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Myocardial injury is a major pathological factor that causes death in patients with
heart diseases. In recent years, mesenchymal stromal cells (MSCs) have been
generally used in treating many diseases in animal models and clinical trials.
mesenchymal stromal cells have the ability to differentiate into osteocytes,
adipocytes and chondrocytes. Thus, these cells are considered suitable for
cardiac injury repair. However, mechanistic studies have shown that the
secretomes of mesenchymal stromal cells, mainly small extracellular vesicles
(sEVs), have better therapeutic effects than mesenchymal stromal cells
themselves. In addition, small extracellular vesicles have easier quality control
characteristics and better safety profiles. Therefore, mesenchymal stromal cell-
small extracellular vesicles are emerging as novel therapeutic agents for damaged
myocardial treatment. To date, many clinical trials and preclinical experimental
results have demonstrated the beneficial effects of bone marrow-derived
mesenchymal stromal cells (BMMSCs) and bone marrow-derived mesenchymal
stromal cells-small extracellular vesicles on ischemic heart disease. However, the
validation of therapeutic efficacy and the use of tissue engineering methods require
an exacting scientific rigor and robustness. This review summarizes the current
knowledge of bone marrow-derived mesenchymal stromal cells- or bone marrow-
derived mesenchymal stromal cells-small extracellular vesicle-based therapy for
cardiac injury and discusses critical scientific issues in the development of these
therapeutic strategies.
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Introduction

Ischemic heart diseases (IHDs) are cardiac dysfunctions caused by acute myocardial
infarction (AMI) or ischemia reperfusion injury. Ischemic heart injury is the leading cause
of death in patients. Although advanced therapeutic strategies have been developed, such as
percutaneous coronary intervention (PCI), stenting, and routine use of antithrombotic medical
treatment (Keeley and Weaver, 1999; Reed et al., 2017; Johnston et al., 2018; Jia et al., 2020),
patients with IHD are still admitted with congestive heart failure and cardiogenic shock after
revascularization (Thiele et al., 2019; Zeymer et al., 2020). Sudden death in patients with IHD
remains at a high level.
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As a novel treatment method, stem cell therapy has attracted much
attention for its regenerative effects (Vining and Mooney, 2017;
Nourian Dehkordi et al., 2019; Zhou et al., 2022). Stem cells used
in cardiac injury therapy include cardiac stem cells, induced
pluripotent stem cells, cardiovascular progenitor cells, peripheral
blood stem cells, mesenchymal stromal cells, and so on (Shafei
et al., 2017; Rikhtegar et al., 2019). MSCs are considered to be
suitable for the treatment of various diseases due to their high self-
renewal and multilineage differentiation potential (Mushahary et al.,
2018). Additionally, in vivo and in vitro models, MSCs express
specific cardiomyocyte markers (such as connexin 43 and
N-cadherin) (Fukuda and Fujita, 2005). Thus, MSCs are thought
to be suitable to treat cardiac disease (Carbone et al., 2021).
Interestingly, preclinical and clinical data indicated that the
mechanism of MSC therapy relies on its paracrine function
rather than its differentiation and renewal ability in diseased
tissues (Caplan, 2017; Yang et al., 2021). MSC-derived
secretome derivatives (conditioned medium or exosomes)
showed better potential due to their easy quality control, safety
and efficacy (Mendt et al., 2019). Therefore, research mainly
focuses on the secretomic roles of MSCs. Small extracellular
vesicles (sEVs) are the most studied secretomes of MSCs in
recent years. In our review, we summarized clinical studies that
used BMMSCs to treat acute myocardial infarction (AMI) or
ischemia-induced cardiac failure and BMMSC-derived sEVs in
ischemic heart disease therapy and gathered experimental and
clinical evidence from recent years of using BMMSCs and
secretome-sEVs. By comparing the similarities and differences
between various studies, we hope to provide a future research
direction for BMMSC therapy.

