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In drug discovery, molecules are optimized towards desired properties. In this context,
machine learning is used for extrapolation in drug discovery projects. The limits of
extrapolation for regression models are known. However, a systematic analysis of the
effectiveness of extrapolation in drug discovery has not yet been performed. In response,
this study examined the capabilities of six machine learning algorithms to extrapolate from
243 datasets. The response values calculated from the molecules in the datasets were
molecular weight, cLogP, and the number of sp3-atoms. Three experimental set ups were
chosen for response values. Shuffled data were used for interpolation, whereas data for
extrapolation were sorted from high to low values, and the reverse. Extrapolation with
sorted data resulted in much larger prediction errors than extrapolation with shuffled data.
Additionally, this study demonstrated that linear machine learning methods are preferable
for extrapolation.

Keywords: machine learning, drug discovery, extrapolation, data set, PLS (partial least square), Gaussian
regression, random forest, support vector regression

INTRODUCTION

In drug discovery, new molecules undergo clinical trials in human subjects only after numerous
checks for safety and potency in biological test systems. Often, a drug suitable for oral administration
is desired, i.e., a molecule that can cross cellular membranes separating the gastrointestinal system
and blood vessels. After absorption, blood vessels distribute the molecule throughout the organism
and to its site of action. Blood contains many proteins that bind a substantial fraction of any
compound. During distribution, molecules pass through the liver, which contains enzymes able to
metabolize many types of chemical substances, thus reducing the concentration of the active drug
(clearance). An important measure used in the optimization of a bioactive molecule is plasma
exposure after oral administration, often expressed as “area under the curve” (AUC), i.e., the
concentration of the active molecule in blood plasma integrated over time. Bioavailability depends on
multiple properties of the molecule including cell layer permeability and clearance in the liver. When
a molecule reaches the target protein, it must bind in such a way that it has the desired effect. A
specific assay is usually developed to measure the effect of the molecule on the target protein. At
present, it is still not possible to design a successful drug, fulfilling all necessary requirements, without
biological tests. However, biological testing requires time and resources, which limit the number of
compounds that can be explored. Medicinal chemists require quantitative models allowing
prioritization the most promising molecules for biological testing.

Related Work
The use of quantitative structure-activity relationships (QSAR) is essential in drug discovery and has
been investigated in multiple publications (Gramatica, 2007; Cherkasov et al., 2014). Recently, huge
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efforts has been undertaken to find appropriate meta-parameter
for QSAR models (Olier et al., 2018). It is well known that
statistical models lose their predictive power when they are
outside the range of calibration. Outside the calibration range,
confidence intervals become infinite. These limits have been
previously discussed for QSAR from (Tong et al., 2005) and
were formulated in OECD policies for the validation of QSAR
models (Member countries, 2004; OECD, 2014). Closely related
to the calibration range is the term applicability domain. The
term applicability domain is used in cheminformatics for
quantitative structure activity models. The OECD guideline
demands to consider the applicability domain but does not
give a binding definition. By Roy et al. the application domain
was defined as “The AD is a theoretical region in chemical space
encompassing both the model descriptors and modeled response
which allows one to estimate the uncertainty in the prediction of a
particular compound based on how similar it is to the training
compounds employed in the model development” (Roy et al.,
2015). If the predicted molecules are similar to the training
molecules in descriptor space, they are in the application
domain (Jaworska et al., 2005). In drug discovery, the modeled
response are molecular properties which the medicinal chemists
aim to optimise. So, the properties medicinal chemists would like
to predict are often outside the range of response values, which
were already covered by experiments. At the start of a drug
discovery project, a few molecules are usually identified which
show modest activity at the target protein site. Starting
compounds are modified by medicinal chemists to improve
their properties. By adding all available information into the
new compounds, they improve their characteristics over time.
The next compound is often designed with the aim to show a
lower binding constant to the target protein. Usually, this
compound is similar to the already synthesized compounds
and therefore in the applicability domain. During this
optimization process, the desired response values are outside
the range of the available response values. A model that aims to
support the medicinal chemist in his work needs the capability of
extrapolation. Recently, the use of extrapolation throughmachine
learning, to assess the bioactivity of a molecule in drug discovery,
has been evaluated (Cortés-Ciriano et al., 2018). Extrapolation
outside the upper limits of the measured value range is wanted for
the plasma exposure after oral administration. The plasma
exposure should be as high as possible, but in a drug
discovery project it is often to low. Additionally, frequently the
majority of available response values are far away from the
desired value range.

