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Ferroptosis is a widespread form of programmed cell death. The environment of cancer cells
makes them vulnerable to ferroptosis, including AML cells, yet the specific association between
ferroptosis and AML outcome is little known. In this study, we utilized ferroptosis-related genes
to distinguish two subtypes in TCGAcohort, whichwere subsequently validated in independent
AML cohorts. The subtypes were linked with tumor-related immunological abnormalities,
mutation landscape and pathway dysregulation, and clinical outcome. Further, we
developed a 13-gene prognostic model for AML from DEG analysis in the two subtypes. A
risk score was calculated for each patient, and then the overall group was stratified into high-
and low-risk groups; the higher risk score correlated with short survival. The model was
validated in both independent AML cohorts and pan-cancer cohorts, which demonstrated
robustness and extended the usage of the model. A nomogram was constructed that
integrated risk score, FLT3-ITD, TP53, and RUNX1 mutations, and age. This model had
the additional value of discriminating the sensitivity of several chemotherapeutic drugs and
ferroptosis inducers in the two risk groups, which increased the translational value of this model
as a potential tool in clinicalmanagement. Through integrated analysis of ferroptosis pattern and
its related model, our work shed new light on the relationship between ferroptosis and AML,
which may facilitate clinical application and therapeutics.
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INTRODUCTION

Programmed cell death (PCD), a process regulated by both extracellular and intracellular
mechanisms, is indispensable for natural development and homeostasis of organisms (Bedoui
et al., 2020). Ferroptosis, which was first proposed as a nonapoptotic form of programmed cell death
in 2012 (Dixon et al., 2012), is now regarded as one of the most prevalent and conventional forms of
cell death (Jiang et al., 2021). Functionally, ferroptosis is characterized by iron dependency and
excessive reactive oxygen species (ROS) with lipid peroxidation. Morphologically, ferroptotic cells
exhibit smaller than normal mitochondria, fewer mitochondria crista, and ruptured outer
mitochondrial membrane. These features distinguish ferroptosis from other forms of PCDs
including necrosis, apoptosis, and autophagy (Xie et al., 2016). Moreover, ferroptosis has a
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profound impact on a multitude of diseases, ranging from
neurodegenerative disorders to ischemia–reperfusion injury in
organ transplantation and cancer (Stockwell et al., 2020).

Iron, a trace element in the human body, is necessary for
maintenance of cancer cells as well as normal cells. Increased
cellular iron import and reduced iron export is common in many
cancers. This iron addiction phenomenon has been found in solid
tumors such as neuroblastoma (Floros et al., 2021), ovarian (Basuli
et al., 2017), and prostate cancers (Tesfay et al., 2015). Elevated
cellular iron levels promote the proliferation of cancer cells but also
make them more vulnerable to a ferroptosis inducer, due to its
stimulation to ROS production (Ma et al., 2016; Floros et al., 2021).
On the contrary, GPX4, the key regulator of ferroptosis, uses
glutathione (GSH) as an antioxidant to neutralize harmful ROS
to defend cells from ferroptosis (Yang et al., 2014).

Acute myeloid leukemia (AML) is the most common type of
acute leukemia in adults. The incidence is 4.3 per 100,000 in
America. Most patients diagnosed with de novo AML can reach
remission after induction chemotherapy. However, except the
specific genetic background such as PML/RARa fusion gene, the
long-term survival of AML patients remains unsatisfying.

The malignant hematopoietic cells of AML show similar iron
accumulation and dependency (Liu et al., 2014; Benadiba et al.,
2017; Wang et al., 2019), like their solid tumor counterparts.
Moreover, AML patients often have an elevated serum ferritin level
(Lebon et al., 2015), not only a sign of excess iron in the body, but it also
correlates with a worse disease prognosis. This iron overload status also
helpswith immune evasion inAML(Aurelius et al., 2012). These factors
indicate that AML has significant potential susceptibility to ferroptosis.
Several therapies targeting ferroptosis or combining with ferroptosis to
sensitize chemotherapy in AML have achieved some progress. For
example, DHA andAPR-246 were reported to induce ferroptosis in the
AML cells (Du et al., 2019; Birsen et al., 2021). The ferroptosis inducer
erastin can enhance the anticancer activity of cytarabine and
doxorubicin in AML (Yu et al., 2015). Intriguingly, recent research
highlighted ironomycin, a ferroptosis inducer, to disrupt the
mitochondrial metabolism and overcome venetoclax resistance in
AML (Garciaz et al., 2022). However, the relationship between
ferroptosis-related genes and clinical outcome in AML remains elusive.