Characterization and biomarkers of
BMMSCs

MSCs can be derived from various tissues, such as adipose,
brain, pancreas, liver, amniotic fluid, synovia, peripheral blood,
muscle tissues and bone marrow (Wang et al., 2018; Camernik
et al., 2019). However, there are distinct properties in different
sources of MSCs. For example, comparative studies have shown
that BMMSCs have lower IDO activity (an enzyme that inhibits
T-cell activation) than adipose-derived MSCs (AT-MSCs) (Strioga
et al., 2012; Hao et al., 2017). The mRNA expression of SDF-1 (a
chemokine, also known as CXCL12) and VCAM-1 (an adhesion
protein) was higher in BMMSCs than in AT-MSCs and umbilical
cord-derived MSCs (UCMSCs) (Cortes-Araya et al., 2018). In
addition, MSCs derived from bone marrow were shown to have
a 5.9-fold higher migratory capacity than UCMSCs, which is a key
factor in post-traumatic tissue repair (Shi et al., 2021). BMMSCs
have become one of the most widely used sources in preclinical and
clinical studies as they are easily obtained. In the laboratory,
BMMSCs are mostly obtained via a colony-forming unit-
fibroblast approach, in which raw unpurified bone marrow is
directly seeded into plates or flasks. To verify the phenotype of
MSCs, researchers have determined the positive expression of
biomarkers such as CD73, CD90, and CD105 and the negative
biomarkers CD34, CD11b, CD14, CD19, CD45, and CD79a in
experiments (Chang et al., 2022a). However, there is still a lack of
specific biomarkers to distinguish stem/progenitor cells from other

remaining cells. In human adults, cells expressing Lin− CD45−

CD271+, along with low expression or negative expression of
CD140a, were shown to have a higher population of MSC stem/
progenitor cells; however, in human fetal bone marrow and murine
MSCs, CD140a was found to be positively expressed (Li et al.,
2016). For murine BMMSCs, LepR+ was reported to have high
expression (Zhou et al., 2014), in addition to high expression of
CD140a and Sca-1 and negative expression of CD45 and TER119
(Morikawa et al., 2009). Additionally, genetically modified specific
genes, such as Prx1-cre in mouse, could identified as biomarkers for
BMMSCs (Ding and Morrison, 2013), how these different cell
populations overlap and the potentially functional difference
between those populations are still unclear.

Numerous studies have shown that BMMSCs are good
therapeutic agents for various diseases, as they accelerate wound
healing (Wu et al., 2007; Demir et al., 2021), modulate the immune
response (Zhang et al., 2019; Xin et al., 2020), and exhibit
antidiabetic (Hamza et al., 2017; Aali et al., 2020) and
neuroprotective effects (Uccelli et al., 2011; Nakano et al., 2020).
Many clinical trials are in the recruiting phase or phase Ⅰ/Ⅱ, in
which BMMSC administration is used to treat various diseases,
including myocardial infarction, amyotrophic lateral sclerosis
(ALS) and Crohn’s disease. (Uder et al., 2018). Most of the
trials showed promising improvements for the diseases, and no
severe adverse effects were observed.