Our Work
The missing information in QSAR literature about differences
between the errors of interpolation and extrapolation triggered a
question. How effective can extrapolation of response values for
chemical molecules be? To answer this question, we decided to use
organic molecule datasets with calculated physicochemical
properties. The physicochemical properties were used as
response values in this study and were calculated from the
molecular structure. Mathematically, a molecule is represented
as a small graph with colored edges and colored nodes. This

molecular graph cannot directly be used as input for the applied
machine learning methods. The graph must be transformed into a
vector, a chemical descriptor. Machine learning creates models that
relate descriptor vectors to the corresponding response values.With
our setup a fully correct machine learning model was theoretically
possible. The complete information needed to predict the response
values was enclosed in themolecular structure. If this information is
transferred to the descriptor vector and the machine learning
algorithm constructs a perfect fitting model, a correct prediction
will result. This model is “semi-mechanistic”, which is covered by
the OECD guideline “When the AD is defined in more mechanistic
terms, the (Q)SAR can predict reliably beyond the physicochemical
and response space of the training set”. In our experimental setup
the used response values allowed the machine learning algorithms
to create such “semi-mechanistic” models.

METHODS

Datasets
For the construction of our molecule datasets, the size and
structure of typical datasets in drug discovery was considered.
In a drug discovery project, the molecules usually show a high
similarity. New molecules are derived from a starting molecule
that is explored by medicinal chemists. The newly synthesized
molecules are similar to the starting molecule, but ideally have the
desired features. We mimicked this process by taking a known
drug molecule and removing randomly peripheral non hydrogen
atoms. The removed atom was replaced with an appropriate
number of hydrogen atoms. Rings were also randomly cut. Three
top selling drug molecules were chosen: apixaban, rosuvastatin,
and sofosbuvir (Figure 1). From each molecule, three sets,
Sapix,1–3, Srosu,1–3 and Ssofo,1–3, of about 300 molecules each
were created. Consequently, nine datasets were constructed
from three blockbuster drugs. Similar molecules are needed for
successful machine learning models in QSAR (Netzeva et al.,
2005). The similarity of test- and training molecules was
guaranteed by our molecule degradation approach.

Dependent Variables
Dependent variables and response variables were calculated for
each molecular structure. The simplest dependent variable in this
study was molecular weight, which was calculated from the
corresponding molecular formula. The logP value, the
logarithm of the 1-octanol/water partition coefficient, is a
more sophisticated variable which estimates the distribution of
a drug based on an octanol/water system. The cLogP value
assesses the permeation of a molecule from the gastrointestinal
tract into blood vessels, and it is an important measure in drug
discovery. Here, a fragmental approach from DataWarrior
(Sander et al., 2015) was used to calculate the cLogP. This
fragmental approach was developed for the OSIRIS Property
Explorer (OsirisP) and successfully benchmarked in a large study
with 90,000 compounds (Mannhold et al., 2009). In this
independent examination, OsirisP ranked between the top
logP calculation methods. An improved version of the Osiris
logP calculator was implemented in DataWarrior in 2014. This
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updated OsirisP calculation is implemented as increment system
adding contributions of every atom based on its atom type.
OsirisP distinguishes around 400 atom types. This includes
hybridisation state, ring membership, aromaticity, and
additionally to the older version charges. More than 5,000
compounds with experimentally determined logP values were
used as training set to calculate the increments. A recent
comparison with 25,000 experimental logP values is given in
Figure 2. The strong relation between the experimental and the
calculated logP is shown by a correlation coefficient of 0.93.

However, this strong correlation is not needed for our
experimental setup. Important for the experiment is the linear
dependency between the molecular structure and the calculated
logP values. Theoretically, this linear dependency allows linear
regression methods like partial least square regression a perfect fit
of dependent and independent variables.