In this study, we collected AML samples from seven independent
cohorts for analysis. We identified two distinct subtypes in TCGA
cohorts and validated this distribution in external GEO cohorts. The
two subtypes, with prognostic significance, were inconsistent in
baseline information, immune cell infiltration, and mutation
burden. From these subtypes, we built a risk score system which
robustly predicted patients’ survival. We also found that the score is
associated with various clinical characteristics, anticancer immune
status, and chemotherapy response. These results highlight the role of
ferroptosis in AML and contribute to the further investigations of
molecular mechanisms and medical interventions.

MATERIALS AND METHODS

Data Acquisition
Data for patients with AML were retrieved from online databases,
including five GEO databases (GSE10358, GSE14468, GSE37642,

GSE71014, and GSE106291, n = 1432), TCGA-LAML (n = 150), and
BeatAML (n = 197). The samples were sifted when they are in
replicate, or their survival time is zero. A total of 13,322 genes were
retrieved from these datasets, and their expression values were
obtained for further operation. For platform-independent purpose,
we performed a rank-based transformation on microarray and RNA-
Seq data. As previously described (Warnat-Herresthal et al., 2020),
gene expression values were transformed from microarray intensities
or RNA-Seq counts to their respective ranks in a gene-wise way,
meaning all gene expression values per genewere given a rank by their
order from the lowest value to the highest. The five GEO databases
weremerged into a single large database for this transformation, while
TCGA and BeatAML were transformed as two independent datasets.
Ferroptosis-associated genes were retrieved fromFerrDb (http://www.
zhounan.org/ferrdb/). A protein–protein interaction (PPI) network
was constructed by the information from STRING.

Consensus Clustering and Robustness
Verification
Based on the expression data of these genes in TCGA and merged
GEO cohorts, we performed unsupervised clustering analysis
using the “ConsensusClusterPlus” package in R. The K-means
method was used to identify the number of clusters, and the
analysis included 1000 iterations to ensure the stability of the
classification (Wilkerson and Hayes, 2010). The “Nbclust”
package was used to find the robust cluster number and
“PCA3D” package to depict the three-dimensional distribution
of the principal component analysis (PCA) score of these samples
(Charrad et al., 2014; Shao R. et al., 2021). The IGP score was
calculated in the “ClusterRepro” package to measure the
reproducibility of gene expression clusters in TCGA and
merged GEO datasets (Wu et al., 2021).

Differentially Expressed Gene Analysis
To identify genes associated with each cluster, the differentially
expressed genes (DEGs) between two ferroptosis-related clusters in
TCGA cohort were determined using the limma package in R. The
volcano plot of DEGs was drawn using the ggplot package, and the
heatmap of DEGs was drawn using the pheatmap package.

Gene Set Variation Analysis
We performed GSVA enrichment analysis by the gsva packages
(Hänzelmann et al., 2013). We applied “c2. cp.kegg. v7.2.
symbols” and “h.all.v7.2. symbols” from MSigDB to complete
GSVA analysis. Adjusted p < 0·05 was considered statistically
significant between different clusters by the limma package.

Immune Cell Infiltration
We used the CIBERSORTx algorithm and single sample gene set
enrichment analysis (ssGSEA) to quantify the proportions of immune
cells in AML samples (Liang et al., 2020; Wang et al., 2021a). For
CIBERSORTx, normalized gene expression datawere uploaded to the
web portal with LM22 signature and 1,000 permutations. For ssGSEA
(single sample GSEA), the gene expression of AML samples was used
as an input in the gsva package to generate scores of 29-type immune
cells for these samples.
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Construction and Validation of Risk Model
The survival package was used to perform univariate Cox
regression analysis of differentially expressed genes between
clusters 1 and 2. The “Glmnet” package was used for least
absolute shrinkage and selection operator (LASSO) analysis.
The risk score is calculated as follows:

∑
k

i�1
βiXi

where k, βi,and Xi represent the number of signature genes, the
coefficient index, and the gene expression level, respectively. The
cut-off value used to determine risk groups in this article was
−0.197 as a median risk score of the TCGA cohort.

Drug Sensitivity Prediction
Drug sensitivity data along with the gene expression data of AML cell
lines were obtained from the Cancer Therapeutics Response Portal
(CTRP v2.0, https://portals.broadinstitute.org/ctrp).The risk scoreswere
calculated to separate risk groups. The lower area under the curve
(AUC) of the dose–response curve indicated increased drug sensitivity
(Yang et al., 2021). Then, we applied the “pRRophetic” R package to
compute the AUC of several common chemotherapeutic drugs and
some ferroptosis inducers in the TCGA cohort (Geeleher et al., 2014).
These drugs include cytarabine, doxorubicin, azacytidine, decitabine,
erastin, RSL3, ML210, vorinostat, venetoclax, and esmodegib.

