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Background: The development of artificial intelligence (AI) in the medical field has been growing rapidly. As AI models have been introduced in complementary and alternative medicine (CAM), a systematized review must be performed to understand its current status.
Objective: To categorize and seek the current usage of AI in CAM.
Method: A systematic scoping review was conducted based on the method proposed by the Joanna Briggs Institute. The three databases, PubMed, Embase, and Cochrane Library, were used to find studies regarding AI and CAM. Only English studies from 2000 were included. Studies without mentioning either AI techniques or CAM modalities were excluded along with the non-peer-reviewed studies. A broad-range search strategy was applied to locate all relevant studies.
Results: A total of 32 studies were identified, and three main categories were revealed: 1) acupuncture treatment, 2) tongue and lip diagnoses, and 3) herbal medicine. Other CAM modalities were music therapy, meditation, pulse diagnosis, and TCM syndromes. The majority of the studies utilized AI models to predict certain patterns and find reliable computerized models to assist physicians.
Conclusion: Although the results from this review have shown the potential use of AI models in CAM, future research ought to focus on verifying and validating the models by performing a large-scale clinical trial to better promote AI in CAM in the era of digital health.
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INTRODUCTION
Artificial intelligence (AI) comprehensively refers to the field of studies where cognitive functions, such as facilitating learning, reasoning, and self-correction, were conducted by machine or computer systems since John McCarthy initiated AI “to make machines behave as if they were knowledge of human behavior” at the Dartmouth conference (Ramesh et al., 2004; McCarthy et al., 2006; Ben-Israel et al., 2020). Over the last decade, the emergence of data-based medicine tendencies in the clinical environment has facilitated the convergence of medicine and AI (Krittanawong et al., 2017; Johnson et al., 2018).
As the integration of AI and medicine accelerates in various fields, healthcare and biomedical research trends are gradually changing (Yu et al., 2019; Adeluwa et al., 2021). Trained with thousands of images of diabetic retinopathy, AI achieves physician-level sensitivity and specificity in diagnosing referable diabetic retinopathy (Gulshan et al., 2016). AI also shows the possibility of a clinical decision support system of Alzheimer’s disease with training functional magnetic resonance imaging (fMRI) (Hu et al., 2016a). Likewise, the application of the AI system has expanded to diagnostics, interpretation, preventative, and prediction and support medical staff (Kundu et al., 2000; Jha and Topol., 2016). Especially, the utilization of either AI or deep learning (DL) methods on the various datasets on the drug and food, chemical compounds, or genomic biomarkers was computed and characterized for predicting risk for the prediction of drug-induced liver injury (DILI) (Adeluwa et al., 2021; Vall et al., 2021).
After the global COVID-19 pandemic, decreasing the burden on the healthcare system and reducing medical costs have emerged as an emerging issue in the healthcare system. These induce AI use in the medical field (Yu et al., 2019; Albahri et al., 2020a; Albahri et al., 2020b; Ben-Israel et al., 2020).
Furthermore, AI integration is accelerating in the conventional medical field, and the introduction of AI in complementary and alternative medicine (CAM) is also being attempted (Coleman et al., 2020; Khan et al., 2021). According to the National Health Interview Survey (NHIS) conducted in the United States, 33.2% of adults and 11.6% of children respond they use CAM, and 30% of the medical payments ($14.7 billion) were paid to CAM (Barnes et al., 2004; Barnes et al., 2008). AI is currently used for pattern diagnostics, symptoms classifications, and finding drug candidate substances in the CAM or traditional medicine fields (Zhang et al., 2020; Feng et al., 2021a; Alice et al., 2021).
In traditional medicine, AI techniques have recently been utilized to develop a prescription decision supporting system using traditional contexts or explore the efficacy of herbal extracts and prescriptions (Han et al., 2018; He et al., 2019; Zhou et al., 2021). For instance, numerous research studies were conducted to scrutinize neuroprotective compounds via machine learning methods from Xiaoxuming decoction, which affects regulating vascular function and treating stroke recovery (Fu et al., 2013; Shen et al., 2021; Yang et al., 2019; Zhang et al., 2021).