A third response variable was the number of sp3-carbon atoms
in a molecule, where each sp3-carbon atom has 4 neighboring
atoms. In early drug discovery, the number of sp3-carbon atoms
is used to chose molecules for high throughput screening in

FIGURE 1 | Seed molecules for dataset generation.

FIGURE 2 | Comparison of 25,000 experimental logP values with DataWarrior calculated logP.
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biological assays. For every molecule in the nine datasets Sapix,1–3,
Srosu,1–3 and Ssofo,1–3, the three dependent variables were
calculated. By considering independent and dependent
variables, a set of 27 datasets was obtained. A summary of the
obtained values is given in Table 1.

Descriptors
A molecular graph is inappropriate input for most machine
learning algorithms. Molecular descriptors are used in
cheminformatics to describe molecular structure in algebraic
form (Todeschini and Consonni, 2008). For a descriptor, a
molecular graph is usually converted into a vector, which is
the input for machine learning. The transformation from a
molecule into a vector is one directional and comes with a
loss of information. The molecular structure can not be
recovered from the vector. Different transformations result in
different losses of information. For this reason, three different
topological molecule descriptors were chosen.

Fragment Fingerprint Descriptor
The fragment fingerprint is a dictionary based descriptor with a
length of 512 bits. Each bit represents a substructure fragment.
The dictionary of 512 substructures was created by a
computational procedure, which had been optimized to
achieve two goals: 1) any of these fragments should occur
frequently in organic molecule structures and 2) each
fragment should be linearly independent with regard to their
substructure-match-pattern in diverse organic compound sets.
To generate a descriptor vector, the molecular structure is
searched for any of the substructures in the dictionary. For
any match, the corresponding bit of the vector is set to 1. Any
molecular structure is represented by a binary vector of length
512. The fragment fingerprint descriptor belongs to the same
class as the “MDL structure keys” (McGregor and Pallai, 1997),
which have recently been shown to outperform 3D descriptors in
virtual screening (Nettles et al., 2006).

Path Fingerprint Descriptor
The path fingerprint is a molecular graph path walking
fingerprint descriptor. All distinguishable paths with up to 7

atoms are hashed into a descriptor vector of 512 bits. This
descriptor is conceptually similar to ChemAxCFp, the
chemical fingerprints from ChemAxon (ChemAxon, 1998) and
to the Daylight fingerprints (Daylight, 1998).

Skeleton Spheres Descriptor
The skeleton spheres descriptor is a vector of integers which
counts the occurrence of different substructures in a molecule.
Five circular layers with increasing bond distance are located for
each atom in the molecule. Hydrogen atoms are not considered.
This results in four fragments starting with the naked central
atom, adding one layer at a time. Every fragment is encoded as a
canonical string (id-code), similar to the generation of canonical
SMILES (Weininger et al., 1989). The canonical id-code includes
the stereochemistry of the encoded fragment, which is a feature
missing in other molecular descriptors. The id-code is then
assigned to one of 1,024 fields in a vector. Therefore, the hash
value of the id-code is calculated and the corresponding value in
the vector is increased by one. The Hashlittle algorithm (Jenkins,
2006) is used as a binning function, which takes a text string as
input and returns an integer value between 0 (inclusive) and
1,024 (exclusive). In preliminary experiments, this hash function
showed a good uniform distribution of the generated hash
values. To consider the molecular scaffold without the
influence of the heteroatoms, the whole calculation is
repeated while replacing the hetero atoms with carbon. The
resulting hash values are used to increment the corresponding
fields in the vector. By adding this skeleton information to the
descriptor vector, the similarity calculation between two
descriptor vectors becomes a bit insensitive to the exact
position of the heteroatoms in two molecules. This directs the
similarity value towards the perception of similarity bymedicinal
chemists. For medicinal chemists, the exact position of a hetero
atom is not as discriminating as it would be for the spheres
descriptor without the skeleton coding part. The additional
consideration of the scaffold information and the use of a
histogram instead of a binary vector distinguishes the
skeleton spheres descriptor from other circular fingerprints.
(Glem et al., 2006).

