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Background: Lung cancer poses great threat to human health, and lung

adenocarcinoma (LUAD) is the main subtype. Immunotherapy has become

first line therapy for LUAD. However, the pathogenic mechanism of LUAD is still

unclear.

Methods: We scored immune-related pathways in LUAD patients using single

sample gene set enrichment analysis (ssGSEA) algorithm, and further identified

distinct immune-related subtypes through consistent clustering analysis. Next,

immune signatures, Kaplan-Meier survival analysis, copy number variation

(CNV) analysis, gene methylation analysis, mutational analysis were used to

reveal differences between subtypes. pRRophetic method was used to predict

the response to chemotherapeutic drugs (half maximal inhibitory

concentration). Then, weighted gene co-expression network analysis

(WGCNA) was performed to screen hub genes. Significantly, we built an

immune score (IMscore) model to predict prognosis of LUAD.

Results: Consensus clustering analysis identified three LUAD subtypes, namely

immune-Enrich subtype (Immune-E), stromal-Enrich subtype (Stromal-E) and

immune-Deprived subtype (Immune-D). Stromal-E subtype had a better

prognosis, as shown by Kaplan-Meier survival analysis. Higher tumor purity

and lower immune cell scores were found in the Immune-D subtype. CNV

analysis showed that homologous recombination deficiency was lower in

Stromal-E and higher in Immune-D. Likewise, mutational analysis found that

the Stromal-E subtype had a lower mutation frequency in TP53 mutations.

Difference in gene methylation (ZEB2, TWIST1, CDH2, CDH1 and CLDN1)

among three subtypes was also observed. Moreover, Immune-E was more

sensitive to traditional chemotherapy drugs Cisplatin, Sunitinib, Crizotinib,

Dasatinib, Bortezomib, and Midostaurin in both the TCGA and GSE cohorts.

Furthermore, a 6-gene signature was constructed to predicting prognosis,

which performed better than TIDE score. The performance of IMscore

model was successfully validated in three independent datasets and pan-

cancer.
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1 Introduction

Lung cancer still serves as the most common malignancy

and the foremost cause of cancer death in the world

(Thandra et al., 2021). Lung adenocarcinoma (LUAD) as

a main subtype of lung cancer belong to the larger group of

non-small cell lung cancer, and accounts for about 40% of all

lung cancer cases Moreover, it is strongly associated with

smoking (Pintarelli et al., 2019; Spella and Stathopoulos,

2021). Although treatment modalities such as surgery,

chemoradiotherapy, targeted therapy, and

immunotherapy have been widely used for the treatment

of lung cancer, but the prognosis remains dismal (Ladanyi

and Pao, 2008; Bronte et al., 2010; Denisenko et al., 2018),

with a 5-year survival rate as low as less than 10% (Hirsch

et al., 2017).

Cancer evolution is influenced by complex interactions

between tumor cells and host immune responses within the

tumor microenvironment (Taube et al., 2018). Different

immune cell populations are actively involved in tumor

immune microenvironment (TIME), however, their

relationship is currently unclear in LUAD therapy (Zhang

et al., 2020). Immune cells are both positive and negative

regulators of cancer progression (Zamarron and Chen, 2011).

For example, B-cells exert antitumor functions by enhancing

T-cell immunity, stimulating the production of interferon-γ
and helping natural killer (NK) cells against tumors

(Sorrentino et al., 2011). However, B-cells also suppress

immune responses and promote angiogenesis (Schwartz

et al., 2016). Considering the importance of TIME in

cancers, we attempted to classify LUAD based on immune

pathways and compared their characteristics.

Disease prediction models have been widely used to

evaluate patient survival and other prognostic indicators in

LUAD (Jiang et al., 2020; Jiang et al., 2022). Recently, a novel

model related to lactate metabolism for predicting overall

survival and immune signature in LUAD was reported and

different immune signatures were built (Jiang et al., 2022).

Moreover, an increasing number of LUAD prognostic

biomarkers have been discovered by analyzing expression

profiles from public databases and related clinical

information (Jiang et al., 2020).

Due to advances in genetic technology, various molecular

subtypes and gene expression studies have been published and

popularized for the identification of prognostic biomarkers (Li

and Wang, 2021). However, the prognostic manifestations of

established biomarkers are controversial and limited. In the

current study, we identified and classified three immune

subtypes and a six-gene combination capable of predicting

survival in patients with LUAD.