Clinical trials using BMMSCs for ischemic
heart disease

Most animal experiments and clinical trials using BMMSCs to
treat ischemic heart injury have shown a global improvement in
myocardial function. The improved heart function may occur
through enhanced angiogenesis, inhibited apoptosis of
cardiomyocytes, and ameliorated inflammation and scar formation
after MSC transplantation (Yu et al., 2017). However, in clinical trials,
the results are inconsistent. For example, a randomized, single-blind,
controlled clinical trial conducted on patients with ST-segment
elevation myocardial infarction showed that autologous BMMSC
transplantation by intracoronary delivery at the time of PCI did
not promote the recovery of left ventricular function and
myocardial viability in the following 6th or 12th month of follow-
up (combined with the optimummedical treatment) (Kim et al., 2018)
(NCT04421274). However, another clinical trial with a similar
procedure indicated improved LV function in the 4th or 6th
month of follow-up (Zhang et al., 2021). In addition, previous
systematic reviews and meta-analyses have shown divergent results
(Chugh et al., 2009; de Jong et al., 2014; Liu et al., 2014; Fisher et al.,
2015; Lalu et al., 2018). Although many clinical trial results using
BMMSCs as therapeutic agents for acute ischemia showed good
responses in improving cardiac function, mortality and heart
attacks and/or heart failure requiring rehospitalization following
treatment (Xu et al., 2017; Attar et al., 2021), the systematic
analysis indicated that this treatment may not lead to improvement
when considering the “risk of bias” of trials, whether in the short term
or the long term (Fisher et al., 2015) (Table 1). However, for chronic
ischemic heart disease, a systematic analysis from the same group
showed that BMMSC treatment may reduce the risk of long-term
mortality in patients (Fisher et al., 2018), which is consistent with
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other reviews (Wen et al., 2011a; Xu et al., 2014). However, the effects
of reduced mortality are not consistent in different studies (Fisher
et al., 2016; Fu and Chen, 2020), (Table 1) suggesting unstable
therapeutic effects of BMMSC treatment. In addition, the different
MSC dosages affected the efficiency of BMMSCs. The optimal in vivo
cell number for BLI and MRI was determined to be 1 × 106 (Qu et al.,
2022). An MSC dose of 107–108 cells was more likely to achieve better
clinical endpoints, and the optimal time window for cell
transplantation might be within 2–14 days after PCI (Yu et al.,
2021). However, another analysis showed that patients exhibited an
LVEF improvement with an MSC dose of less than 107 cells combined
with a transplantation time within 1 week (Wang et al., 2017). In
addition to the dose controversy, methodologies for cell
preparation also have impacts on the prognosis of AMI patients.
A systematic review on methodology showed that nonuse of serum
or plasma in the cell suspension is associated with a greater
reduction in infarct size and a lower risk of all-cause mortality,
and heparin usage could diminish the benefit in reducing IS (Yang
et al., 2018). Therefore, a well-designed randomized control trial
with unified cell preparation and administration doses, as well as
rigorous evaluations of cardiac function and long-term clinical
outcome follow-up, are required to further establish a clear risk-
benefit profile of MSCs. However, there is growing evidence that
BMMSC therapeutic effects might be indirect. Paracrine factors of

BMMSCs, such as cytokines, miRNAs and exosomes secreted from
stem cells, play a major role in the paracrine effects of stem cells
(Wen et al., 2011b).

sEV biogenesis and identification

EVs are double-membrane vesicles that are released into
extracellular spaces by various types of cells. The classification of
EVs depends on the size or biogenesis pathway or specific markers
on the vesicles (van der Pol et al., 2012). By the biogenesis pathway,
vesicles derived from the endosomal pathway are called exosomes,
and vesicles derived from the plasma membrane budding pathway
are called microparticles or microvesicles. By size, vesicles with
diameters larger than 150 nm are called large extracellular vesicles,
and vesicles with diameters between 50–150 nm are called small
extracellular vesicles (sEVs) (Gould and Raposo, 2013; Wetzel,
2020). To date, most studies use the term “exosomes” to classify
vesicles that have a size distribution of approximately 50–150 nm
and positively express protein markers such as CD9, CD81, CD63,
TSG101, flotillin and HSP90 (Chang et al., 2022b). However, these
characteristics do not indicate the endosomal generation pathway,
as small EVs (<150 nm) can also be generated by plasma membrane
budding, and large EVs (>150 nm) can also be derived from the

TABLE 1 Systematic clinical review of using BMMSC for ischemia heart disease treatment.

Review
methods

Ischemic heart diseases
focusing on

Clinical trial numbers included
in analysis

Preliminary findings Ref./year

Meta-analysis Acute MI 41 No effect on morbidity, quality of life/performance or LVEF
measured

Fisher et al.
(2015)

Meta-analysis Acute MI/IHD 23 (11 AMI and 12 IHF) Improve LVEF in AMI patients, no difference in mortality Lalu et al.
(2018)

Meta-analysis AMI 22 bone marrow-derived mononuclear cell/no effects de Jong et al.
(2014)

Meta-analysis AMI 8 Improve LVEF by 3.17% Liu et al.
(2014)

Meta-analysis AMI 13 Increases LVEF Attar et al.
(2021)

Meta-analysis AMI 34 BMC transfer at 3–7 days post-AMI improve LVEF and
decreasing LVESD or LVEDD.