Construction of the Nomogram
We used the “rms” R package to build the nomogram and the
calibration chart. The calibration chart was used to evaluate the
performance of the nomogram. Decision curve analysis (DCA)
was used to evaluate the clinical implementation of the
nomogram by quantifying the net benefits at different
threshold probabilities using the “dcurves” package.

Patients and Sample Preparation
Bone marrow samples were acquired from patients with newly
diagnosed AML (n = 10) and iron-deficiency anemia (n = 10) who
were treated at the Department of Hematology, Qilu Hospital of
Shandong University in Jinan, China. The mononuclear cells
were isolated from the samples and stored at −80°C.

RNA Extraction and Real-Time
Quantitative PCR
The total RNA was extracted by Trizol reagent (Invitrogen,
Carlsbad, CA, United States) according to the manufacturer’s
protocol. Subsequently, the extracted RNA was reversely
transcribed using the PrimeScript RT reagent Kit with gDNA
Eraser (Takara, Japan). The cDNAs were subjected to SYBR
Green-based real-time PCR analysis. The primers used in real-
time PCR assays are listed in Supplementary Table S5.

Statistical Analysis and Cut-Off Value
The correlation coefficients per two genes in Figure 2A were
computed by Spearman’s and distance correlation analysis. Log-
rank tests were utilized to identify the significance of differences

in survival curves. The time-dependent ROC curves and the area
under curves (AUC) were derived using the timeROC packages.
Comparisons of the integrated area under the curves (IAUC) in
these ROCs were implemented with the iauc.comp package, and
p-value was derived from the Mann–Whitney test. The RCircos
package was used to plot the copy number variation landscape of
13 related genes in 23 pairs of chromosomes. For continuous
variables, Student’s t-test and Wilcox test were performed
between two groups. One-way ANOVA and Kruskal–Wallis
test were used to compare three or more groups. For
categorical variables, Chi-square tests were used. The universal
cutoff score between two risk groups is −0.197 from TCGA
median risk score. All statistical p-values are two-sided, and
p < 0.05 represents statistical significance. Asterisk signal: *
p < 0.05; **p < 0.01; ***p < 0.001.

RESULTS

Identification of a Robust Classification
Pattern in Two Acute Myeloid Leukemia
Cohorts With 47 Ferroptosis-Related Genes
The general workflow is depicted in Figure 1A. To identify
ferroptosis-related genes that have prognostic implications, we
performed a univariate Cox regression on 259 ferroptosis-
related genes in the TCGA dataset. A list of 47 genes with
prognostic significance were selected to conduct further
analysis (Supplementary Figure S1A). The transcriptional
expression correlation and PPI of these genes are depicted
to reveal the inner relationship between these genes
(Figure 2A, Supplementary Figure S1B). The unsupervised
clustering divided the TCGA dataset patients into two
subtypes based on gene expression data (Figure 2B). This
division was supported by the consensus CDF curve and
optimal number in Nbclust (Figures 2C,D). The PCA
analysis was conducted by PCA3D to validate the distinct
divergence of these two clusters (Figure 2E). This clustering
pattern was further validated in the merged GEO dataset,
which also showed a double-subtype division
(Supplementary Figures S2A–D). The similarities of C1
and C2 subtypes in reciprocal datasets were validated with
in-group proportion (IGP) algorithm. The IGP score of C1 was
88.0% and that of C2 was 89.3% in the TCGA dataset and 83.5
and 80.0% in the GEO-merge cohort, respectively (all
p-values<0.001).

Differences in Immune Cell Infiltration,
Clinical Characteristics, and Pathway
Enrichment Between Two
Ferroptosis-Related Subtypes
The clinical parameters were also compared between two
subtypes (Figure 2F, Supplementary Table S1). Cluster C2
consisted of more FAB M5 patients and fewer M3 patients
and an elevated level of WBC, while Cluster C1 had more