2 Materials and methods

2.1 Data collection

To better understand the pathogenesis of LUAD, RNA-Seq

data of LUAD with clinical survival and characteristic

information were downloaded from TCGA database by using

TCGA GDC API. Fragments per kilobase of transcript per

million fragments mapped (FPKM) were converted into

transcripts per million (TPM), and then Log2 was

transformed for subsequent analysis. In addition, we

downloaded the GSE37745, GSE50081, GSE30219,

GSE31210 microarray datasets with survival times from the

GEO database (Yamauchi et al., 2012; Botling et al., 2013;

Rousseaux et al., 2013; Der et al., 2014). For GEO, MINiML

formatted family file(s) were downloaded and samples was

preprocessed using RMA implemented in affy package.

Normalized data values were transformed in log2 space and

used in subsequent analysis.

2.2 Data quality control

To ensure the accuracy of downstream analysis, the RNA-Seq

data of TCGA-LUAD without clinical follow-up information or

survival time were removed. Next, the data without status were

filtered. Then, only the genes with more than one expression in

more than 50% of the samples were retained.

For GSE data, firstly, normal tissues, samples without clinical

follow-up information, samples without OS data and samples

without status were filtered. Then, we converted the probes to

symbols according to the annotation file.

2.3 Batch effect processing

The removeBatchEffect function of the limma (R package)

was used to remove batch effects between different datasets

(Ritchie et al., 2015). Principal component analysis (PCA) was

used to observe the batch effect (Supplementary Figure S1).

2.4 LUAD classification based on pathway
score

In order to explore the molecular typing of LUAD, single

sample gene set enrichment analysis (ssGSEA) analysis was used

to calculate the score related to immune pathway

(Supplementary Table S1) (Gao et al., 2021). Next,

ConsensusclusterPlus (R Bioconductor/R package) software
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was used for consensus clustering analysis with “pam” arithmetic

and “pearson” distance, and the input was a sample matrix pool

of immune pathway scores (Wilkerson and Hayes, 2010). Then,

we determined the optimal number of clusters according to the

cumulative distribution function (CDF).

2.5 Gene mutation analysis

The mutect2 software was applied to perform gene mutation

analysis (Benjamin et al., 2019). The tumor promoting genes

were obtained from previous study. The fisher’s test was used to

screen genes with significantly high frequency mutations in each

subtype, with a threshold of p-value < 0.05. Moreover, the

maftools software (R package) was used to calculate the tumor

mutational burden (TMB) score (Mayakonda et al., 2018).

2.6 Copy number variation (CNV) analysis

GISTIC2.0 was used to analyze the change of CNV (Mermel

et al., 2011). If the ratio was greater than 0.2, it was considered as

FIGURE 1
Identification of LUAD immunophenotyping. (A), The cumulative distribution function (CDF) of different consensus index. (B), The CDF Delta
area curve. (C), The heat map showing the immune pathway score in TCGA and GSE cohorts. (D), PCA analysis in TCGA cohorts, different color
means different subtypes. (E), PCA analysis in GSE cohorts, different color means different subtypes.
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Gain, if the ratio was less than −0.2, it was considered as Loss, and

the rest was considered as Diploid.

2.7 Methylation analysis

The 450K methylation data of LUAD were used to perform

methylation analysis of EMT-promoting genes (Wang and Zhou,

2013), and missing values were imputed using the KNN

algorithm of the impute software (R package) (Hastie et al., 2011).

2.8 Treatment plan sensitivity analysis

We used the tumor immune dysfunction and exclusion

(TIDE) (https://tide.dfci.harvard.edu/) algorithm to predict

response of immunotherapy (Jiang et al., 2018). The higher

the TIDE prediction score, the higher the likelihood of

immune escape, and the lower the likelihood that the patient

would benefit from immunotherapy. Moreover, IC50 (half

maximal inhibitory concentration) analysis was used to

determine the sensitivity of different subtypes to

chemotherapy drugs using pRRophetic method.

2.9 Weighted gene co-expression
network analysis (WGCNA)

WGCNA was performed by WGCNA (R package) to filter

hub genes in the module related to different LUAD subtypes

(Langfelder and Horvath, 2008). Hub genes refer to genes that

play key roles in modules and are generally closely related to

shape. The hub genes were further subjected to KEGG pathway

analysis by using clusterProfiler (R Bioconductor/R package). p-

value < 0.05 was considered significance.

