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Currently, the treatment of Alzheimer’s disease (AD) is still at the stage of
symptomatic treatment due to lack of effective drugs. The research on miracle
fruit seeds (MFSs) has focused on lipid-lowering and antidiabetic effects, but no
therapeutic effects have been reported in AD. The purpose of this study was to
provide data resources and a potential drug for treatment of AD. An ADmousemodel
was established and treated with MFSs for 1 month. The Morris water maze test was
used to assess learning memory function in mice. Nissl staining was used to
demonstrate histopathological changes. MFSs were found to have therapeutic
implications in the AD mouse model, as evidenced by improved learning memory
function and an increase in surviving neurons. To explore the mechanism of MFSs in
treating AD, network pharmacological approaches, Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), and molecular docking studies
were carried out. Based on the network pharmacology strategy, 74 components
from MFS corresponded to 293 targets related to the AD pathology. Among these
targets, AKT1, MAPK3, ESR1, PPARG, PTGS2, EGFR, PPARA, CNR1, ABCB1, and MAPT
were identified as the core targets. According to the relevant number of core targets,
cis-8-octadecenoic acid, cis-10-octadecenoic acid, 2-dodecenal, and tetradecane
are likely to be highly correlated with MFS for AD. Enrichment analysis indicated the
common targets mainly enriched in AD and the neurodegeneration-multiple disease
signaling pathway. Themolecular docking predictions showed that MFSs were stably
bound to core targets, specifically AKT1, EGFR, ESR1, PPARA, and PPARG. MFSs may
play a therapeutic role in AD by affecting the insulin signaling pathway and the Wnt
pathway. The findings of this study provide potential possibilities and drug candidates
for the treatment of AD.
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Introduction

AD is a neurodegenerative disease, the most common symptoms of which are memory
impairment and cognitive decline, and is the most common contributor to dementia. The drugs
currently approved by Food and Drug Administration for therapeutic use are primarily for the
treatment of AD symptoms, including acetylcholinesterase inhibitors [donepezil (Knapp, et al.,
2017), galantamine (Baakman, et al., 2022), and rivastigmine (Jia, et al., 2019)] and N-methyl-
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D-aspartate antagonist [memantine (Grossberg, et al., 2018)].
However, relevant clinical studies also suggest that the benefit of
donepezil in use is not evident (Birks and Harvey, 2018). Galantamine
is less effective in improving memory and executive functioning
disorders, with significant gastrointestinal side effects (Leijenaar,
et al., 2020). Memantine is also used in combination therapy for
AD, with no significant symptom improvement and increased
economic costs (Knapp et al., 2017). The research for new
treatments for AD has, therefore, become a pressing issue.

In recent years, the recognition of AD has been constantly
updated, and medicinal plants are recognized for their synergistic
effects of multiple chemical components, multiple pathways and
multi-target mechanisms, and their advantages in the treatment of
chronic, polygenic, and complex diseases (Perry, et al., 1999; Rao, et al.,
2012; Dey, et al., 2017; Gregory, et al., 2021). People are interested in
treating AD plants because they have fewer side effects compared to
synthetic drugs. Also, because of the clinical trial failures and multiple
sides of synthetic drugs, the development of phytotherapy has received
close attention from the public and the scientific community (Vegh,
et al., 2019). Many foods and nutritional drugs are claimed to have
memory-improving effects, including Ginkgo biloba (Singh, et al.,
2019; Nowak, et al., 2021), dihydromyricetin (Martínez-Coria, et al.,
2019), linalool (Hosseini et al., 2021), fig leaves (Sohn et al., 2021),
Schisandra polysaccharides (Sun et al., 2014), Nardostachys jatamansi
(Anupama et al., 2022), tea (Baranowska-Wójcik, et al., 2020),
Forsythia (Yan et al., 2017), curcumin (Mithu et al., 2014), and
acidic polysaccharose (Mithu et al., 2014).

Synsepalum dulcificum, also known as the miracle fruit, belongs to
the mangosteen family. This plant is local to the forested areas of
tropical West Africa and can be found growing wild alongside the Gulf
of Guinea (Tchokponhoué, et al., 2019; Tchokponhoué, et al., 2021). It
is so named because its fruit can turn sour into sweet when eaten with
other acidic foods such as lemons, capers, and kimchi. This is related
to the fact that miraculin protein, a specific component of the miracle
fruit, activates the human sweet taste receptor T1R2–T1R3 in a
dependent manner (Sanematsu, et al., 2016). This well-known
function is now also used in the taste function of cancer
chemotherapy patients (Wilken and Satiroff, 2012). Traditionally, it
is used in West Africa mainly for the treatment of diarrhea and cough.
After the 1960s, the mystery fruit was introduced to subtropical and
tropical areas of China, including Hainan, Yunnan, Guangdong,
Guangxi, and Fujian provinces (Cheng, 2000). The miracle fruit is
currently found to be of use and economic significance in a variety of
industries and has been approved for safety in the European Union as
a food supplement (excluding pregnant and lactating women adults)
(Turck, et al., 2021). The safety of miracle fruits was assessed by
measuring their lectin levels, and it was found that miracle fruits can
be taken orally without cooking like fruits such as blueberries

(Menéndez-Rey, et al., 2021). This characteristic has brought more
attention to the edible and medicinal value of the mystery fruit.

