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Molecular generation (MG) via machine learning (ML) has speeded drug

structural optimization, especially for targets with a large amount of

reported bioactivity data. However, molecular generation for structural

optimization is often powerless for new targets. DNA-encoded library (DEL)

can generate systematic, target-specific activity data, including novel targets

with few or unknown activity data. Therefore, this study aims to overcome the

limitation of molecular generation in the structural optimization for the new

target. Firstly, we generated molecules using the structure-affinity data

(2.96 million samples) for 3C-like protease (3CLpro) from our own-built DEL

platform to get rid of using public databases (e.g., CHEMBL and ZINC).

Subsequently, to analyze the effect of transfer learning on the positive rate

of the molecule generation model, molecular docking and affinity model based

on DEL data were applied to explore the enhanced impact of transfer learning

on molecule generation. In addition, the generated molecules are subjected to

multiple filtering, including physicochemical properties, drug-like properties,

and pharmacophore evaluation, molecular docking to determine themolecules

for further study and verified by molecular dynamics simulation.
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1 Introduction

Drug structural optimization (Stokes et al., 2020; Wang Z.-Y. et al., 2022) is to design

new molecules with better specific properties, either to increase desired bioactivities or

decrease side effects. In the early stages, the conception and evaluation of new proposed

molecules rely on medicinal chemists’ experience and knowledge of basic chemistry and

biology. Later, with the improved computer-aided drug programming level, the ligand-

based quantitative structure-activity relationship (QSAR) model (Cherkasov et al., 2014)

combined withmolecular docking andmolecular dynamics simulation were used for large

numbers of molecule screening to obtain molecules efficiently. With the substantial

increase in data and the continuous improvement of computing resources, deep learning

(DL) has developed rapidly. This new tool facilitated drug development, especially
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structural optimization. Zhavoronkov et al. (Zhavoronkov et al.,

2019) discovered a kinase inhibitor of DDR1 in 41 days by

building a deep-learning molecular generation architecture

GENTRL. Then, applying deep learning in drug design

became one of the top 10 breakthrough technologies in MIT

Technology Review 2020 (MIT Technology Review, 2020). Full

use of this tool can explore more expansive chemical space and

generate molecules of desired physicochemical and

pharmacological properties, accelerating drug development

(Xu et al., 2019; Arús-Pous et al., 2020; Kotsias et al., 2020).

The strategy for molecular generative models through deep

learning can be divided into ligand-based and structure-based

(also called receptor-based). Ligand-based molecule generation

requires a set of experimentally validated active compounds. ML

generates molecules by learning the common features of the

active compounds (Liu et al., 2021; Wang M.-Y. et al., 2022).

Structure-based molecular generation considers ligand and

receptor interactions. Traditional structure-based molecular

generation is a fragment-based approach that adds, deletes, or

replaces chemical fragments of ligands in pockets (Batool et al.,

2019; Krishnan et al., 2022). The Algorithm using the protein’s

structural information to design new molecules has not been

widely validated due to the limitation of high computational

resource consumption (Skalic et al., 2019; Born et al., 2021;

Grechishnikova, 2021). A structure-based molecular

generation often requires three-dimensional information on

the binding pockets within ligands (Wang M.-Y. et al., 2022;

Long et al., 2022). Facing new targets, often there are neither

revealed binding pockets nor experimentally validated ligands.

The datasets used for ligand-based molecule generation usually

come from public databases (such as CHEMBLE, ZINC, etc.),

and the specific targets sub-datasets are generally needed to guide

the structural optimization. Such a procedure has an unavoidable

limitation because of its heavily dependent on public

experimental data. For new targets, such dataset is severely

lacking. Machine learning cannot be developed without an

available dataset. This is the main reason for molecular

generation, and even AIDD is still challenging to apply to the

structure optimization of hit compounds for new targets. DNA-

encoded library (DEL) (Dickson et al., 2019; Li et al., 2022; Nie

et al., 2022; Song et al., 2020; Yang et al., 2022; Zhao et al., 2019;

Zhao et al., 2022) is a powerful tool from combinatorial screening

and DNA-encoded technology. Compared with traditional high-

throughput screening (HTS), DEL technology can efficiently and

SCHEME 1
DNA-encoded library1 and library2 designed information (A,B); Structures and corresponding inhibition activity for 3CLpro (IC50/µM) ofH1 and
H2 (C,D).
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economically generate a large amount of affinity data for specific

targets, including new target data (hundreds of billions scale)

(Buller et al., 2010; Kalliokoski, 2015). Therefore, using the DEL

dataset, mainly the structure-affinity relationship, for molecular

generation could be a reasonable solution to the problem of

efficient structural optimization for new target drug

development.