Xu et al.
(2017)

Meta-analysis IHD 19 Improved LVEF and LVESV; No significant improvement in
LVEDV

Xu et al.
(2014)

Meta-analysis IHD 8 Improve cardiac function and quality of life Wen et al.
(2011a)

Meta-analysis IHD/congestive heart failure 38 (14 chronic IHD, 17 congestive HF
and 7 intractable angina)

Reduced the incidence of long-term mortality, no effects on
LVEF

Fisher et al.
(2016)

Meta-analysis IHD 6 Improve LVEF, no effects on mortality Fu and
Chen, (2020)

Meta-analysis AMI 9 Increase in LVEF with a limited impact on LV volume and
rehospitalization caused by HF.

Yu et al.
(2021)

Meta-analysis AMI 8 <107 MSC within 1 week for AMI after PCI might improve LV
function

Wang et al.
(2017)

Meta-analysis AMI 24 Methodological difference in cell transplantation have an
impact on the cardiac parameters of patients

Yang et al.
(2018)

AMI, acute myocardial infarction; IHD, Ischemic heart failure; PCI, percutaneous coronary intervention; MI, Myocardial infarction; LV, left ventricular; LVEF, left ventricular ejection fraction;

LVEDD, left ventricular end-diastolic diameter; LVESD, left ventricular end-systolic diameter; LVESV, left ventricular end-systolic volume; LVEDV, left ventricular end-diastolic volume.
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TABLE 2 Pre-clinical studies of using EVs derived from BMMSC in IHD.

Year Animal
model

Cell
resource

EVs isolation
separation

MSC-EVs
size (nm)

EVs
markers

Doses Administration
method

Effects Ref

Promote angiogenesis

2015 Myocardial infarction Rat BMMSC Exo-Quick-Tc Kit 50–100 CD63+ 80 μg Intramyocardial injection
60 min after ligation

Preserve cardiac function, reduced infarct
size, enhancing the density of new

capillary

Teng
et al.
(2015)

2018 Myocardial infarction Mouse BMMSC Exosome isolation
Reagent

NA CD63+, CD9+ 600 μg Intramyocardial injection
after ligation

miR-132 overexpressed EVs promote
angiogenesis and rescue cardiac function

Ma et al.
(2018)

2019 STZ induced diabetic
cardiomyopathy

Rat BMMSC Exosome isolation kit NA CD63+ 100 μg Once a
week for 12 weeks

Intravenously injection Downregulate TGF-β1 and Smad2,
improve diabetes-induced cardiac fibrosis

Lin et al.
(2019)

2020 Myocardial infarction HIF-1α OE -Rat
BMMSC

Ultracentrifugation 12 ×
104 g, 70 min

50–200 CD63+, TSG101+ 2 × 1010 particles
of EVs derived
from MSC

Intramyocardial injection
after ligation

Promoting neovessel formation,
inhibiting fibrosis

Sun et al.
(2020)

2020 Myocardial infarction Mouse BMMSC Exo-Quick-Tc Kit Around 130 CD63+,
CD9+,CD81+,TSG101+, Alix+,

Hsp70+

.25 μmol of each Intramyocardial injection
after ligation

miR-19a/19b overexpressed EVs improve
cardiac function and reduce cardiac

fibrosis

Wang S
et al.
(2020)

2021 Ischemia 45 min-
reperfusion 72 h

Hypoxia-Rat
BMMSC

Ultracentrifugation 10 ×
104 g, 90 min

50–100 Alix+, TSG101+ 3×1011 particles/
100 μL

Caudal vein injection prior to
reperfusion

Improved cardiac microvascular
functions by reducing PDGFR-β levels at

late stage of I/R

Wang
et al.
(2021)

Reduce apoptosis

2017 Ischemia 30 min-
reperfusion 2 h

Hypoxia-Rat
BMMSC

Exosome isolation
reagent

50–150 NS 5 μg Intramyocardial injection
5 min prior to reperfusion

Improved cardiac function and reduced
apoptosis

Liu et al.
(2017)

2018 Myocardial infarction Hypoxia-Mouse
BMMSC

Ultracentrifugation 14 ×
104 g, 90 min

40–150 Alix+, TSG101+ 10 μg/g, body
weight

Intramyocardial injection
after ligation

Inhibit cell apoptosis by delivering miR-
125b-5p

Zhu et al.
(2018)