TABLE 1 | Summary of the response values for all datasets. The first column
indicates the property and the other columns the minimum, maximum,
average, standard deviation, and median values.

min max avr sdv median

Apixaban
MW 110 434 288 101 294
sp3-atoms 2 19 10 3 10
cLogP −2.5 6.8 2.1 1.6 2.2
Rosuvastatin
MW 60 453 255 115 256
sp3-atoms 0 17 8 4 8
cLogP −1.0 6.0 2.6 1.3 2.6
Sofosbuvir
MW 110 500 317 108 317
sp3-atoms 5 24 16 4 16
cLogP −4.8 4.8 0.8 1.2 0.9

FIGURE 3 | Prediction of molecular weight, random shuffling.
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Each of the nine molecule sets Sapix,1–3, Srosu,1–3, and Ssofo,1–3
was compiled into three descriptor sets fragment fingerprint, path
fingerprint and skeleton spheres.

Dataset Construction
A dataset D contains a matrix X and a vector y. Every row in the
matrix X represents a molecule by one of the three descriptors,
fragment fingerprint, path fingerprint, and skeleton spheres.
Corresponding to a row i in X is a response value i in y.
Three response values, molecular weight, cLogP and sp3-
carbon, were available for each row in X. In drug discovery
projects, the optimization process aims for response values
outside the range of response values initially obtained. To
assess the predictive power of a machine learning tool in a
drug discovery project, we sorted the compounds by their
response values. One dataset contained the ascending response
values, a second the descending values and a third dataset was
compiled from the shuffled response values. Summarizing the
data set up, nine sets with molecules, each set compiled three
descriptors, gave 27 descriptor matrices X. Three different
response values, molecular weight, cLogP, and the number of
sp3-carbon atoms were sorted according to ascending,
descending or shuffled data. Combined with the 27 X
matrices, a total of 243 datasets were obtained. The molecules

together with the descriptors and the calculated response values
are available from (Korff, 2021). Each of these datasets underwent
the successive regression procedure, as described in the next two
paragraphs.

Machine Learning Techniques
Six modeling techniques were applied to construct regression
models for the datasets: k next neighbor regression (kNN), partial
least square regression (PLS), partial least square regression with
power transformation (PLSP), random forest regression (RFR),
Gaussian process regression (GPR), and support vector (SVM)
regression. All parameters for these machine learning models
were optimized by an exhaustive search. The median model was
used as a baseline model. Any successful machine learning model
should be significantly better than the baseline model. Also easy
to calculate was the k next neighbor model for regression. In this
model, the k next neighbors in the training set were screened for
the query descriptor vector. The predicted ŷ value was the average
of the corresponding y values weighted by similarity. Partial least
square regression (PLSR) is a multivariate linear regression
technique (De Jong, 1993), which only requires the number of
factors as the input parameter. PLSR with power transformation
includes a Box Cox transformation and is often used to model

TABLE 2 | Prediction of molecular weight, random shuffling, skeleton spheres
descriptor. The first column indicates the machine learning algorithm. The first
row is the fraction of data used for model construction. The other values are the
relative errors of the test data.

Fraction of train data

0.30 0.40 0.50 0.60 0.70 0.80 0.90
GPR 0.02 0.01 0.01 0.01 0.01 0.01 0.01
Med 0.29 0.30 0.30 0.29 0.29 0.29 0.28
PLS 0.02 0.01 0.01 0.01 0.01 0.01 0.01
PLSP 0.02 0.01 0.01 0.01 0.01 0.01 0.01
RFR 0.03 0.03 0.02 0.02 0.02 0.02 0.02
SVM 0.02 0.02 0.02 0.02 0.01 0.01 0.01
kNN 0.09 0.08 0.08 0.07 0.06 0.07 0.06

FIGURE 5 | cLogP, random shuffling.

FIGURE 4 | sp3-atoms, random shuffling.