2.10 IMscore predicted by prognostic
model

IMScore model was constructed using univariate Cox

regression analysis and LASSO analysis. Finally, six prognostic

FIGURE 2
Immune features of different subtypes. (A), Comparison of distribution of StromalScore in subtypes. (B), Comparison of distribution of
ImmuneScore in subtypes. (C), Comparison of distribution of ESTIMATEScore in subtypes. (D), Comparison of distribution of TumorPurity in
subtypes. (E), EMT score Comparison of distribution among subtypes. (F), Comparison of distribution of Cytolytic activity scores among subtypes.
(G), Comparison of distribution of immune cell scores among subtypes. (H), Density distribution map of gene PD1, CTLA4, LAG3 and PD-L1 in
different subtypes. * means p-value < 0.05, ** means p-value < 0.01, *** means p-value < 0.001, **** means p-value < 0.0001.
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genes were obtained, including MARCKS, CDK2, SFN, SSBP1,

MRE11 and FZD7. IMScore = ΣExp(i)*β(i), where i refers to the
immune-related prognostic genes, Exp refers to the expression

levels of genes, and β refers to the LASSO coefficients.

3 Results

3.1 LUAD classification based on pathway
scores

The pathway scores of different samples in the TCGA and

GSE cohorts were calculated by ssGSEA algorithm, and then

consensus clustering analysis was performed on the pathway

scores. The optimal number of clusters was determined

according to the CDF, and the CDF Delta area curve was

observed. When it was selected as 3, it has a relatively stable

clustering result, and finally we choose k = 3 to obtain three

related subtypes, including immune-Enrich subtype (Immune-

E), stromal-Enrich subtype (Stromal-E) and immune-Deprived

subtype (Immune-D) (Figures 1A,B). A heatmap showing the

trends in pathway scores for each sample demonstrated a good

discrimination between the three different subtypes (Figure 1C).

In addition, PCA analysis between different subtypes showed

that in both datasets, there were distinct boundaries between

different subtypes (Figures 1D,E).

3.2 Analysis of clinical characteristics of
different subtypes

Survival analysis showed a better prognosis in the Stromal-E

subtype and a worse prognosis for the Immune-D subtype, which

was consistent in the TCGA cohort (left) and the GSE cohort (right)

(Supplementary Figure S2A). Analysis of differences in the

distribution of clinical features among subtypes in the TCGA

dataset showed significant differences in age, sex as well as the

distribution of T Stage among subtypes (Supplementary Figure S2B).

Comparative analysis of the molecular subtypes with the six

previously identified immunophenotypes (Thorsson et al., 2018)

FIGURE 3
Mutation features of different subtypes. (A), Waterfall plot of tumor mutated genes in different subtypes. (B), Differential analysis of TMB
distribution in different subtypes. (C). Kaplan-Meier survival analysis of mutation and wild-type tumor driver genes. Ns means no significance, *
means p-value < 0.05, ** means p-value < 0.01, *** means p-value < 0.001, **** means p-value < 0.0001.
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showed that the previously published immunophenotypes were

significantly different from our current study, for example, the

Immune-E subtype had the highest proportion of the C2 subtype

and C3 subtype had the best prognosis and also contributed the

largest proportion in Stromal-E subtype. These results supported the

reliability of our immunosubtyping (Supplementary Figure S2C)

FIGURE 4
CNV features of different subtypes. (A), CNV distribution of tumor driver genes. (B–E), Differences in NtAI, LST, LOH and HRD score of different
subtypes, respectively. (F), Differences in gene expression by tumor driver gene CNV groupings. Nsmeans no significance, *means p-value < 0.05, **
means p-value < 0.01, *** means p-value < 0.001, **** means p-value < 0.0001.
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3.3 Immune characteristics among
different LUAD subtypes

In order to further understand the immune characteristics

among the various subtypes of LUAD, we first used the

Estimate software to evaluate the immune scores and tumor

purity score of the TCGA and GSE cohorts. The results

demonstrated that the immune score, stromal score, and

ESTIMATE score were the highest in Immune-E subtype

both in the TCGA and GSE cohorts (Figures 2A–C). The

opposite was true for the tumor purity score (Figure 2D).