2020 Ischemia 60 min-
reperfusion 12 h

Mouse BMMSC Exosome isolation
reagent

Around 100 HSP70+, CD63+, CD9+ 5 μg Intramyocardial injection at
ischemia 30 min s

Inhibit cell apoptosis and inflammation
by delivering miR-25-3p and targeting
pro-apoptotic proteins FASL/PTEN

Peng
et al.
(2020)

2020 Myocardial infarction MIF overexpressed
Human BMMSC

Exosome isolation
Reagent

30–100 CD63+, CD81+ 30 μg Intramyocardial injection
after ligation

Reduce infarct size, inhibit mitochondrial
fragmentation and apoptosis

Liu et al.
(2020)

2020 Myocardial infarction Hypoxia-Rat
BMMSC

Ultracentrifugation 11 ×
104 g, 75 min

30–150 CD63+, TSG101+ The EVs acquired
from 1 × 106 MSC

Intramyocardial injection
after ligation

Protect cardiomyocyte apoptosis, miR-
210/AIFM-3/AKT/P53

Cheng
et al.
(2020)

Reduce inflammation

2015 Sepsis induced cardiac
dysfunctin

Mouse- BMMSC Ultracentrifuge 3.6 ×
104 g, 3 h

34–35 CD63+, CD81+ 2 μg/per g, body
weight

Caudal vein injection 1 h
after CLP operation

Alleviated inflammation by delivery
miR-223

Wang
et al.
(2015)

2018 Dox induced dilated
cardiomyopathy

Mouse BMMSC Ultracentrifugation 10 ×
104 g, 3 h

35 Alix+, TSG101+, CD9+,
CD63+

300 μg Caudal vein injection Suppress cardiac inflammation Sun et al.
(2018)

2019 Ischemia 45min-
reperfusion 3, 6,

12 days

Mouse BMMSC Gradient centrifugation 50–150 CD9+, CD63+, TSG101+,
Alix+

50 μg Intramyocardial injection at
reperfusion

Reduced infarct size, alleviated
inflammation levels, containing miR-182/

macrophage polarization

Zhao
et al.
(2019)

2021 Sepsis induced
myocardial injury

Mouse BMMSC Ultracentrifuge 10 ×
104 g, 4 h

Around 100 CD63+,CD9+ 2 μg/per g, body
weight

Caudal vein injection 1 h
after CLP operation

Alleviated inflammation by miR-141/
PTEN/β-catenin

Pei et al.
(2021)

2022 Myocardial infarction Mouse BMMSC Ultracentrifugation 10 ×
104 g, 70 min

50–150 CD81+, TSG101+ 15 μg once a week
for 3 weeks

Caudal vein injection Exosomal miR-129-5p protect hearts by
targeting TRAT3/NF-κB

Yan et al.
(2022)

AIFM, apoptosis inducing factor, mitochondria associated 3; CLP, cecalligation puncture; FASL, fas ligand; NF-κB, nuclear factor kappa-B; PTEN, phosphatase and tensin homolog deleted on chromosome ten; TRAT3, tumor necrosis factor receptor-associated factor 3.
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endosomal pathway. In addition, protein markers, such as CD9,
CD63, flotillin and HSP90, are expressed on all EVs, and CD81 is
expressed on sEVs, including both exosomes and microvesicles.
Furthermore, TSG101 is mainly but not exclusively expressed on
endosomal pathway-related sEVs (Thery et al., 2018). Regarding
this, the current widely used isolation methods are not able to
distinguish sEVs by their generation pathway; thus, we use the term
sEVs to represent vesicles isolated from BMMSCs instead of
“exosomes”. (Figure 1) We summarized the studies using
BMMSC-derived sEVs as therapeutic agents in ischemic heart
disease in recent years (Table 2) and found that sEVs have
beneficial effects on IHD via their regenerative abilities and
antiapoptotic and anti-inflammatory actions (Figure 1).