Although the applications of AI in CAM are expected to show various possibilities in advance of CAM, qualified and comprehensive reviews are lacking. For this reason, this study aimed to analyze the current utilization of AI in CAM to summarize the evidence and suggest improvement directions for future studies.
MATERIALS AND METHODS
This systematic scoping review used the Joanna Briggs Institute guidelines for conducting systematic scoping reviews (Levac et al., 2010; Peters et al., 2015) along with the Preferred Reporting Items for Systematic reviews and Meta-Analyzes extension for Scoping Reviews (PRISMA-ScR) checklist (Tricco et al., 2018). The checklist can be found in Supplementary Appendix S1.
Eligibility Criteria
This review was undertaken to understand the utilization of AI in CAM modalities. All types of peer-reviewed studies, such as original articles, reviews, clinical trials, and editorials, were included.
Studies had to fall into either AI categories and defined CAM modalities. Only studies written in English were considered without any restrictions to the country. Studies published after 1 January 2000 were included as there has been a significant hike from 2000 to 2020 with regard to AI (Kaul et al., 2020). Additionally, PubMed showed about 4,300 results between 2000 and 2005 and 11,000 results between 2005 and 2010 at the time during the data extraction. Non-peer reviewed studies were excluded, as the results may be fallacious (Youn et al., 2021).
Search Strategy
The search strategy was carried out by combining the two main concepts: AI and CAM. The terms of AI were discussed among the authors and finalized by consulting various AI data specialists and professors. The CAM modalities were chosen as defined from the Johns Hopkins medicine website (Johns Hopkins Medicine, 2021). The four authors (BY, HC, YK, SM) ran several sample searches to see if the chosen keywords were relevant to locate publications. The complete keyword search strategies are reported in Supplementary Appendix S2.
Information Sources
According to Thielen et al. (2016), it is vital to include at least two bibliographic databases for conducting a review. Therefore, three distinct databases were used for this study: PubMed, Embase, and Cochrane Library. The final search was performed on 28 May 2021 using the databases.
Study Selection Process
After compiling all studies to EndNote 20, duplicates and non-English articles were removed as the first step of the process. The four authors (HC, SM, JP, and SB) reviewed the rest of the studies’ titles and abstracts against the aforementioned eligibility criteria. And then, the authors met and decided the studies for which they will assess the full texts. While assessing the full texts of the studies, all references of each study were also checked for more potential studies.
A quality assessment was performed by the four authors by screening a random sample of 111 studies (10% of the overall studies) and further reviewing the screening decisions to ensure inter-rater reliability. Moreover, the two authors (BY and YK) were involved in double-screening when controversy arose before making a final decision. Four studies using fuzzy logic were excluded. We determined that fuzzy logic is a technique that converts a linguistic variable, not a deep learning technique in itself (Kharal, 2009; Al-Kasasbeh et al., 2011; Al-Kasasbeh et al., 2012; Al-Kasasbeh et al., 2013). Studies on quality evaluation of herbs or traditional medicines were excluded because it was difficult to consider the use of CAM modalities (Tian et al., 2012; Wang et al., 2012; Tan et al., 2020).
Data Extraction Process
A data extraction table was created by the two authors (BY and SM) and completed by the four authors (HC, SM, JP, and SB) to collect the pertinent information from the final studies. The table was created in the following areas: author, country, study population, sample size, AI technique, workflow of AI model, dataset used to develop the AI model, CAM modality, and outcome.
RESULTS
Study Selection and Characteristics
According to Figure 1, the primary search identified a total of 1,114 studies (813 PubMed, 237 Embase, and 64 Cochrane Library). A total of 46 duplicates were removed, leaving 1,068 articles for screening by titles and abstracts. After reading the titles and abstracts, 200 articles were selected for full-text assessment. During the process, 140 articles were excluded for the following reasons: 78 were written in non-English languages; 86 were not relevant to either AI or CAM; 3 had no enough information to analyze; and 4 were non-peer-reviewed. Three additional articles were found by screening references. With all that said, a total of 32 studies were finally selected.