FIGURE 6 | Molecular weight, high to low sorted response values.
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biological data, which are notoriously not normally distributed
(Sakia, 1992). For random forests and Gaussian process
regression, we used the implementation from Haifeng Li. (Li,
2021). Random forest regression was only included because it is
frequently used for models in drug discovery. Random forests
base on decision trees and are not capable of extrapolation. The
Java program library libsvm was used for the support vector
machine regression (Chang and Lin, 2011). Details for meta-
parameter search: kNN: k from 1 to 9, step 1. PLSR: factors from 1
to 31, step 1. PLSR power transformation: factors like PLSR; λ
from 0.05 to 2, step 0.05. Gaussian process regression: λ 0.001,
0025 . . . 1, . . . 10,10,000. Random forest: trees 50, 100, 250, 500,
1,000; Maximum number leaf nodes from 2 to 54 step 2. Mtry:
0.15, 0.333, 0.45. Maximum node size from 2 to 54, step 2.
Support vector regression: (Smola and Schölkopf, 2004) Epsilon
regression, RBF kernel, power of 2 rule for: C from 2 to 5 to 215; ϵ
from 2 to 10 to 26; γ 1/(number of fields in the descriptor). Details
for the objective function are given in the next section.

Successive Regression
A two-step process was implemented to ensure an unbiased
estimation for the extrapolation power of a model. The first step
was the selection of one meta-parameter set for every machine

learning technique. The algorithm started with the first 20% of the
molecule descriptors X0,0.2, y0,0.2 together with the measured
response values to determine the meta parameters of the
machine learning models via an exhaustive search. An eleven-
fold Monte Carlo cross validation was employed to split all data
into the training and validation datasets (Xu and Liang, 2001). A
left out fraction of 25% was chosen as the size of the validation
dataset. With this set up, the average error for all meta-parameter
sets was calculated. For each machine learning technique t, the
meta-parameter set Mmin,t was chosen that showed the minimum
average error. This meta-parameter set was used to construct a
model from all data in X0,0.2, y0,0.2. In the second step, an
independent test set was compiled from the next 10% of data,
X0.3, y0.3. The average prediction error of ŷ0.3 gave an unbiased
estimator for the model, because the machine learning algorithm
Mmin,t,0.2 had not seen these data before prediction. Subsequently,
step one was repeated, this time with the dataset X0.3, y0.3. So, the
former test data were added to X0,0.2, y0,0.2. The meta parameter for
the machine learning algorithms Mmin,t,0.3 were now determined

FIGURE 7 | Number of sp3-atoms, high to low sorted response values.

FIGURE 9 | Molecular weight, low to high sorted response values.

FIGURE 8 | cLogP, high to low sorted response values.

FIGURE 10 |Number of sp3-atoms, low to high sorted response values.
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with X0,0.3, y0,0.3. So, the prediction was done for y0.4. This process
was repeated eight times, up to a model size with X0,0.9, y0,0.9 and a
prediction for y1.0. Using thismethod, we assessed the extrapolation
power of the machine learning method together with the applied
molecular descriptor for the sorted response data. The 10% test set,
with higher or lower response values than the training set, was an
unbiased estimator of the model’s quality for extrapolation. As a
quality measure for prediction, we used the relative error.

Technical Details
The source code was implemented in Java 1.8. The calculations
were done on a SuperMicro computer with 176 processor cores.
Meta-parameter calculation and test data prediction took
approximately 72 h for all datasets. Data visualization was
done with DataWarrior (Sander et al., 2015), an open source
tool for data visualization and evaluation (Sander, 2021).

RESULTS

The successive regression procedure was applied to all 243
datasets. In the following, the results for nine datasets with the
molecular structures Sapix,1–3, Srosu,1–3 and Ssofo,1–3 are
summarized by their median relative error. No extrapolation
was needed for the shuffled datasets. Figure 3 and Table 2 show
the machine learning results for the prediction for the shuffled
data for three descriptors and three properties. The three
descriptors, fragment fingerprint, path fingerprint and skeleton
spheres, are indicated by shape. Circles, squares and triangles
indicate fragment fingerprint, path fingerprint and skeleton
spheres descriptors, respectively. A color code was used for the
machine learning algorithms. Green indicated our base line
model, which was the prediction by median, kNN regression
in red, Gaussian process regression in blue, partial least square
regression in yellow, partial least square regression with power
transformation in light blue, random forest regression in
magenta, and support vector regression in orange. All results
are available as Data Warrior files (Korff, 2021).

For almost all models, the relative error for predicted molecular
weight was less than 10%. For the majority of predictions, relative
error was less than or equal 5%. No preference for any of the
descriptors was observed, as indicated in Figure 3. A higher
separation was shown by the machine learning techniques. The
error for the median model is not shown in Figure 3. A relative
error of approximately 30% was observed for all fractions of the
model. Three machine learning models performed equally well.
Gaussian process regression, partial least square regression and
partial least square regression with power transformation showed a
relative error below 3%. These results were obtained together with
the skeleton spheres descriptor.