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 8663253

Cui et al. Ferroptosis Pattern and Signature

https://portals.broadinstitute.org/ctrp).The
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


samples in the cytogenetically “favorable” risk group. The survival
analysis of the TCGA dataset and GEO-merged dataset showed
that C2 demonstrated an inferior prognosis (Figures 3A–C;
Supplementary Figure S3E). Immune escape is a major issue
in AML, leading to treatment resistance and relapse. To elucidate

the immune response in each subtype, we conducted tumor
infiltration analysis. The results revealed that compared with
cluster C2, cluster C1 had high percentages of CD8+ T cells,
tumor-infiltrated lymphocytes, and a stronger Type I IFN
response, and a low percentage of Treg cells using CibersortX

FIGURE 1 | Detailed flow chart of the whole research.
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FIGURE 2 | Identification of two subtypes in the TCGA cohort. (A) Correlation plot of 47 genes, (B) consensus matrix of two subtypes, (C) CDF curve, and (D)
indication barplot of k-value used for consensus clustering.(E) PCA plot of two subtypes.(F)Heatmap of 47-gene expression with clinical information in the TCGA cohort.
(Categorical variables, Chi-square tests; continuous variable, Wilcoxon tests *p < 0.05; **p < 0.01; ***p < 0.001).
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FIGURE 3 | Assessment of differences in prognosis, immune elements, and pathway enrichment between the two subtypes in TCGA cohort. (A–C) Kaplan–Meier
survival analysis of the two clusters in TCGA (OS, overall survival; EFS, event-free survival; RFS, relapse-free survival. C1 n = 82, C2 n = 68; log-rank p-test). (D,E)
Comparison of the difference in immune cell fraction and immune response between the two subtypes, with CibersortX and ssGSEA algorithm (Wilcoxon tests). (F)
FLT3-ITD, NPM1, and RUNX1 mutation distribution between the two subtypes (Chi-Square tests). (G,H) Heatmaps of GSVA-based KEGG and Hallmark analysis
of the two subtypes (Wilcoxon tests).
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and ssGSEA algorithms (Figures 3D,E, Supplementary Figure
S3F,G). These results were confirmed in both the TCGA and
GEO-merged datasets.

Recurrent gene mutation in AML, such as FLT3-ITD and
RUNX1, can contribute to pathogenesis and disease progression,
thus influencing the outcomes (Marcucci et al., 2011; Heath et al.,
2017; Daver et al., 2019). Therefore, we analyzed gene mutation
status in TCGA samples (Supplementary Figure S1C). Point
mutations were extracted from the TCGA dataset, of which the 10
highest (FLT3-ITD, NPM1, DNMT3A, IDH2, IDH1, CEBPA,
RUNX1, TET2, TP53, and WT1) were compared between the
two groups. C2 showed higher frequencies of FLT3-ITD and
NPM1 mutations (C1vsC2: FLT3-ITD:19–37%; NPM1:15–39%),
whereas the RUNX1 mutation was more frequent in C1(C1 vs.
C2: RUNX1:15–1%) (Figure 3F, Supplementary Figure S2H).

To investigate the underlying mechanisms that regulated
biological function and clinical and immunological
characteristics between two clusters, we performed GSVA
analysis of Hallmark and KEGG in the TCGA dataset
(Figures 3G,I). The C2 signaling pathways such as ERBB,
TGF-beta, and KRAS were upregulated. In contrast, the
cancer-inhibiting pathways such as TP53 and G2M
checkpoints were downregulated. Additionally, C2 showed
upregulation in selenoamino acid metabolism and
downregulation in peroxisome. Both of them can regulate
ferroptosis, in addition to TP53 pathway. GSEA analysis also
found ERBB and TGF-beta activation in the C2 cohort
(Supplementary Figure S3A).

Development and Validation of a 13-Gene
Signature Derived From
Ferroptosis-Related Subtypes
To further decipher the cause for the differences between the
two patterns, we conducted a differentially expressed gene
(DEG) analysis and found a distinct expression variation of
the two subtypes in TCGA datasets. (The cutoff was |
log2FoldChange| >1 and FDR<0.05.) Of 974 genes, 806 were
upregulated, and 168 were downregulated (Supplementary
Table S7). The GO and KEGG analyses depicted genes that
were enriched in a vast number of cancer pathways ranging
from solid tumors to hematological malignancies
(Supplementary Figures S3B–C). Furthermore, the analysis
also revealed an enrichment in the lipid metabolic process,
which was reported to regulate ferroptosis throughout
initiation and progression of cancer (Li and Li, 2020).

