AUTHOR=Li Jimin , Feng Shanshan , Liu Xin , Jia Xu , Qiao Fengling , Guo Jinlin , Deng Shanshan TITLE=Effects of Traditional Chinese Medicine and its Active Ingredients on Drug-Resistant Bacteria JOURNAL=Frontiers in Pharmacology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2022.837907 DOI=10.3389/fphar.2022.837907 ISSN=1663-9812 ABSTRACT=
The increasing and widespread application of antibacterial drugs makes antibiotic resistance a prominent and growing concern in clinical practice. The emergence of multidrug-resistant bacteria presents a global threat. However, the development and use of novel antibacterial agents involves time-consuming and costly challenges that may lead to yet further drug resistance. More recently, researchers have turned to traditional Chinese medicine to stem the rise of antibiotic resistance in pathogens. Many studies have shown traditional Chinese medicines to have significant bacteriostatic and bactericidal effects, with the advantage of low drug resistance. Some of which when combined with antibiotics, have also demonstrated antibacterial activity by synergistic effect. Traditional Chinese medicine has a variety of active components, including flavonoids, alkaloids, phenols, and quinones, which can inhibit the growth of drug-resistant bacteria and be used in combination with a variety of antibiotics to treat various drug-resistant bacterial infections. We reviewed the interaction between the active ingredients of traditional Chinese medicines and antibiotic-resistant bacteria. At present, flavonoids and alkaloids are the active ingredients that have been most widely studied, with significant synergistic activity demonstrated when used in combination with antibiotics against drug-resistant bacteria. The reviewed studies show that traditional Chinese medicine and its active ingredients have antimicrobial activity on antibiotic-resistant bacteria, which may enhance the susceptibility of antibiotic-resistant bacteria, potentially reduce the required dosage of antibacterial agents and the rate of drug resistance. Our results provide direction for finding and developing alternative methods to counteract drug-resistant bacteria, offering a new therapeutic strategy for tackling antibiotic resistance.