Regenerative effects of BMMSC-sEVs
on IHD

A proteomic analysis study showed that sEVs derived from
BMMSCs have a superior regenerative ability (Wang Z. G et al.,
2020). The regenerative ability in hearts is reflected in promoting
angiogenesis. Intramyocardial BMMSC-sEV injection enhanced
the density of new functional capillaries and hence blood flow
recovery in a rat myocardial infarction model (Teng et al., 2015).
BMMSC-sEV treatment could increase the level of platelet-derived
growth factor receptor-β (PDGFRβ), an angiogenetic factor, more
than BMMSC treatment itself within 24 h after myocardial
infarction in rats (Wang et al., 2021). PDGFRβ was enriched in
fibrotic areas, although its expression was increased by BMMSC-
sEV treatment at 24 h, but it was reduced after 4 weeks of
myocardial infarction, which may be the reason for the
antifibrotic effects of sEVs. Concurrently, modified cargoes of
sEVs would enhance their effects. For example, overexpressed
HIF-1α in sEVs results in better neovessel formation and
fibrosis inhibitory functions, as well as higher expression levels
of PDGF and VEGF compared to those of non-modified sEV
treatment after myocardial infarction in rats (Sun et al., 2020).
In addition, the beneficial functions of miRNAs in various diseases,
including IHD have been investigated extensively (Zhang et al.,
2018a; Zhang et al., 2018b; Liu et al., 2022), and miR-19a/19b-
overexpressing sEVs combined with BMMSC therapy in the
ischemic hearts of mice significantly enhanced the recovery of
cardiac function and reduced cardiac fibrosis compared to non-
transfected sEVs combined with BMMSCs (Wang S et al., 2020).
miR-132 regulates endothelial cell behavior, and miR-132-
overexpressing EVs in the ischemic hearts of mice markedly
enhanced neovascularization in the peri-infarct zone and
preserved heart functions (Ma et al., 2018). Moreover, the
antifibrotic effects of EVs from BMMSCs were found in diabetic
cardiomyopathy treatment (Lin et al., 2019), indicating that the
regenerative ability of sEVs derived from BMMSCs is not specific
to IHD.

Anti-inflammatory actions of BMMSC-
sEVs on IHD

The anti-inflammatory action of sEVs from BMMSCs is pivotal
for their therapeutic effects in ischemic hearts. For example, in a

mouse heart ischemia reperfusion injury model, sEVs derived from
BMMSCs improved left ventricular ejection fraction (EF%) and
fraction shortening (FS%), reduced infarct size, and alleviated the
release of inflammatory factors (Zhao et al., 2019). In this study, miR-
182 shuttling by sEVs targets Toll-like receptor 4 (TLR4), the
inhibition of which leads to anti-inflammatory M2 macrophage
conversion (Vergadi et al., 2017), thus promoting macrophage
polarization and alleviating inflammation. Similarly, another study
showed that in an ischemia-induced mouse heart failure model, sEVs
derived from BMMSCs improved cardiac function by inhibiting NF-
κB signaling, a transcription factor for cytokine release, and miR-129-
5p carried by sEVs was proven to target tumor necrosis factor
receptor-associated factor 3 (TRAF3), which subsequently regulates
NF-kB (Yan et al., 2022). The anti-inflammatory effects of sEVs
derived from BMMSCs were not only found in ischemic heart
injury, doxorubicin-induced heart failure models and sepsis-
induced heart failure models but also significantly reduced
inflammatory factor release when BMMSC-derived sEVs are
injected into hearts (Wang et al., 2015; Sun et al., 2018; Pei et al.,
2021). In these studies, either the JAK pathway or the miR-141/miR-
223 pathway was the major mediator of its anti-inflammatory effects
(Table 2). In addition, sEVs have been shown to inhibit T-cell
activation (Teng et al., 2015), which improves the
microenvironment of the infarcted myocardium and contributes to
angiogenesis and anti-inflammation.