Deep learning generative algorithms have been explored for

aided drug design. Generally, standard inputs in generative

models are linear input symbols like Simplified molecular

input line entry specification (SMILES) and molecular graphs.

Common generative model architectures include recurrent

neural networks (RNNs) (Bjerrum and Threlfall, 2017; Segler

et al., 2018; Kotsias et al., 2020), autoencoders [AE, VAE

(variational AE), AAE (adversarial AE)] (Kingma and

Welling, 2013; Rezende et al., 2014; Makhzani et al., 2015),

generative adversarial networks (Goodfellow et al., 2020).

Optimization strategies for generative models include transfer

learning (Segler et al., 2018), Bayesian optimization (Gómez-

Bombarelli et al., 2018), reinforcement learning (Wang et al.,

2021), and conditional generation (Li et al., 2018). Transfer

learning is a strategy for transferring knowledge from pre-

learned tasks to improve learning performance. Public datasets

are usually needed for pre-training till obtaining a greater

probability of generating valid molecules. Subsequently, the

pre-trained model is retrained using known active molecules.

Generally, the overall distribution of the pre-trained CHEMBL or

ZINC large dataset is quite different from that of specific target

active molecules, negatively affecting transfer learning (Zhao

et al., 2014). Transfer learning using the DEL dataset is

expected to address this obstacle effectively. The DEL dataset

herein is composed of 3 groups of building blocks. We used the

high-affinity molecules from DEL (which appeared as

compounds with high count values in DEL) to reduce the

distribution inconsistency between the pre-trained model and

transfer learning. The beneficial effect of transfer learning herein

is confirmed and consistent with the DEL dataset. In this

experiment, we used the molecular dataset with higher counts

in DEL, molecules with more potent binding force to the target

3CLpro, for transfer learning, thereby increasing the probability

of generating active molecules.

In this study, we set out to solve the following challenges:

using DEL technology to construct two DEL libraries for 3CLpro

and performing data analysis combined with chemical synthesis.

Active hit compounds H1 and H2 (Scheme 1) were found via

bioactivity assay. Subsequently, the own-built DEL dataset was

used to establish a molecular generative model to obtain a dataset

with broad chemical space distribution. The obtained molecule

dataset was directly applied with several subsequent filtering

steps. On the other hand, molecules with high count values in the

DEL dataset were defined as positive samples for transfer

learning to obtain another dataset. The above two datasets

were filtered by the druggability and pharmacophore model.

Finally, the obtained molecules were verified by molecular

docking and dynamics simulation, which confirmed the

potential bioactivity of the newly designed molecule (Figure 1).

2 Materials and experiments

2.1 DNA-encoded libraries screening,
chemical synthesis, and bio experiments

Supporting information describes DEL screening, chemical

synthesis, bio-activity experiments, and compound

characterization.

2.2 Machine learning modeling

2.2.1 Data preparation
The two DEL libraries are combined as a dataset containing

1.04 billion molecules with corresponding count and enrichment

fold (EF) values. We provide the information of DEL in the

supplement material. We cut out the data with very low count,

the remaining data is 3,702,672. Then it was divided into a

training set and a test set (0.8/0.2), of which the training set and

test set have 2,962,138 and 740,534 molecules, respectively. First,

the training set is used to train the molecule generation model.

Then, molecules 18,129) with higher count values in DEL were

selected as the positive samples of transfer learning to fine-tune

the pre-trained model.

FIGURE 1
Flow chart of the current study.
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2.2.2 Molecular generation
SMILES or molecular graphs are commonly used for

molecular representation. SMILES is a text of molecular

structures (Weininger, 1988). Molecular graphs represent the

structure of molecules as graphs, where the edges of the graph

represent bonds and the dots represent atomic structures (Sun

et al., 2020). Molecules were represented as SMILES in three

models, RNN, VAE, and AAE, to perform molecule generation.

We used pytorch, sklearn, numpy, rdkit,umap-learn, and

MOSES benchmark platform (Polykovskiy et al., 2020) to

complete the experiments.