Epithelial-mesenchymal Transition (EMT) is closely related

to tumor metastasis and recurrence (Wang and Zhou, 2013).

Therefore, we applied the ssGSEA algorithm to evaluate the

difference in EMT scores between different subtypes. The

results showed that in the TCGA cohort, the Stromal-E

subtype had the highest EMT score, and in the GSE cohort

Immune-E subtype was the highest (Figure 2E). Cytolytic

activity is associated with immunotherapy, and here

ssGSEA was used to assess differences in Cytolytic activity

score (Rooney et al., 2015). We found that both in TCGA and

GSE cohorts, the score was highest in Immune-D subtype and

the lowest in Immune-E subtype (Figure 2F). To further

understand the status of different immune cells, we

assessed immune cell infiltration between different subtypes

and found the highest scores in Immune-E, such as

FIGURE 5
Methylation features of different subtypes. (A), The distribution of methylation value of EMT-promoting gene in subtypes. (B), Correlation
analysis of methylation value and expression value of EMT-promoting gene. (C), The beta value of cg probe site of gene CDH1 in subtype Differences
in distribution among subtypes. (D). Correlation of beta values of cg probe sites for CDH1 with CDH1 gene expression. Ns means no significance, *
means p-value < 0.05, ** means p-value < 0.01, *** means p-value < 0.001, **** means p-value < 0.0001.
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Plasmacytoid dendritic cell, Regulatory T cell and Gamma

delta T cell. This was also the same in the TCGA and GSE

cohorts (Figure 2G). Moreover, we determine the expression

level of PD1, PD-L1, CTLA4 and LAG3, and observed that the

expression level was higher in Immune-E subtype (Figure 2H).

3.4 Mutational analysis of tumor driver
genes in different subtypes

A total of 172 tumor driver genes were obtained from

previous study (Gao et al., 2013). Mutation analysis of tumor

FIGURE 6
Sensitivity analysis of treatment options. (A), Difference analysis of TIDE score of different immune subtypes in TCGA cohort. (B), Difference
analysis of TIDE score of different immune subtypes of GSE cohort. (C), Difference analysis of drug IC50 of in TCGA cohort. (D), Difference analysis of
drug IC50 of in GSE cohort. Ns means no significance, * means p-value < 0.05, ** means p-value < 0.01, *** means p-value < 0.001, **** means p-
value < 0.0001.
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driver genes in different subtypes of TCGA dataset found that

13 genes had different mutations in different groups and

TP53 had the highest mutation frequency in the Immune-E

subtype (Figure 3A). The results of TMB analysis in different

subtypes found that TMB in Stroma-E subtype was

significantly lower than that in Immune-E and Immune-D

subtypes. There was no difference in TMB distribution

between Immune-E and Immune-D subtypes in TCGA

dataset (Figure 3B). In addition, survival curve (KM)

analysis of mutations in driver genes and wild-type samples

in TCGA dataset demonstrated that mutations in nine genes

were significantly different from wild-type, including CNTLN,

ZNF48, ZNF878, BRDS, SERPINI1, LARP7, SLITRK6 and

DSTN (Figure 3C). Those analysis indicated that three

subtypes may predict mutation status.

3.5 CNV analysis of tumor driver genes in
different subtypes

A total of 159 of 172 tumor driver genes had CNV data. To

understand CNV in tumor driver genes, GISTIC2 was used to

perform CNV analysis. The results showed that the amplification

and deletion of 159 driver genes were significant in different

subtypes in TCGA dataset, and top 18 genes were visualized.

Notably, immune-D had the largest amounts of CNVs

(Figure 4A). Homologous recombination deficiency (HRD) is

associated with a poorer cancer prognosis (Knijnenburg et al.,

2018). Loss of heterozygosity (LOH), LST (large-scale state

transitions), NtAI (number of telomeric allelic imbalances)

score and HRD score were selected to assess the HRD status

in different subtypes, and we found that the above scores were the

FIGURE 7
WGCNA identifies functional modules associated with different subtypes. (A), Dendrogram of all genes clustered based on a dissimilarity
measure. Different colors on the bottom panel represent different modules. (B), Lollipop plot showing the number of genes in differentmodules. (C),
Clustering tree showing correlation between different modules. (D), Heat map showing module correlation with different subtypes. (E–G), The top
10 KEGG pathway in magenta (Immune-E), pink (Stromal-E) and blue (Immune-D) module, respectively.
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lowest in Stromal-E and highest in Immune-D (Figures 4B–E).