Figure 4 shows the results for the sp3-atoms with the shuffled
data. The results were similar to the predicted molecular weight in
3. Relative error was higher than for the molecular weight
prediction, but all models were better than the median model.
In contrast to the molecular weight prediction, all three
descriptors performed equally well for the models with the
lowest error.

The predictions for cLogP, draw a different picture than the
predictions for molecular weight and number of sp3-atoms,
Figure 5. Only one model showed a relative error below 20%.

FIGURE 11 | cLogP, low to high sorted response values.

TABLE 3 | Summary of the best results for the machine learning techniques. Rank
count for the top three ranks. The ranks were calculated from all descriptors,
predicted properties, and fractions of training data. The columns show the three
different orientations of the response data: shuffled, sorted from high to low and
from low to high.

ML method Shuffled low2high high2low

Gaussian process regression 9 6 1
KNN regression 0 0 0
Median 0 0 0
PLS 8 13 18
PLS Power 3 6 6
Random Forest regression 0 0 0
SVM regression 7 2 2

TABLE 4 | Summary of the best results for the three descriptors. Rank count for
the top three ranks. The ranks were calculated from all methods, predicted
properties, and fractions of training data.

Descriptor Shuffled low2high high2low

FragFp 17 16 13
PathFp 16 22 26
SkelSpheres 30 25 24

TABLE 5 | Summary of the best results for the three response datasets. Rank
count for the top three ranks. The ranks were calculated from all descriptors,
methods, and fractions of training data.

Response value Shuffled low2high high2low

MW 54 47 49
cLogP 0 0 0
sp3-Atoms 9 16 14
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Many models were worse than the median model, indicated in
green. The best performing machine learning models were partial
least square regression and Gaussian process regression.

The prediction for shuffled data did not require extrapolation.
The data range of the response values is covered by the training
data. To simulate the requirements of drug discovery, the datasets
were sorted by their response values. In the following, we discuss
the results for sorting from high to low response values. This
experimental set up forced the machine learning algorithms into
extrapolation. The range of predicted response values was always
outside the range of the training data. Figure 6 shows the results
for the prediction of molecular weight. The data were sorted from
high to low.

As for the molecular weight prediction for shuffled data, the
skeleton spheres descriptor together with partial least square
regression, partial least square regression with power
transformation and Gaussian process regression delivered the
most predictive models. The range of the relative errors was very
large, below 10% for the best models up to 50% for the kNN
models with the skeleton spheres descriptor, depicted in red
triangles. But, relative errror was higher for all predictions
than for the shuffled data. For the shuffled data, only one
prediction was above a relative error of 0.1, with the kNN
model at a fraction of 0.2. For the high to low sorted
molecular weight data the majority of predictions showed a
relative error above 0.1.

Two trends were observed for the prediction of number of sp3-
atoms, Figure 7. The relative error of the median prediction
increased with an increasing fraction of data used to construct the
models. This also happened with the relative error for the kNN
models, in red, and the random forest, in magenta. The relative
error for Gaussian process regression, partial least squares, partial
least squares with power transformation and support vector
regression remained almost constant. As for molecular weight,
the predictions for high to low sorted data had a much higher
relative error than predictions for sorted data.

Figure 8 shows the results for cLogP. Data were sorted from
high to low. Curve progression was similar to the curve
progression of the relative error for the sp3-atom number
prediction. However, the values for the relative error are
much higher. Only four predictions had relative errors less
than 100%.

When molecular weight values were sorted from low to high,
the values to be predicted were higher than the values used for
model construction. For the molecular weight prediction, the
results are depicted in Figure 9. The skeleton spheres descriptor
resulted inmodels with the lowest relative error. In the figures, the
skeleton spheres descriptor is indicated by triangles. For the
prediction of the number of sp3-atoms in Figure 10 the
models constructed from the path fingerprint were better than
the models constructed from the skeleton spheres descriptor. As
for the high to low sorted values in Figure 7, the path fingerprint
was the best performing descriptor. Also, for cLogP value
prediction, given in Figure 11, the path fingerprint was the
best performing descriptor.