Recurrent neural network (RNN) (Segler et al., 2018) are

designed to learn sequential data such as text or speech. The

SMILES in DEL are made into a corpus. RNN can learn the

grammatical information about the SMILES to know which

parts of molecules tend to be connected. RNN can generate

sequences through forward propagation (Bjerrum and

Threlfall, 2017). By treating the molecule generation

process as a series of steps and sampling the network at

each step, generating effective molecules is highly probable

and structurally similar to the training molecules. The

architecture used in RNN consists of an embedding layer,

three LSTM layers, and a linear layer.

Variational autoencoder (VAE) (Bowman et al., 2015)

consists of an encoder and a decoder. The former encodes the

input data into a latent vector, which obeys the Gaussian

Distribution. The decoder restores the latent vector result to

the target sample. SMILES are used as the model’s input and

output to establish a VAE model. The VAE architecture consists

of an embedding layer, an encoder layer, and a decoder layer. The

encoder and decoder layers consist of a GRU layer and two linear

layers.

Adversarial Autoencoder (AAE) (Makhzani et al., 2015) is

similar to VAE principally. The difference is that based on the

encoder and the decoder, a discriminator is introduced, which is

responsible for distinguishing the calculated latent vector in the

encoder from the real sample. The encoder and decoder are still

accountable for encoding and reconstructing the data. AAE also

uses SMILES as input and output. The AAE’s encoder part

includes an embedding layer, an LSTM layer, and a linear

layer. The decoder consists of two linear layers, one

embedding layer, and one LSTM layer. The discriminator

consists of two linear layers where the activation function is

ELU (Clevert et al., 2015).

2.2.3 Transfer learning
Transfer learning (Amabilino et al., 2020) is a fine-tuning

model technique that fixes the original model’s specific

parameters while others are still training and updating. This

technique aims to streamline expansive chemical space in the

generative model, searching for target molecules in the relatively

small chemical space. The model is retrained by inputting

molecules with high-count values to generate more

distribution-similar molecules than those with high-count

values. To AAE, we fine-tune the decoder’s last linear layer

and the discriminator’s last linear layer. To VAE, the last two

linear layers of the decoder’s model are fine-tuned. To RNN, we

also fine-tune the last linear layer.

2.2.4 Evaluation metrics
Each model generated 10,000 molecules, which were

evaluated using the evaluation metrics provided in Moses

(Polykovskiy et al., 2020), including valid, unique, novelty,

internal diversity (IntDiv), and scaffold similarity (Scaff).

Validity is the proportion of valid molecules in the generated

molecules.

Uniqueness is the proportion of molecules not duplicated in

the generated molecules.

Novelty is the proportion of molecules that do not exist in the

training set.

Internal diversity (IntDiv) (Benhenda, 2018) is a metric to

assess the chemical variety of generated molecules. The value

range is [0,1]. The higher value means higher diversity of the

generated molecules.

Scaffold similarity (Scaff) represents the similarity between

scaffolds in the generated set and reference dataset. The value

range is [0,1]. The higher the value of Scaff, the more similar

the two are.

2.2.5 Filtering
The number of molecules generated by each model is

1,000,000 molecular datasets. First, the dataset was filtered for

validity and reproducibility, followed by drug-likeness: 250 ≤
MW ≤ 750, logP ≤ 5, HBD ≤ 5, HBA ≤ 10, RB < 10, and 0.5 <
QED. The next step was improving drugability by applying

Medicinal Chemistry filters (MCFs) (Kalgutkar et al., 2005)

and Pan Assay Interference Compounds (PAINS) filtering

(Baell and Holloway, 2010). Without transfer learning, RNN,

AAE, and VAE have no significant performance differences and

predicted affinity distribution. Therefore, these datasets are

merged and divided into groups depending on whether

transfer learning is applied or not. 5000 molecules were

obtained after pharmacophore filtration. Finally, molecular

docking was employed, and molecule with higher docking

score was selected for molecular dynamics simulation.

2.2.6 Chemical space visualization
The remained SMILES after validity and repeatability

filtration and the original 3,702,672 SMILES from the DEL

dataset were transformed into Morgan fingerprints with

1024 dimensions and 2 radius (Rogers and Hahn, 2010).