Antiapoptotic actions of BMMSC-sEVs
on IHD

Apoptosis is a major pathological factor that causes heart failure after
myocardial infarction. Apoptotic protein hyperactivation, insufficient
autophagic activation and mitochondrial injury lead to cardiac cell
apoptosis after myocardial infarction. sEVs derived from hypoxia-
treated BMMSCs showed a decrease in the levels of several apoptosis-
related genes, such as cleaved caspase-3, Bad and Bax, in the hearts of rats
with myocardial infarction compared to controls. GW4869, which limits
endosomal pathway EV formation, abolished the effects of EVs, showing
that sEVs are responsible for their antiapoptotic effect (Cheng et al., 2020).
Furthermore, in the study, the authors showed that miR-210 carried by
sEVs could target the AIFM-3/AKT/p53 pathway (Cheng et al., 2020),
whichmay be the coremechanismof protective effects, suggesting that the
miRNAs carried by sEVs are the main reasons for its beneficial effects.
Consistent with this finding, another study showed that sEVs derived
from hypoxia-treated BMMSCs contained miR-125b-5p, which
suppressed the expression of the proapoptotic genes p53 and BAK1 in
cardiomyocytes, thus facilitating ischemic cardiac repair by ameliorating
cardiomyocyte apoptosis (Zhu et al., 2018). In addition, in an ischemia
reperfusion model, sEVs derived from BMMSCs decreased infarct size by
deliveringmiR-25-3p, which directly targets and inhibits the proapoptotic
proteins FASL/PTEN (Peng et al., 2020). Similarly, engineered sEVs with
genemanipulation also showed antiapoptotic effects in IHD. For example,
BMMSC EVs overexpressing macrophage migration inhibitory factor
(MIF), a proinflammatory cytokine, enhanced heart function, reduced
heart remodeling and reduced cardiomyocyte mitochondrial
fragmentation, reactive oxygen species generation, and apoptosis
compared to BMMSC EVs without MIF overexpression (Liu et al.,
2020). Other conditions, such as sEVs derived from hypoxic
BMMSCs, can reduce the myocardial infarction area and improve
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cardiac function by increasing autophagy levels (Liu et al., 2017),
suggesting that appropriate modification of sEVs can enhance their
antiapoptotic effects.

Mitochondria containing in BMMSC-EVs

Whether EVs derived from BMMSC contain fully functional
mitochondria is remain elusive. Because in clinical, subjects received
allogenic bone marrow transplants detected almost no transfer of the
donor mitochondria DNA (mtDNA) to the host mtDNA fraction in
epithelial, connective, or skeletal muscle tissues, even exposure to the
donor mtDNA in EV fractions for years (Tarnopolsky et al., 2020). In
addition, studies showed that mitochondria mainly contain in larger EV
(250 nm) rather than sEVs (100 nm), although EV (250 nm) contain all
parts of mitochondria, their independent functionality inside EV cannot
be confirmed due to methodological deficiencies (Wagner et al., 2022;
Zorova et al., 2022).

Even then, mitochondrial transfer was shown to be important
for the therapeutic effects of MSCs and MSC-EVs, in lung injury
models, EVs derived from BMMSCs MSCs promote an anti-
inflammatory and highly phagocytic macrophage phenotype
through EV-mediated mitochondrial transfer (Morrison et al.,
2017), as well as restore barrier integrity and normal levels of
oxidative phosphorylation (Dutra Silva et al., 2021). These effects
were also observed in renal ischemia reperfusion disease (Cao et al.,
2020) and oculopathy (Jiang et al., 2020) with BMMSC-EVs
treatment. Whether sEVs derived from BMMSC could transfer
mitochondria to heart still need to be further investigated, but

obesity induced adipocytes release sEVs (45–200 nm) contain
oxidatively-damaged mitochondrial particles, which can be
taken up by cardiomyocytes and they trigger a preconditioning
environment, result in protects cardiomyocytes from acute
oxidative stress (Kim et al., 2021). And EVs (>200 nm) derived
from patient-specific induced pluripotent stem cell-derived
cardiomyocytes (iCMs) mediate mitochondrial transfer mitigates
DOX injury (O’Brien et al., 2021). Therefore, function of sEV-
mitochondria or its components in cardiac diseases is a very
interesting direction to explore.