A total of 193 DEGs meeting specific criteria (univariate cox
analysis p < 0.01) were screened out (Supplementary Figure
S3D, Supplementary Table S2). Then, these genes were analyzed
using a LASSO Cox algorithm to construct a prognostic model
(Figures 4A,B). In this procedure, the TCGA dataset was
established as the training cohort, while the other GEO
cohorts and BeatAML cohort were used as the validation
cohort. Eventually, 13 genes were identified, and the risk
score was calculated according to the given coefficients:
Risk score = ATG3 * (−0.28134) + FAM106A * (−0.10016)
+ KLHL9 * (−0.07429) + LCMT2 * (−0.4437) + LRRC40 *

0.1902 + LZTR1 * 0.2291 + NCR2 * 0.20767 + PAFAH2 *
0.32442 + PCMTD2 * 0.14762 + PLA2G5 * (−0.44088) +
SCARB1 * 0.39573 + TK1 * (−0.51048) + ZNF576 * 0.20382
(Supplementary Table S3). The risk score and the risk group
defined by its median value in the TCGA datasets had a
statistically superior capability to predict the overall survival
(OS) compared to other previously reported prognostic
signatures [AJH 2021 (Chen et al., 2021), JCO 2013
(Marcucci et al., 2014), and JHO 2016 (Wilop et al., 2016)]
(iAUC-13gene: 0.828, iAUC-AJH2021: 0.526, iAUC-
Leu2020: 0.405, and iAUC-JHO2016: 0.492; all the p-values
in comparison of iAUCs between 13-gene and three
reciprocal known signatures were <0.001), (Figures
4C,E–H). Moreover, the risk score was excellent in
predicting event-free survival (EFS) and relapse-free
survival (RFS) in the TCGA dataset (Figures 4I,J, Figures
5A,B). These results were confirmed in the validation analysis
using the GEO datasets (GSE10358, GSE71014, and
GSE106291) and BeatAML datasets, which were estimated
by reciprocal ROCs and Kaplan–Meier plots (Figure 4K,
Figures 5C–I). The profile of the 13 genes were
characterized, including their expression levels between
clusters, their prognostic significance in the K-M plots, and
their mutation status in TCGA datasets (Figure 4D,
Supplementary Figures S4A–M, S1D). The dependency of
the 13 genes composing the score in the AML cells was also
analyzed using the DepMap portal (https://depmap.org/
portal/) (Supplementary Figures S5A,B). We also utilized
our own AML de novo clinical samples with IDA samples as
normal control to detect the expression of 13 genes
(Figure 5J).