The expression level of tumor driver genes in the gene CNV

grouping showed that the expression of the genes corresponding

to the grouping with Gain was higher, while that corresponding

to the grouping with Loss was lower (Figure 4F).

3.6 Methylation analysis of genes in
different subtypes

The methylation status of genes plays an important role in

gene expression. DNA methylation analysis of seven EMT-

promoting genes showed that the methylation status of

ZEB1 and VIM did not differ among subtypes in TCGA

dataset, while the methylation status of ZEB2, TWIST1,

CDH2, CDH1 and CLDN1 were significantly different in each

subtype (Figure 5A). The correlation analysis between gene

expression value and methylation status showed that the gene

expression values of VIM, CDH2, CDH1, and CLDN1 were

significantly negatively correlated with methylation status

(Figure 5B). The distribution of cg sites of CDH1 in different

subtypes in TCGA dataset showed that some sites had significant

differences in different subtype groups, and that the highest value

in Immune-E was in a hypermethylated state (Figure 5C). From

the correlation analysis of CDH1 cg loci and CDH1 gene

expression, most of the cg loci and CDH1 gene expression

showed a significant negative correlation (Figure 5D).

3.7 Immunotherapy and drug sensitivity of
different subtypes

The TIDE (https://tide.dfci.harvard.edu/) algorithmwas used

to assess the potential clinical effects of immunotherapy on

different molecular subtypes. In the TCGA cohort, the TIDE

score of Immune-E was significantly higher than that of Stromal-

E and Immune-D. The immunotherapy effect analysis indicated

that the proportion of responses in Immune-E was only 22%,

which was much lower than that of Stromal-E and Immune-D

(Figure 6A). In GSE dataset, TIDE score was also higher in

Immune-E. (Figure 6B). In addition, we also analyzed the

response of different subtypes to the traditional chemotherapy

drugs Cisplatin, Sunitinib, Crizotinib, Dasatinib, Bortezomib,

Midostaurin. The results suggested that all the six drugs were

FIGURE 8
IMscore model to predict prognosis. (A), Distribution of IMscore for each sample in the TCGA cohort. (B), Distribution of LASSO coefficients for
six genes. C andD, Kaplan-Meier survival analysis in different IMscore group in TCGA (C) andGSE (D) cohort. E and F, Differences in the distribution of
IMscore among different subtypes ((E), TCGA cohort; (F), GSE cohort). Ns means no significance, * means p-value < 0.05, ** means p-value < 0.01,
*** means p-value < 0.001, **** means p-value < 0.0001.
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more sensitive to the Immune-E subtype in both the TCGA and

GSE cohorts (Figures 6C, D).

3.8 WGCNA to identify the key gene of
subtypes

Hierarchical cluster analysis of cohort samples showed no

discrete samples in the TCGA cohorts (Supplementary Figure

S3A). In order to ensure that the gene network we constructed

conformed to the scale-free distribution, we set the β value to 9 at
the time R2 > 0.85 (Supplementary Figures S3A,S3C). After

clustering the modules and merging the closer modules into a

new module, we acquired a total of nine modules (Figure 7A).

The lollipop graph showed the number of genes in each module.

It can be observed that the turquoise color module had the largest

number of genes, which was more than 4,000 genes (Figure 7B).

The heat map of correlation analysis of each subtype and module

showed that the Immune-D subtype had the highest positive

correlation with the blue module, the Immune-E subtype had the

highest positive correlation with the magenta module, and the

Stromal-E subtype had the highest positive correlation with the

pink module (Figures 7C,D). Further, we performed KEGG

pathway analysis on the genes in the above three modules,

and the results demonstrated that the genes in the magenta

module were closely related to Natural killer cell mediated

cytotoxicity, the genes in the pink module were closely related

to ECM-receptor interaction, and the genes in the blue module

were closely related to Genes were closely related to Mismatch

repair, etc. (Figures 7E–G).