These fingerprints were then used to build a UMAP(Uniform

manifold approximation and projection) (metric = “jaccard,”

n_components = 2) model for dimensionality reduction

visualization (McInnes et al., 2018).
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2.2.7 Affinity modeling
The model for affinity prediction was established according

to our previous study (Xiong et al., 2022). First, we sorted the

molecules in the DEL dataset by the count value, then

oversampled the top 10,000 ranked molecules by ten times.

The step was set as 0, and every other step of the remaining

molecules was sampled to form a training set.

2.2.8 3D conformation and pharmacophore-
based screening

The 3D molecular similarity was calculated through the

shape and color similarity score (SC score), which represents

the pharmacophoric feature similarity (Landrum et al., 2006)

and the shape similarity (Putta et al., 2005). This score was

used for the previously generated dataset. The 3D similarity

score is a floating point value in the range of [0, 1], with a

higher value indicating higher similarity between candidate

and reference molecules. The native ligand in PDB:7L13 from

the RSC-PDB database was used as a reference structure

(Zhang et al., 2021). 100 conformations were generated for

each molecule from the dataset using the RDKit UFF

(Universal Force Field) force field. The lowest energy

conformation was applied for the next step.

2.2.9 Molecular docking
The A-chain of the complex PDB:7L13 (resolution 2.17 Å)

of 3CLpro protein was split as a docking template to obtain

accurate docking results. Subsequently, the complex was

preprocessed using the Protein Preparation Wizard module

of the Maestro suite (version: 13.1.141, Schrödinger Inc.) with

the default setting, including the addition of hydrogen and

side chains, removal of water molecules, and calculation of

partial charges and protonation states using the OPLS4 force

field (Poltev et al., 1996). Followed by a grid generation

module, a similar-sized grid box centered on the native

ligand was made to determine the binding pocket. All

molecules were preprocessed by the LigPrep module. The

ionization states were calculated using Epik (Shelley et al.,

2007) at pH = 7.0 ± 2.0. Finally, all molecules were docked into

the binding pocket within the grid and evaluated using the

standard precision (SP) of Glide-v9.4. The scale factor and

partial charge intercept are set to 0.8 and 0.15, respectively.

1000 poses per ligand were generated for docking evaluation.

Post-docking binding site analysis and generation of

interaction graphs were finished using Maestro.

2.2.10 Molecular dynamics simulations
Amolecular dynamics simulation was carried out to analyze

further the dynamic interaction process between protein and

ligand and the stability of binding status. Molecular dynamics

simulation is a popular technique to study protein motion by

tracking its conformational changes over time (Collier et al.,

2020). Molecular interaction and visualization analysis based on

SP docking results, the top-ranked molecules were used for the

molecular dynamics simulation (MD-simulation) study. MD-

simulation was performed using the GROMACS software

package (version 2021.5) (Rakhshani et al., 2019). The

AMBER14SB force field parameter was used for the protein.

The ligand atomic charge was calculated using the B3LYP/6-

31G* basis set. The ligand topology was computed using the

GAFF2 force field parameter. The TIP3P water model was used

to add Na+ and Cl− ions to neutralize the charge. Electrostatic

interactions are handled separately using the Particle Mesh

Ewald (PME) and Verlet algorithms. The heavy atoms of the

protein are constrained, and the energy minimization is carried

out through 50,000 steps using the steepest descent method. The

simulated system was equilibrated for 100 ps using a canonical

ensemble (NVT) and an isothermal-isobaric ensemble (NPT).

Both van der Waals and Coulomb interactions were calculated

using a cutoff of 1.4 nm. Afterward, the system was run at

constant temperature (300 K) and constant pressure (1 bar)

for 100 ns molecular dynamics simulations with a time step

of 2 fs and trajectory data saved every 5 ps. Finally, the ligand and

protein complex’s root mean square deviation (RMSD, Å) at

100 ns was measured. By examining the interaction of the ligand

TABLE 1 Performance of each model without transfer learning.

Model Validity Uniqueness Novelty IntDiv Scaff/Test

VAE 0.9480 0.9990 0.6421 0.7496 0.8998

AAE 0.9343 0.9981 0.6394 0.7397 0.6483

RNN 0.9994 0.9750 0.6116 0.7646 0.8884

MCMG 0.8611 0.9980 0.9952 0.7894 0.6359

The bold values are specific values with best-performance in each column.