The next step was to further enhance the risk score to facilitate
its clinical application. We performed a multivariate Cox
regression analysis incorporating the following variables: the
10 most frequent mutations, gender, and age in the TCGA
dataset. In addition to risk score and age, mutations of FLT3-
ITD, TP53, and RUNX1 were proved to be independent impact
factors for the OS (Supplementary Figure S4N). These five
variables were then subjected to a new multivariate Cox
regression to develop a nomogram (Figures 6A,B). The AUC
of ROC curves showed accuracy of this nomogram at 1-, 2-, and
3-year time points, with the AUCs of 0.861, 0.851, and 0.849,
respectively (Figure 6C). Segmental lines at different times for
this nomogram were close to 45-degree angles, indicating a good
prediction performance (Figures 6D–F). The decision curves at
1, 2, and 3 years were also analyzed. Within the threshold of the
probability range (1-year: 4–92%; 2-year: 7–97%; and 3-year:
9–96%; Figures 6G–I), the nomogram showed the net benefit
compared to an all or none strategy. Furthermore, the nomogram
was validated using the BeatAML cohort (Supplementary
Figures S6A–H), which showed similar prediction potential.
More recently reported ferroptosis-related gene signatures
were also compared to our 13-gene score, but ours was
statistically superior (iAUC-13gene: 0.824, iAUC-JCMM:
0.437, and iAUC-BJBMS: 0.646, p-values between iAUC of 13-
gene and two new signatures were <0.001) (Huang et al., 2021;
Shao W. et al., 2021) (Supplementary Figures S7A–C).
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FIGURE 4 | Construction of a 13-gene prognostic signature by DEGs in two subtypes. (A,B) Least absolute shrinkage and selection operator (LASSO) regression
analysis with ten-fold cross validation to determine the lambda number. (C) OS analysis of the risk group in TCGA dataset (log-rank p-test). (D) Heatmap of 13-gene
expression in different risk groups (Wilcoxon tests). (E) Dot plot showing the distribution of risk score in patients with different survival time and status in TCGA. (F–H)
Prognostic ROC AUC comparison in the 13-gene signatures with other known signatures in the training datasets (TCGA) for 1, 3, and 5 years. (I,J) EFS analysis
and ROC of the risk group in TCGA dataset (log-rank p-test). (K) OS analysis of the risk group in the GSE10358 dataset (log-rank p-test).
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FIGURE 5 | Validation of the 13-gene prognostic signature in different datasets. (A,B) RFS analysis and ROC of the risk group in TCGA dataset. Reciprocal survival
analysis and ROC of GSE71014 (C,D), GSE106291 (E,F), and BeatAML (G,H) datasets were illustrated. 5I ROC of GSE10358 survival analysis displayed in Figure 4K.
(J) RT-PCR-detected RNA expression of 13 genes in our own samples, 10 AML de novo, and 10 IDA as normal control samples.
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FIGURE 6 | Construction of a prognostic nomogram in TCGA datasets. (A) Multivariate analysis to validate independent prognostic factors from the previous
multivariate Cox screening in Supplementary Figure S4N. (B) Nomogram for clinical diagnosis based on age, mutation status, and risk score. (C) ROCs for the
nomogram. (D–F)Calibration plots for predicting survival at 1, 2, and 3 years. The x-axis represents the predicted survival probability from the nomogram, and the y-axis
represents the actual survival probability. (G–I) Decision curve analysis of the nomogram for 1-, 2-, and 3-year risk. The x-axis represents the threshold probability,
and the y-axis represents the net benefit. The green line represents the assumption that no patients died at 1, 2, or 3 years. The red line represents the assumption that all
patients died at 1, 2, or 3 years, and the blue line represents the prediction model of the nomogram.
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FIGURE 7 | Analysis of differences in clinical characteristics, immune cell proportion, and functional enrichment of patients in different risk groups. (A)
Clinicopathological features were compared between low-risk and high-risk groups (Categorical variables, Chi-square tests; continuous variable, Wilcoxon tests *p <
0.05; **p < 0.01; ***p < 0.001). (B,C)Comparison of the risk scores of patients with different cytogenetic andmolecular risk types (Kruskal–Wallis test). (D,E)Comparison
of the risk scores between patients with or without FLT3-ITD and DNMT3A mutations (Wilcoxon test). (F) Comparison of GPX4 expression between patients in
high- and low-risk groups (Student’s t-test). (G,I)Different immune cell fraction and immune response between the two subtypes, with CibersortX and ssGSEA algorithm
(Wilcoxon test). (H,K) GO and KEGG pathway analysis for differentially expression genes between the two risk groups (Fisher’s exact-test).
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To systematically analyze the prognostic significance of the 13-
gene risk score in pan-cancer, we conducted a univariate Cox
analysis in TCGA data of 33 types of malignancies, including
LAML (Supplementary Figure S7D). A higher risk score was
identified as a negative prognostic biomarker for the five
independent TCGA cohorts. Apart from LAML, one
hematological (DLBC, diffuse large B-cell lymphoma) and
three other tumor cohorts (cervical squamous cell carcinoma
and endocervical adenocarcinoma (CESC), skin cutaneous
melanoma (SKCM), and thyroid carcinoma (THCA)) were
enrolled. Therefore, the risk score showed moderate scalability
in other types of cancer.

Higher Risk Score Indicated Worse Clinical
Characteristics and Lower Immune Cell
Infiltration
We compared the clinical characteristics of patients in
different risk groups in the TCGA dataset. The heatmap
shows that the distributions of age, percentage of bone
marrow blast cells, peripheral WBC counts, FAB type, and
cytogenetic and molecular risk classifications in the high- and
low-risk groups were significantly different (Figure 7A,
Supplementary Table S4). We found that the risk score
was significantly altered among the samples of different
cytogenetic and molecular risk (Figures 7B,C), with a
higher risk score appearing in the high-risk group. Patients
harboring FLT3-ITD and DNMT3A mutations had a higher
risk score than patients without these mutations (Figures
7D,E). We also compared the GPX4 expression level
between different risk groups and found higher expression
in the high-risk group (Figure 7F). Differences of immune
signatures in the high- and low-risk groups were also
compared, and we found that CD8+ T cells, costimulation
T cells, TILs, and type-I IFN response were expressed at higher
levels in the low-risk group and Tregs at higher levels in the
high-risk group (Figures 7G,I). The comparison of KEGG and
GO analysis between the two risk groups determined that
DEGs were enriched in cancer pathways: PI3K-Akt
pathway, HIF-1 pathway, and central carbon metabolism in
cancer. Also notably, several metabolic processes were
enriched as well (Figures 7H,K).