[image: Figure 1]FIGURE 1 | The PRISMA flow diagram for the scoping review process.
As Table 1 shows the summary of the chosen studies, three main categories of modalities were identified: 1) acupuncture treatment, 2) tongue and lip diagnoses, and 3) herbal medicine. Other CAM modalities were combined in the fourth section. A complete set of characteristics of the included studies can be found in Table 2.
TABLE 1 | Summary of the studies in the review.
[image: Table 1]TABLE 2 | Characteristics of included studies.
[image: Table 2]Results Using Artificial Intelligence in Acupuncture Treatment
A total of five studies were related to acupuncture treatment, and most studies were regarding the selection of acupoints. It was interesting to find the Jung et al. (2019) study to predict acupoint patterns utilizing medical records based on symptom and disease information. The average precision score was relatively high, marking 0.865. Although real acupuncture treatments have been known to show more positive effects than sham acupuncture, Yeh et al.’s (2020) research confirmed using multivariate resting-state FCs.
Results Using Artificial Intelligence in Tongue and Lip Diagnoses
Most the studies related to tongue diagnosis sought tongue color and feature classifications using AI. In the existing tongue diagnosis, color recognition, patterning, and digitization acted as limitations. However, the chosen studies have indicated classifying and quantifying patterns of color or progression through AI-applied studies. In addition, Hu et al. (2019) gave a positive outcome for the utilization of AI as preventive medicine, showing a strong correlation with the AST or ALT with some of the tongue features. The correlation of ALT with tooth marks and enlarged tongue was found; the correlation of AST with thick tongue fur and violet fur was also identified. Some notable clinical trials evaluated thickness levels compared to both ALT and AST; however, it may be difficult to evaluate on a common line as the target population was patients with chronic renal disease and liver cancer (Chen et al., 2014; Lin et al., 2015). Regardless, it can be said that the thicker tongue is close to having signs and symptoms of diseases. Because current studies that combine AI and tongue diagnosis mainly focus on tongue image extraction, further research is needed on the healthy population to find any variances.
As lip diagnosis is rarely used compared to tongue diagnosis, Li et al. (2012) attempted to construct the lip inspection model utilizing multi-class SVM algorithms and achieved a higher accuracy rate when combined with SVM and SCM-REF feature selection.
Results Using Artificial Intelligence in Herbal Medicine
Amid the known CAM modalities, herbal medicine was the most popular modality for researchers to work with AI models. Herbal medicine studies not only compared the database of components of herbal medicine or individual herbs and existing physiological pathways to estimate the mechanism of prescription but also classified herbal medicine prescription AI models through clinical data of patients.
As there are well-developed herbal medicine databases from several countries, predicting different compounds for various diseases using AI models will assist physicians in helping patients to prevent diseases as Yang et al. (2019) found compounds against hypoxic injury and oxidative damage (Yang et al., 2019). Herbal medicine and herbal compounds included in this review are summarized in Table 3. Because the studies of Ung et al. (2007a), Ung et al. (2007b), Chen et al. (2019), Yao et al. (2019), and Jiang et al. (2016) are based on computer simulation using the established electronic database, the specific names of herbs or herbal prescriptions are not mentioned in Table 3. The case of Won et al. (2020) is not summarized in Table 3 as the study focused on finding the pattern of herbal medicine.
TABLE 3 | Information of herbal medicine or herb compounds in the review.
[image: Table 3]Although algorithm evaluation studies related to causality imputation between herbal products and herb-induced liver injury (HILI) existed, the studies were excluded because either ML (machine learning) or DL (deep learning) was not utilized (Soares et al., 2021). AI studies of the Roussel Uclaf Causality Assessment Method (RUCAM) and DILI were also exempted since HILI studies were not observed (Teschke and Danan, 2021).