TABLE 2 Performance of each model with transfer learning.

Model Valid Uniqueness Novelty IntDiv Scaff/Test

VAE_TL 0.9653 0.8989 0.3692 0.7461 0.6638

AAE_TL 0.8753 0.8823 0.4793 0.7397 0.6177

RNN_TL 0.9780 0.9299 0.3880 0.7503 0.6979

The bold values are specific values with best-performance in each column.
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with active site residues and the structural changes of the

complex, the complexes were considered stable.

3 Results and discussion

3.1 Machine learning modeling

3.1.1 Evaluation of molecular generative models
We evaluate each model’s validity, uniqueness, novelty,

intDiv, and Scaff metrics (Tables 1, 2). The validity and

uniqueness indicators of all models perform satisfactorily,

indicating that the models can learn the grammatical

information of the SMILES structure. The performance of

novelty and IntDiv indicators is relatively poor, meaning that

the model’s generalization ability may not be strong enough.

VAE and RNN have higher Scaff values, meaning that the

model can generate the same skeleton as the training set, but

the ability of generating new skeleton is weak, while AAE is the

opposite. In other words, the generated dataset and the

training dataset had an apparent overlap. Especially after

using transfer learning, Novelty’s metrics dropped further.

A more complex model may be beneficial to address such a

problem, so the MCMG (Multi-constraint molecular

generation) model was also established (Wang et al., 2021).

Unfortunately, MCMG performed relatively poorly in affinity

prediction, so we decided not to analyze it further

(Supplementary Figure S13).

3.1.2 Chemical space visualization
The results visualization using UMAP dimensionality

reduction are shown in Figure 2. The molecules generated

by each model closely resemble the chemical space

distribution of DEL’s. This indicates that the model could

learn molecular distribution sufficiently from the source

dataset.

3.1.3 Affinity model performance
Figure 3 shows the distribution of the molecules from each

model’s affinity predictions. The molecules distribution

without transfer learning is mainly located in the area of

0.1–0.2, while the corresponding values after using transfer

learning are mostly above 0.2. Such improved affinity

indicates the beneficial effect of transfer learning, which

FIGURE 2
Dimensional reduction visualization of the training and generated molecular datasets (from left to right: DEL, VAE, AAE, and RNN).

FIGURE 3
The numerical affinity distribution of molecules generated by each model with or without transfer learning [(A) VAE, (B) AAE, (C) RNN].
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expectedly to improve the success rate and efficiency for

further structural optimization. Scheme 2 shows the

representative molecules with high affinity scores, which

were expected to be potentially bio-active.

3.1.4 Molecular docking
According to the calculated SC scores of all molecules in the

dataset and native ligand, 5,000 ligands with the highest SC score

were selected for the follow-up study.

Molecular docking was utilized to analyze the 3D

conformational and pharmacophore-based screens and to

study the structural basis of the interaction between 3CLPro

and ligands. First, the reliability of the glide docking algorithm

(standard precision mode, enhanced conformational sampling

by four times) was confirmed by re-docking the native ligand to

the receptor.

The re-docked conformation was presented in supporting

information. Subsequently, the selected 5000 molecules were

preliminarily docked to the revealed binding site using

standard precision mode. According to the docking

evaluation score and molecular conformation, 500 different

conformations were selected, and four times enhanced

conformational sampling was used to generate the ligand-

binding pose more accurately.

In addition, the docking scores with and without transfer

learning for pharmacophoric models were analyzed (Table 3).

Applying transfer learning, 4.9% of ligands possess a score

greater than 8, while 0.3% have a score higher than 9. In

contrast, the corresponding values without transfer learning

are 3.3% and 0.1%. This result is consistent with the affinity

model, indicating that transfer learning can effectively increase

the percentage of positive samples.

Moreover, the molecules filtered by the affinity model also

performed molecular docking as a pharmacophoric model.

This aims to explore the possibility of replacing an external

pharmacophore model with an own-built affinity model. The

SCHEME 2
The representative molecules (A1–A8) with high affinity scores according to affinity model.

TABLE 3 Differences in docking scores for molecules generated with and without transfer learning.