For each of the experimental set ups, including 243
individual datasets, all machine learning algorithms

outperformed median predictions, which were used as
baseline controls. kNN regression and random forest
regression were very similar in their prediction quality. These
two algorithms were outperformed by support vector
regression. The best performing machine learning algorithms
were Gaussian process regression, partial least square regression
and partial least square regression with power transformation.
Together with the path fingerprint and the skeleton spheres
descriptor, the best results were obtained. The relative errors for
the successive predictions were lower for the low to high sorted
values than for the high to low sorted values. This was caused by
numeric effects, the absolute prediction error for big values
results in a lower relative error than the same absolute
prediction error for small values.

RESULTS SUMMARY AND CONCLUSION

All results are summarized in Tables 3–5. The figure of merit was
the rank of the median error. For every successive fraction of test
data, a median error was calculated from the nine molecule
datasets Sapix,1–3, Srosu,1–3 and Ssofo,1–3. By using the ranks of
the errors, a bias was prevented, which would have been
otherwise introduced by the error dependency on the fraction
of training data. Because, a higher fraction of training data
generally results in better models. This would have resulted in
a bias if the median would have been used. By using the ranks the
results for different fractions of training could be combined. In
Tables 3–5, the frequency of the top three ranks is given. This
means, the rank count increased by one, if the corresponding
error belonged to the three lowest errors for the given conditions.
Results for the machine learning algorithms are provided in
Table 3. For shuffled response data, Gaussian process
regression delivered the highest number of top models 9) for
prediction. For extrapolation, for high to low sorted and for low to
high sorted data, the partial least square regression outperformed
the other machine learning algorithms. That the linear method
outperformed the non-linear method is in accordance with the
results from (Cortés-Ciriano et al., 2018), where the linear
method, ridge regression, also outperformed the non-linear
method, random forest.

Results for the descriptors are provided in Table 4. In total, the
skeleton spheres descriptor outperformed the other two
descriptors. However, the path fingerprint slightly
outperformed the skeleton spheres descriptor for extrapolation
for the high to low sorted response values. Table 5 presents the
rank counts for the most accurately predicted response values. As
expected, the best models were obtained for molecular weight,
followed by the number of sp3-atoms.

The purpose of this study was to examine the difference
between prediction in the range of the training response
values and extrapolation outside the training response values.
It must be considered that the molecules in each dataset were
derived from a single molecule. Consequently, there was a high
similarity between molecules in a dataset. All molecules in this
examination were in the domain of applicability. They were
similar to the training molecules in descriptor space.
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Nevertheless, the differences between the relative errors for the
shuffled data and sorted data were striking. Even for molecular
weight, with a very low error for shuffled data, the extrapolation
for high to low sorted data became much more difficult. This was
unexpected, because molecular weight depends solely on the
molecular formula and does not need any molecular graph
dependent feature. In addition, the relation between the
molecular formula and molecular weight is strictly linear.
cLogP values were hardest to predict. Prediction was achieved
with a moderate error for shuffled data using linear regression
techniques. However, after sorting the response values from high
to low and successively extrapolating the lower values, no
meaningful prediction for cLogP was possible. None of the
machine learning algorithms were able to extrapolate cLogP
values for high to low sorted data. This result was unexpected
because the cLogP model is an incremental model that relies on
substructure contributions to the overall cLogP. Therefore the
contributions are linear and theoretically can be modelled by
linear regression with chemical descriptors. We had expected,
that the linear regression algorithms would be able to create
“semi-mechanistic”models with more predictive power. There is
a high demand in drug discovery for extrapolation of molecular
features. The results of this study show large differences in
prediction quality between interpolation and extrapolation.
This demonstrates that any model used for extrapolation
should be validated with extrapolation. For this validation, we
suggest the successive prediction as described in this

contribution. We suggest to add the prediction of calculated
values as reference standard to all publications in
cheminformatics when regression methods are applied. Partial
least square regression was by far the most successful
extrapolation method. The successful extrapolation of
molecular features show that partial least square regression is
capable of providing meaningful models for extrapolation.
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