Results Using Artificial Intelligence in Other Modalities
Two studies out of the eight modalities regarded music therapy, two studies differentiated TCM syndromes, and only one study was found for each topic of meditation, pulse diagnosis, and Ayurveda constitution. With regard to the aforementioned studies, AI models were utilized for the prediction of the effectiveness of discovering the accurate models for supporting physicians while finding the right interventions for patients.
Furthermore, two review articles were found related to TCM diagnosis and TCM symptom classification (Feng et al., 2021b; Song et al., 2021). According to Feng et al. (2021b), TCM diagnosis was reviewed by classifying it into four traditional diagnostic methods: inspection, listening and smelling examination, inquiry, and palpation. This study was inadequate for further analysis as there was no specific description of which AI techniques were applied. Regarding Song et al. (2021), artificial neural network (ANN), data mining, and multivariate analysis, which are AI techniques that can be used for TCM symptoms classification, were introduced. However, the study merely introduced the possibility of using AI techniques without designating a specific symptom or diagnosis. Several studies with algorithm evaluation of pulse diagnostics existed, but these study excluded since either ML (machine learning) or DL (deep learning) methods were not utilized (Zhang et al., 2008).
DISCUSSION
Main Findings
The present scoping review investigated the available evidence to identify the current use of AI models in CAM. A total of 32 studies were found for this review, and the number may seem to be small compared to the number of new techniques of AI that appear each year. However, it can be presumed that further work is recognized among CAM practitioners and researchers bridging the advanced digital tools and the principles of CAM in this digital medical age.
ML and DL, the subdomains of AI, have undergone exceptional growth in recent years. ML is fully capable of pattern recognition and training prediction models. Additionally, DL is the most recent branch of ML capable of classification and recognition tasks using a system of artificial neural networks (Tran et al., 2021). Areas where ML and DL were applied within the field of CAM were acupuncture, herbal medicine, tongue diagnosis, and pulse diagnosis. Studies have been conducted to match and learn using actual blood tests through pulse diagnosis or tongue diagnosis, which are diagnostic indicators used in traditional medication.
Recent advances in the research of herbal medicine for the prevention of coronavirus disease 2019 (COVID-19) are noteworthy, as aforementioned in the results. As Huang et al. (2020) has outlined, a number of distinctive compounds from natural products have shown the potential to inhibit SARS-COV-2 and MERS-COV, while compounds from herbal medicine have been shown to alleviate the acute respiratory infection. With the development of AI models, herbal medicine could be precisely customized per patient depending on the symptoms. According to Lynn (2019), AI can analyze more complex portions of a patients’ dataset and detect highly complex and time-dependent conditions such as adverse drug reactions and sepsis.
As the application of AI in medical fields is increasing, it aids not only in diagnostic medical devices but also in clinical trials through data amplification. In 2016, researchers at Beth Israel Deaconess Medical Center reported that an AI diagnostic program correctly identified cancer in pathology slides with 99.5% accuracy; in 2018, researchers at Massachusetts General Hospital reported that the trained AI model’s performance was as accurate as the radiologists at diagnosing intracranial hemorrhages; in 2019, researchers at Google and several medical centers reported that an AI model could detect lung cancer with the 94% of accuracy (The Harvard Gazette, 2020).
Applying AI in the various fields with CAM modalities, precise biomarker decision, measurement, and application may be required for future research. Despite these various challenges, the future of integrating AI technologies in CAM is expected to grow. In order to facilitate this, well-designed randomized controlled trials are needed to validate the AI models.
