AUTHOR=Meng Ping , Li Chunmei , Duan Sijin , Ji Shengmin , Xu Yangyang , Mao Yutong , Wang Hongbo , Tian Jingwei TITLE=Epigenetic Mechanism of 5-HT/NE/DA Triple Reuptake Inhibitor on Adult Depression Susceptibility in Early Stress Mice JOURNAL=Frontiers in Pharmacology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2022.848251 DOI=10.3389/fphar.2022.848251 ISSN=1663-9812 ABSTRACT=
Major depressive disorder (MDD) is a chronic, remitting and debilitating disease and the etiology of MDD is highly complicated that involves genetic and environmental interactions. Despite many pharmacotherapeutic options, many patients remain poorly treated and the development of effective treatments remains a high priority in the field. LPM570065 is a potent 5-hydroxytryptamine (5-HT), norepinephrine (NE) and dopamine (DA) triple reuptake inhibitor and both preclinical and clinical results demonstrate significant efficacy against MDD. This study extends previous findings to examine the effects and underlying mechanisms of LPM570065 on stress vulnerability using a “two-hit” stress mouse model. The “two-hit” stress model used adult mice that had experienced early life maternal separation (MS) stress for social defeat stress (SDS) and then they were evaluated in three behavioral assays: sucrose preference test, tail suspension test and forced swimming test. For the mechanistic studies, methylation-specific differentially expressed genes in mouse hippocampal tissue and ventral tegmental area (VTA) were analyzed by whole-genome transcriptome analysis along with next-generation bisulfite sequencing analysis, followed by RT-PCR and pyrophosphate sequencing to confirm gene expression and methylation. LPM570065 significantly reversed depressive-like behaviors in the mice in the sucrose preference test, the tail suspension test, and the forced swimming test. Morphologically, LPM570065 increased the density of dendritic spines in hippocampal CA1 neurons. Hypermethylation and downregulation of oxytocin receptor (