Two Risk Groups Showed Inconsistent
Sensitivities With Different Drugs
Chemotherapy is the main treatment for AML patients, although
drug resistance is a major obstacle. Therefore, we applied CTRP
(Cancer Therapeutics Response Portal) data to correlate drug
resistance and sensitivity with the risk groups. The low-risk group
was more sensitive to the traditional cytotoxic drugs, such as
cytarabine, doxorubicin, and etoposide, and the BCL-2 inhibitor
venetoclax. The high-risk group showed less resistance to
hypomethylating agents (HMA), such as decitabine and
azacytidine, and HDAC (histone deacetylase) inhibitors, such
as vorinostat. Moreover, we found that the sensitivity of RSL3 and
ML210, which were known to inhibit GPX4 and thereby inhibit

ferroptosis, were significantly correlated with the high-risk group
(Figure 8A). Then, we utilized an algorithm called pRRophetic to
propagate predictions from CTRP data into TCGA samples. The
patient sensitivity and resistance data were correlated with their
counterparts in the cell lines (Figures 8C–J). These results
indicated that the response to chemotherapeutic medications
differed according to the two risk groups. Although ICI
(immune checkpoint inhibitor) failed to provide cures in
patients with AML (Bewersdorf and Zeidan, 2020), targeting
specific antigens expressed in AML has been intensively
investigated and gained some progress (Dohner et al., 2021).
Therefore, we further analyzed the expression of AML-specific
immunotherapy targets in the two risk groups (Figure 8B). The
protein-coding genes CD33, HAVCR2, and IL3RA showed
higher expression in the high-risk group. These findings
distinguished unique chemotherapy reactivity and immune
antigen expression in the two groups.

DISCUSSION

AML is an aggressive hematopoietic disease caused by rapid
clonal expansion of undifferentiated malignant cells in bone
marrow. Despite novel regimens and risk-stratified
therapeutics, the 5-year survival of AML patients at diagnosis
was still less than 30% in the years ranging from 2011 to 2017,
according to the NIH SEER database (https://seer.cancer.gov/
statfacts/html/amyl.html). There is still an urgent need to
improve the clinical outcome. The iron overload nature of
AML makes induction of ferroptosis an enticing treatment
option. Intriguingly, the ferroptotic pattern in AML and its
underlying impact remains largely unknown.

Precision medicine has brought revolutionized changes in
cancer treatment in the recent years. By integrating
multidimensional data from biological and clinical sources,
heterogeneous cancer samples can be more accurately divided
into subtypes for individualized treatment. Increasing evidence
established the subgroups of patients based on their molecular
profiles, representing distinct phenotypes, prognosis, and therapy
responses. For instance, Zhou et al. (2019) classified the colorectal
cancer patients into high- and low-risk groups according to an
autophagy-related gene pattern, and intensive intervention is
required for the high-risk group patients. Based on the RNA
N6-methyladenosine-related regulator expression, the gastric
cancer patients can be divided into three subtypes with
distinct immune phenotype and prognosis. Patients from high-
risk subtypes were more resistant to immunotherapy (Zhang
et al., 2020). Devin et al. (2022) developed a signature of key
effectors of iron metabolism based on the gene expression profile
and identified that a subgroup of patients with DLBCL (diffuse
large B-cell lymphoma) with poor outcome could benefit from an
iron-targeted therapy. The present study identified two robustly
distinct ferroptosis-related patterns, Cluster 1 (C1) and Cluster 2
(C2). These two cohorts had distinct differences not only in
prognosis but also in baseline clinical status, immune response,
immune cell fraction, and pathway activation. Compared with
C1, C2 had a low level of CD8+ T cells and costimulating T cells
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FIGURE 8 | Drug response prediction in cell lines and samples. (A) Cell-based drug response of different risk groups. Risk scores were calculated by 13-gene
expression in CTRP’s AML cell lines. Then, the score divided them into two risk groups based on the universal cut-off. Lower AUC value means better drug response. (B)
CD33, CD70, HAVCR2, CLEC12A, IL3RA, and CD47 expression in different risk groups (Student’s t-tests). (C–J) Estimated drug response in different risk groups
(Wilcoxon tests). Panel 8A data came from cell lines. Panel 8B–J data were obtained from TCGA datasets.
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and higher levels of regulating T cells (Treg), which are the signs
of immune evasion. The type-II IFN response, an anticancer
signature, is also relatively weak in C2. Evidence has shown that
Treg cells can protect themselves from ferroptosis and maintain
immune suppression. The pathway enrichment analysis also
revealed that C2 had an upregulated selenoamino acid
metabolism and downregulated the P53 pathway. GPX4, a
selenoprotein produced from selenoamino acid, assists
ferroptosis resistance (Yang et al., 2014), whereas inhibition of
the P53 pathway can lead to tumorigenesis (Chu et al., 2019).
Additionally, upregulated procancer pathways (ERBB, TGF-beta,
VEGF, and KRAS) and procancer mutations are seen more
frequently in C2. Aggregating all of these findings, we
proposed two patterns, of which C2 had more passive
immune response, more resistance to ferroptosis, and more
proliferation potency; these culminated a significant reduction
in the overall, event-free, and relapse-free survival.