Docking scores Model
with TL (pharmacophore)

Model without
TL (pharmacophore)

Model with
TL (DEL-built affinity)

1 (%)-5 8.26 9.08 8.97

5-7 61.61 66.32 64.37

7-8 25.22 21.30 21.40

8-9 4.64 3.18 4.57

9-11 0.27 0.12 0.70
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docking scores of the filtered molecules were combined in

Table 3 for comparison. We found an exciting revelation that

the proportion of molecules filtered by the affinity model with

docking scores of 9–11 was twice as high as that from the

pharmacophore model. Therefore, replacing pharmacophore

filtering with affinity models alone may be a promising option

to utilize DEL’s datasets more fully.

3.1.5 Binding free energy calculation
The binding free energy can be used as a reference standard

for assessing the activity of molecules. Generally, the lower the

binding value means, the more stable the complex formed is. The

ligands’ binding free energies were calculated by psp-

v6.7 MMGBSA. The self-established ADMET prediction

model and Maestro’s QikProp module evaluated the

corresponding properties of molecules with better

conformation. In fact, our ADMET prediction model is

similar to ADMETlab (Dong et al., 2018). Molecules N1-N8

were finally selected for follow-up research considering the above

ADMET properties with results of binding energy calculation

(Scheme 3).

From Table 4, the binding free energies (dG_Bind) of N1 to

N8 indicate their potential biological activities. Van der Waals

energy (dG_Bind_vdW) shows that hydrophobic interaction is

the main contributor to the ligand binding process. According to

the molecular docking conformation, we selected N1 and N2 for

subsequent research, in which the position and interaction of N1

and N2 on receptors are consistent with the previous report

(Figure 4) (Zhang et al., 2021; Stille et al., 2022).

3.1.6 Molecular dynamics simulation
To further analyze the interaction-related atomic details

between molecules and 3CLPro, GROMACS was applied for

molecular dynamics simulations using the above docking results.

100 ns run time for MD simulation is considered sufficient for

side chain rearrangement. The result will confirm whether or not

the complex remains in the most stable association. Since N2 is

believed to be more compatible with the receptor pocket (ligand

conformation), and the calculation of MMGBSA binding free

SCHEME 3
The representative molecules N1–N8.

TABLE 4 The calculated binding energy of N1-N8 binding to 3CLPro.

Name MMGBSA_dG_Bind MMGBSA_dG_Bind_vdW

N1 −40.17 kcal/mol −38.68 kcal/mol

N2 −42.12 kcal/mol −41.44 kcal/mol

N3 −49.24 kcal/mol −57.68 kcal/mol

N4 −50.44 kcal/mol −60.25 kcal/mol

N5 −42.63 kcal/mol −48.83 kcal/mol

N6 −41.25 kcal/mol −49.25 kcal/mol

N7 −45.96 kcal/mol −58.05 kcal/mol

N8 −34.71 kcal/mol −51.34 kcal/mol
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FIGURE 4
Conformation and interaction of N1 (left) and N2 (right) binding to 3CLPro.

FIGURE 5
Fluctuation of RMSD values for complexes during 100 ns MD
simulation.

FIGURE 6
Residue-based fluctuations of protease backbone of
complexes over 100 ns simulation.
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energy indicates that N2 has a stronger interaction with the

receptor, molecular dynamics simulations of the complex formed

by N2 were conducted.

RMSD values plotted over the simulation time revealed a

stable kinetic equilibrium of the complex. In detail, the 3CLPro

protein with N2 and the ligand N2 showed steady kinetics after

30 and 50 ns, respectively (Figure 5). By monitoring the

fluctuation of RMSD, each system is in the range of 2Å after

50 ns. This suggests that the complex undergoes a

conformational change during the simulation that promotes

tight binding between the N2 and receptor, and finally, the

system reaches a steady state. The RMSF value showed

minimal fluctuation, and it remained in the range of

0.05–0.2 nm throughout the simulation period for most

residues, except that a peak in RMSF value was observed only

at residue 1. The less fluctuating performance confirms the strong

attachment of the ligand to the protein (Figure 6).

4 Conclusion

As far as we know, this is the first study that DEL’s dataset has

been used for the molecular generation, which will promote the

development of the application field of DEL combined with AI.

This study preliminarily found that it may be feasible to use DEL

data instead of public databases for molecular generation. In

particular, for the new target pipeline, molecular generation and

affinity model establishment based on DEL data are expected to

become a tool with dual functions of drug discovery and further

structural optimization. This advantage would be difficult to

achieve with public databases due to the scarcity of datasets.
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