3.9 IMscore prognostic model
construction

In GSE, six prognostic pathways (Fc gamma R-mediated

phagocytosis mediated phagocytosis, p53 signaling, Mismatch

repair, Homologous recombination, Wnt signaling, Cell cycle)

from 15 pathways were identified by univariate COX analysis.

Then, Pearson analysis on the genes in six pathways and six

pathways score was used to select the top20 genes. Through

univariate COX analysis and LASSO regression analysis, we

obtained six genes form 20 genes as related genes affecting

prognosis (Figures 8A, B), and the model score was developed

based on the following formula: IMScore = 0.400*MARCKS +

0.353*CDK2 + 0.232*SFN + 0.450*SSBP1 + 0.604*MRE11 −

0.169*FZD7.

The survminer package was used to find the best cutoss of

IMScore and divide the GSE and TCGA data set samples into

high IMscore group (high group) and low IMscore group (low

group). In the GSE cohort, survival analysis of high- and low-

groups found that the prognosis of high groups was significantly

worse than that of low groups. High group also had worse

survival outcome in TCGA datset (Figures 8C, D). In

addition, we compared the distribution differences of IMScore

among subtypes in different datasets and found that: IMScore in

Stromal-E had the lowest in GSE and TCGA, while Immune-D

had the highest IMscore in GSE, Immune-E had highest IMscore

in TCGA dataset (Figures 8E, F).

3.10 Prediction efficiency of IMscore
prognostic model

The survival curve analysis of IMScore model in different

cancer types showed that except ESCA, our IMScore had

significant differences in high and low IMScore in all cancer

types, and that the prognosis of high IMScore was significantly

worse than that of low IMScore (Supplementary Figure S4).

Furthermore, IMvigor210, GSE91061 and GSE135222 data

were used to examine the efficiency of the IMscore model in

immunotherapy. To evaluate the efficiency of IMscore, TIDE

analysis was used as a control. For IMvigor210 cohort, survival

analysis showed significant differences in survival among

different groups (IMscore: p-value < 0.0001; TIDE, p-value =

0.012) (Supplementary Figures S5A, S5B). For GSE91061 cohort,

survival analysis showed significant differences in survival among

different IMscore groups (p-value < 0.023) (Supplementary

Figures S5C). TIDE group was not statistically significant (p-

value = 0.067) (Supplementary Figures S5D). For

GSE135222 cohort, survival analysis showed no significant

differences in IMscore or TIDE groups (IMscore: p-value =

0.055; TIDE, p-value = 0.051) (Supplementary Figures S5E,

S5F). Notably, ROC curve analysis demonstrated that in the

above three cohorts, the predictive efficiency of IMscore was

higher than that of TIDE.

4 Conclusion

LUAD is one of the most common malignant tumors, with

high metastasis rate and strong invasiveness. Its low 5-year

survival rate seriously threatens the life and health of human

beings (Charloux et al., 1997; Tan et al., 2016). Significantly,

early-stage LUAD has been reported to be associated with a

higher risk of postoperative recurrence and death (Bittner et al.,

2014). The immune system has been shown to play a critical role

and even determine different stages of cancer development and

progression (Shurin, 2018). Hence, an accurate classification of

LUAD patients according to immune characteristics and the

identification of LUAD biomarkers have positive significance for

the selection of LUAD treatment methods. A previous study

reported six subtypes in LUAD, including Wound Healing, IFN-

γ Dominant, Inflammatory, Lymphocyte Depleted,

Immunologically Quiet, and TGF-β Dominant (Thorsson

et al., 2018). However, in this research, three molecular
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subtypes classified by immunological features were obtained and

defined as Immune-E, Stromal-E and Immune-D.

Kaplan-Meier survival analysis was able to determine

survival differences between different subtypes (Goel et al.,

2010). We found that Stromal-E subtype had a better

prognosis and Immune-D had a worse prognosis. To gain a

deeper understanding of the differences in survival between the

different subtypes, we used Estimate software for immune

calculating index scores and tumor purity scores (Yoshihara

et al., 2013). The results showed that higher tumor purity and

lower immune cell scores were in the Immune-D subtype, which

accounted for the poorer prognosis of the subtype.