Current progress in improving BMMSC-
sEV efficiency

Despite the benefits of EV-based therapy, low efficiency is the
main obstacle preventing it from being used clinically. However,
researchers are making progress in solving these problems. First,
modified sEVs to overcome the poor homing efficiency have been
investigated in several studies. One method is the modification of
BMMSC-derived EVs with monocyte mimics through membrane
fusion, which can be recruited by myocardial cells after MI (Zhang
et al., 2020). The other way is to optimize the sEV delivery method;
for example, a cardiac patch can dramatically enhance the retention
of delivered substances, and an engineered EV spray, which later
forms a stable gel patch on the heart, makes the therapy less
invasive for cardiac patches (Yao et al., 2021). Second,
genetically modified sEVs have shown good potential for IHD
treatment. For example, using miR-455-3p, miR-30e, or miR-

FIGURE 1
An overall summary of the IHD protective effects of sEVs derived from BMMSC.
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29c-transfected sEVs could protect myocardial infarction in rodent
model (Li et al., 2020; Pu et al., 2021; Botello-Flores et al., 2022;
Wang and Shen, 2022), as well as cardioprotective gene-transfected
EVs, such as overexpress MIF (Liu et al., 2020), or FNDC5 (Deng
et al., 2020), showed better therapeutic efficiency than unmodified
EVs. Finally, EVs derived from some drug-pretreated MSCs can
promote therapeutic effects; for example, atorvastatin-pretreated
BMMSC-derived EVs enhanced therapeutic efficacy for the
treatment of acute myocardial infarction by elevating lncRNA-
H19 (Huang et al., 2020).

Limitations and future directions

Although EVs derived from BMMSCs have shown promising
therapeutic effects in heart injury, there are still some drawbacks
that need to be solved. One issue is the route of injected EVs to the
heart; most studies performed intramyocardial injection, while few
studies performed caudal vein injection. The timing of injection was
different according to the ischemia models (Table 2). For myocardial
infarction treatment, EVs were mostly injected after ligation (Table 2),
while for ischemia reperfusion injury treatment, EVs were
administered at the middle time of ischemia or just prior to
reperfusion. Another difference is the dose of EV administration in
the preclinical experiments. The doses used in the IHD were diverse in
each experiment, and they were independent of the species used in the
experiments. For example, doses of 5 μg were used in ischemia
reperfusion models of both mice and rats by intramyocardial injection;
however, in another study, a dose of 50 μg was used in the same mouse
model, and whether the dose difference is associated with the therapeutic
outcome is unknown. Similarly, for myocardial infarction treatment,
except for a few studies with multiple injections (once a week for
several weeks), the total doses ranged from 30 μg to 600 μg in one
injection, and a major difference in therapeutic effects was not
observed. Of note, some studies use dose units other than
micrograms, such as particles from BMMSCs or cell numbers of
BMMSCs for their derived EVs, which makes it more difficult to
identify the specific amount of EVs. In addition, different sEV
populations can be obtained by different isolation methods. As shown
in Table 2, sEV isolation from BMMSCs was conducted by either
ultracentrifugation (>10 × 104 g, >60 min) or a commercial exosome
isolation kit (gradient centrifuge and filter). Six of eight studies that used
the ultracentrifuge method to isolate sEVs verified the positive expression
of TSG101 on the sEVs, but only 1 of the 10 studies that used a
commercial kit for sEV isolation verified TSG101. Additionally,
ultracentrifugation led to a sEV size of approximately 50–150 nm, and

commercial kit-isolated sEVs were mostly approximately 50–100 nm.
Whether these differences result in inconsistent outcomes of sEV therapy
is unclear, but establishing a unified standard from extraction to quantity
of sEVs is necessary to better evaluate their medicinal value. Lastly,
although BMMSC have shown good therapeutic effects in IHD,
accumulating evidence demonstrated that MSCs derived embryonic
stem cell (ESC) or induced pluripotent stem cell (iPSC) exhibits
superior therapeutic efficacy than BMMSCs in DOX induced
cardiomyopathy (Zhang et al., 2015; Zhang et al., 2016), and in mouse
limb ischemia disease (Lian et al., 2010), so ESC or iPSC can be served as
an alternative source for BMMSC-sEV for IHD treatment.

Thus, BMMSC-derived sEVs showed potential therapeutic effects
in IHD in preclinical studies, but the effectiveness of clinical
application needs further research. In addition, further exploration
is needed to optimize the quality control, dosage and method of
administration of sEVs.
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