Derived from differentially expressed genes in two clusters,
we identified 13 genes (ATG3, FAM106A, KLHL9, LCMT2,
LRRC40, LZTR1, NCR2, PAFAH2, PCMTD2, PLA2G5,
SCARB1, TK1, and ZNF576) which, through univariate and
LASSO Cox analysis, were used to construct a prognostic
model. Some of these genes have previously been reported
to participate in ferroptosis through various pathways,
including ATG3 (Zhou et al., 2020), SCARB1 (Foulks et al.,
2008; Kono et al., 2008), PAFAH2 (Foulks et al., 2008; Kono
et al., 2008), and PLA2G5 (Samuchiwal and Balestrieri, 2019;
Tang et al., 2021). KLHL9 (Lee et al., 2015), LCMT2 (Wang
et al., 2018), and LZTR1 (Abe et al., 2020) have been reported
to influence cancer progression in different contexts. TK1 has
long been used as a diagnostic and prognostic marker in AML
(O’Neill et al., 2007), and PCMTD2 (Atkins et al., 2019) and
LRRC40 (Zeybek et al., 2019) have been used as diagnostic or
prognostic markers in other types of cancer. NCR2 reportedly
indicated a low-function state of NK cells in AML (Fauriat
et al., 2007; Venton et al., 2016). To date, it appears that little is
known about the function of FAM106A and ZNF576 in
biological processes; further experimental work will be
required.

The 13-gene prognostic model described previously was
robust, as demonstrated by several independent validation
cohorts and comparisons with other reported gene signatures.
Moreover, the prognostic value appeared not only to be
applicable to AML but several other cancer types as well. The
analysis also confirmed that several mutations were associated
with the prognosis in AML. Multivariate Cox regression
identified FLT3-ITD, RUNX1, and TP53 mutations as
independent prognostic factors, and a nomogram comprising
risk score, these mutations, and patient age was developed,
thereby translating this biological research to a clinical
application.

AML is a heterogenous disease, in which data-based
identification of patients for personalized therapy should
provide a positive impact on the clinical outcome (Burd
et al., 2020). As a screening database, CTRP portal provides
multi-omic information including transcriptome data and drug
response information in the cancer cell lines. With the help of

pRRophetic algorithm, these in vitro screening data can be put
into in vivo drug sensitivity prediction (Wang et al., 2021b). In
our study, the risk groups derived from the risk score also
showed diversities in cellular and organismic sensitivity to
chemotherapeutic agents and ferroptosis inducers; the low-
risk group was more sensitive to common cytotoxic agents
(cytarabine and doxorubicin), whereas the high-risk group
was more sensitive to HMA agents. The high-risk group
showed a higher GPX4 expression and was more sensitive to
ferroptosis inducers directly targeting GPX4, RSL3, and ML210.
This was reasonably expected considering the iron addiction
nature and high ROS level in AML cells (Wang et al., 2019; Wei
et al., 2020). Unlike other solid tumors and lymphoma, immune
checkpoint inhibitors have gained moderate efficacy in the
treatment of AML. In addition, several surface epitopes have
proved to be potential targets of AML. Therefore, we explored
the expression of several AML-specific immune targets (CD33,
CD70, HAVCR2 (TIM-3), CLEC12A, IL3RA (CD123), and
CD47) between different groups. CD33, HAVCR2, and
IL3RA were expressed higher in the high-risk group, whereas
CLEC12A was expressed higher in the low-risk group. These
indicated divergent targets in different risk groups. Therefore,
this risk score can provide therapeutic indication and support its
translational value.

In this study, we identified and validated two ferroptosis
subtypes in AML. These subtypes exhibited distinct
heterogeneity in baseline information, immune response,
functional pathways, and clinical outcomes. Furthermore, a
13-gene scoring system was constructed that demonstrated a
reliable prognostic efficacy with an indication of chemotherapy
sensitivity and anticancer immunity. We believe that these
findings will increase the knowledge of ferroptosis and have
the potential to facilitate more precise therapeutic intervention
in AML.
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