Recently, immunotherapy has also been developed as a new

treatment for LUAD (Saito et al., 2018). Moreover, antibodies

against PD-1 and PD-L1 have been reported to be effective in the

treatment of various malignancies (Antonia et al., 2017; Bie et al.,

2021). Although the biology of the TIME driving these responses

was not fully understood, it is critical for the design of

immunotherapeutic strategies. We found that the expression

level of PD1, PD-L1, CTLA4 and LAG3 was higher in

Immune-E subtype. However, as we mentioned above, the

survival analysis showed that the Stromal-E subtype had a

better prognosis, which suggested the complexity of

tumorigenesis mechanisms.

TMB is an emerging tumor biomarker and it is associated

with response to PD-1/PD-L1 targeted therapies in lung

cancer (Spigel et al., 2016). We found that TMB in the

Stromal-E subtype was significantly lower than in the

Immune-E and Immune-D subtypes. TP53, known as the

guardian of the genome, is one of the most well-known

tumor suppressor genes (Surget et al., 2014). Interestingly,

the mutation analysis suggested that Stromal-E subtype had a

lower TP53 mutation rate of only 32%, while the other two

subtypes both exceeded 50%, which explained a better

prognosis of Stromal-E subtype. Moreover, high levels of

TIDE scores suggested that Immune-E was more likely to

occur immune escape, suggesting that the Immune-E subtype

had limited benefit from immunotherapy (Jiang et al., 2018).

Interestingly, although the Immune-E subtype had little

limited benefit from immunotherapy, IC50 analysis of

chemotherapeutic agents showed that this subtype was

more sensitive to chemotherapeutic agents, including

Cisplatin, Sunitinib, Crizotinib, Dasatinib, Bortezomib and

Midostaurin.

The above analysis showed a high heterogeneity among

different immune subtypes. In order to better understand the

differences between different subtypes, we used WGCNA

analysis to identify hub genes among each subtype. Extensive

analyses showed that WGCNA was an effective method for

identifying phenotype-genotype linkages and biomarkers and

therapeutic targets (Niemira et al., 2019; Ma et al., 2021; Zhang

et al., 2022). Nine modules were obtained, and pink module was

highly associated with Stromal-E subtype. Further function

enrichment analysis showed that the hub genes in pink

module were involved in ECM-receptor interaction pathway.

Tumor progression depends not only on cell-autonomous

changes in tumor cells, but also on the changes within the

microenvironment (Götte and Kovalszky, 2018). An important

feature of the dysregulated lung cancer microenvironment is the

altered extracellular matrix (ECM), which can promote tumor

angiogenesis, allow tumor cell immune escape, etc. (Mahale et al.,

2016). In addition, magenta module was positively correlated

with Immune-E subtype and participated in natural killer cell

mediated cytotoxicity.

Notably, we developed an IMscore model containing six

immune-related genes (MARCKS, CDK2, SFN, SSBP1,

MRE11 and FZD7) to predict LUAD prognosis. CCNA2-

CDK2 complex have been reported to inhibit LUAD

progression (Li et al., 2021). CDK2 also was a biomarker for

other cancers and next-generation CDK2 inhibitors play an

increasingly pivotal role in the treatment of cancer (Wadler,

2001; Chohan et al., 2015; Tadesse et al., 2020). SFN gene encodes

a protein participating in regulating epithelial-mesenchymal

interaction (Asdaghi et al., 2012). Aya Shiba-Ishii reported

that SFN promoted early progression of LUAD by activating

cell proliferation (Shiba-Ishii, 2021). SSBP1, MRE11 and

FZD7 have been considered as potential treatment sites of

LUAD (Sun et al., 2017; Wang et al., 2017; Zeng et al., 2020).

Kaplan-Meier survival analysis showed the high IMScore group

had a significantly lower prognosis than the low IMScore

group. Then, we detected the IMScore in three immune-

related subtypes. As expected, the lowest score of IMScore in

Stromal-E subtype was obtained. To explore the efficiency of the

IMscore model, we used the expression profile data of the

remaining 32 cancer types in the TCGA database for

validation, and found that IMScore was significantly different

in all cancer types except ESCA.

5 Conclusion

In this study, we used immune-related signaling pathways to

classify LUAD and obtained three different subtypes, which had

great differences in survival, gene mutation, CNV, gene

methylation, etc. We further constructed an IMscore model to

predict the prognosis among different subtypes of LUAD, and

observed that the IMscore model had a higher efficiency. In

addition, data in different cancers further confirmed the validity

of the IMscore model.
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