AI is applied and not limited to screening, assessment, treatment, relapse prevention, and so on in the field of CAM. In particular, the combination of CAM and AI is expected to provide better answers to the weaknesses in the existing traditional medicines. For example, AI techniques will be able to help prescribe the most effective herbal medicines because herbal medicines have a mechanism of action of complex compounds. Moreover, AI could guide making the correct diagnoses (Zhou et al., 2012; Arji et al., 2019). Assistive AI-based diagnostic models are also expected to grow in the field of decision-making model and symptoms classification using various clinical data. Further, practitioners and researchers in the field of CAM have started to build a different database using the clinical data, which can be used for drug discovery (Li et al., 2018; Zhang et al., 2018).
Concerning the study of Li A et al. (2016), the efficiency of herbal medicine was explored using the primary herb components analysis of Wuji Pill used in gynecology disease. However, neither three main herb selection criteria nor transitional bibliographic references were mentioned in detail. It is difficult to determine what prescriptions researchers used when the transitional bibliographic reference is missing in such a case.
During the search process, numerous text mining, data mining, artificial intelligence methodology development, and network pharmacology studies were recognized (Wang et al., 2009; Liu et al., 2013; Wang H. et al., 2014; Wang Y. et al., 2014; Redd et al., 2014; Liu et al., 2016; Nguyen et al., 2018; Shimada-Takaura et al., 2018; Wang et al., 2021). Even though the previously mentioned techniques deal with extensive data, the techniques do not utilize the data to either predict or learn so that the studies were excluded for further analysis.
Notably, AI is actively applied in complementary and alternative medicine. As AI is applied to drug investigation and drug efficacy estimation in the field of pharmacology, it is necessary to expand and utilize the pharmacological database in traditional medicine to be used in ethnopharmacology (Zhavoronkov et al., 2020; Gupta et al., 2021). The expansion of these databases will help drug investment not only in AI but also in fields such as network pharmacology. Importantly, predictive studies on drug precision dosing were not found in the ethnopharmacology of traditional medicine (Tou et al., 2013; Barbieri et al., 2016; Angehrn et al., 2020). Hence, topics related to AI and ethnopharmacology in traditional medicine ought to be considered for helping practitioners to prescribe personalized herbal medicines.
Nevertheless, there have been papers such as comparing the trained set with professional or physicians’ pattern diagnosis in the application of AI and CAM. However, because these datasets may involve subjectivity, studies using quantified datasets such as blood tests should be further activated in the future. Although it was excluded, not corresponding to the scope of this study, attempts to use big data such as text mining are activated in the CAM field. The application of DL seems to open new horizons for CAM research, such as a lack of participants or the discovery of hidden variability in clinical studies. However, it is necessary to continuously provide standardized official datasets or present appropriate AI models.
Limitations of the Study
This review has several limitations to note. First of all, articles published in English were only included. It might have been better to search Chinese databases as China has a long-lasting history of using CAM modalities for many years as Traditional Chinese Medicine (Fan et al., 2018). Second, there is also a limitation in that this study does not include studies from Chinese databases. TCM encompasses a wide range of practices and is vibrantly applied throughout China; it may have been better to review TCM-related AI applications in Chinese literature.
Moreover, the eligibility criteria were defined rather broadly, including all AI techniques and CAM modalities, being the first review study to seek any potential use of AI in CAM. As this study is expected to serve as a basis for future studies, it may be meaningful to focus on using merely one AI technique per CAM intervention when there is enough information in the near future.
CONCLUSION
The use of AI models has been bringing efficient solutions to a vast number of real-world clinical problems. The results from this systematic scoping review have revealed the use of AI in various CAM modalities. Even though research for AI models in CAM is at its initial stage, the results from the chosen studies are promising that the AI techniques could well be applied to assist practitioners in better serving the patients. However, applying various AI models to a wide array of CAM modalities is much needed going forward.
More importantly, in order to widely spread the utilization of AI models in CAM, concrete evidence is much needed as novel technologies may fail to be adopted without sufficient evidence. That being said, for researchers who plan to conduct research using AI methods with CAM, it is significantly vital to verify the generalizability and validate the effectiveness and the reliability for the betterment of the promotion of CAM globally.
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