora disorder may intervene in the occurrence and progression of
NAFL (Zhang et al., 2018; Li et al., 2020; Kang et al., 2021; Li et al.,
2021; Shi et al., 2021). Studies have shown that Chagas disease is
related to the changes and dysfunction of intestinal microbiota,

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 87570015

Liu et al. HRG in Treatment of NAFL

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


which may be an important mechanism for the occurrence of
intestinal flora disorder (de Souza-Basqueira et al., 2020; Duarte-
Silva et al., 2020; Schaub, 2021). The study by Wang et al. suggests
that the differentiation of cytokines related to the IL-17 signaling
pathway is related to the colonization of intestinal flora and may be
involved in intestinal immune homeostasis (Wang et al., 2019).
The animal experiments of Xin et al. and the mass spectrometry
analysis Du et al. showed that both the enterohepatic circulation
and the intestinal flora are involved in the absorption process of
quercetin and kaempferol and that isorhamnetin 3-O-glucoside
could be successively decomposed into quercetin and kaempferol
under bacterial action (Du et al., 2014; Du et al., 2017; Xin et al.,
2019). A number of animal experiments have shown that quercetin
can improve hepatic steatosis and prevent hepatic lipid
accumulation, thereby treating NAFL (Esrefoglu et al., 2017;
Donaldson et al., 2019). Therefore, we believe that HRG may
improve intestinal inflammation, intestinal immunity, and lipid
synthesis through relevant pathways, thereby improving NAFL by
regulating intestinal flora. However, our study has some
limitations, and more studies are needed for further verification.

CONCLUSION

In conclusion, HRG may alter microbial diversity, structure, and
function to improve NAFL induced by high-fat diets. It is also
possible to improve NAFL-related lipid accumulation and liver
lesions by regulating intestinal related metabolic pathways,
inflammatory responses, and immune responses. These results
strongly suggest that HRG may alleviate NAFL by preventing
intestinal flora disorder. Moreover, HRG can treat NAFL with
multiple components, multiple metabolic pathways, and multiple
targets through intestinal flora. This study provides a new idea for
the treatment of NAFL, proves the relationship between intestinal
flora and NAFL, and suggests that HRG has a good therapeutic
effect.
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