Current research on the miracle fruit has focused on the pulp and
leaves, with less research on the seeds. The medical value of pulp is
mainly focused on diarrhea (Offiah, et al., 2011), antidiabetic effects
(Haddad, et al., 2020), anti-oxidation effects, etc. The leaf extract has
the function such as presence of anti-hyperuric acid (Shi, et al., 2016;
Chen, et al., 2018), inhibition of oxidative damage, and anti-
mutagenicity (Chen, et al., 2015). Research on seeds has focused on
cholesterol-lowering (Huang, et al., 2020) and antidiabetic effects
(Han, et al., 2019). MFS oil has also been reported to treat
breakage and damaged hair in women because of the
phytochemicals and nutrients it contains (Del Campo, et al., 2017).
In addition, studies have found that wristbands containing MFS oil
can affect musculoskeletal performance and improve motor skills in
the hands and fingers of healthy adults (Gorin, et al., 2018). MFS is
mainly composed of the following components: ash, crude fiber, crude
fat, reducing sugars, polyphenols, polysaccharides, fatty acids, amino
acids, and mineral elements. Comparing these seeds to the common
medicinal seeds (including Perilla seeds, palm seeds, and trillium
seeds), the ash, crude protein, and polysaccharides of the MFS are
higher than those of other plants, and they contain a variety of amino
acids andmineral elements required by the human body, making them
highly valuable for food and medicinal purposes. The seeds are high in
amino acids and phyto-polyphenols compared to other seeds, with
about 9.02 g/100 g of seeds in amino acids and 11.56 mg/g of seeds in
phyto-polyphenols. Of the amino acid composition, 40.69% of total
essential amino acids, 19.95% of total branched-chain amino acids,
and a high content of essential and potent amino acids (63.75%) were
present. The minerals of the mystery fruit seeds were measured and
found to be typically high in potassium and low in sodium (Ma, et al.,
2016). Such properties are beneficial in improving the
potassium–sodium balance in the body and in the prevention and
treatment of cardiovascular diseases and diabetes (Mohammadifard,
et al., 2019; Zanetti, et al., 2020).

Related studies have shown that although the antioxidant activity
in the seeds was lower than that of the miracle fruit peel and pulp, the
seeds contributed 49.45% of the free antioxidant activity, 76.41% of
the bound antioxidant activity, and 58.56% of the total antioxidant
activity as they comprised about 66% of the total solids ((Inglett and
Chen, 2011). Compared to the pulp and leaves, the seeds have better
storability and transportability. Research on MFS is currently
focused on the cholesterol-lowering and blood sugar-lowering
components. The mechanism of lowering cholesterol is mainly
thought to be related to the richness of triterpenoids. The
lowering of blood glucose level is thought to be associated with
its stimulation, promoting the expression of PI3K and GLUT4 and
activating the insulin pathway in type 2 diabetic patients (Han, et al.,

TABLE 1 Experimental groups of mice.

Group Abbreviation Description

1 WT Wild-type mouse not treated

2 Control AD model mouse treated with distilled water

3 2 mg/kg AD model mouse treated with 2 mg/kg methanol extract of miracle fruit seed

4 6 mg/kg AD model mouse treated with 6 mg/kg methanol extract of miracle fruit seed
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2019; Huang, et al., 2020). Therefore, MFS is a good source of
antioxidant food. Diabetes is currently thought to be associated with
AD through the insulin resistance pathway (Burillo, et al., 2021;

Idowu et al., 2022). It is well-known that insulin can regulate GLUT4,
which has an important role in brain glucose metabolism. A decrease
in GLUT4 has also been found in the brains of postmortem AD

FIGURE 1
Experimental program and construction of AD transgenic mice. Mice were genotyped for tail detection and behavioral testing at 8 months of age, and
gavage treatment was started at 9 months of age. Behavioral tests (including the open-field test and water maze test) were performed at 10 months of age
(1 month of gavage treatment), andmice were executed for biochemical analysis the day after behavioral tests were completed. The expression of APP/PS1 in
the tail of mice was identified using PCR. A bright band was visible at 350 bp and 608 bp compared toWT. APPswe/PS1DEL9 double transgenic ADmice
were successfully constructed. TheMorris water maze test suggested that 9-month-old ADmodel mice (APP/PS1 overexpression) already showed significant
learning memory dysfunction compared to wild-type mice of the same age (data are presented as mean ± standard deviation) (WT, n = 9; AD, n = 24). (A)
Experimental program. (B) Vector construction of APPswe and PS1DEL9 homologous recombination sequences and PCR detection of mouse genes. (C)
Escape latency (seconds) during platform trials (* indicatesWT compared to the ADmodel group; p < .05). (D) Trajectory diagram of the last day of training and
day 6 of testing for the Morris water maze test. (E) Distance traveled (centimeters) on the last day of training in the Morris water maze test. (F) Number of
crossings over the target platform of the Morris water maze test at day 6.
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patients (de la Monte and Wands, 2005). According to reports,
insulin can mediate the growth, metabolism, and survival of neurons
and glia cells and affects synaptic function (Talbot, et al., 2012). In
AD patients, a reduced rate of glucose metabolism was found,
especially in brain regions associated with memory (Mosconi,
et al., 2008; Mistur, et al., 2009; Chen and Zhong, 2013; Croteau,
et al., 2018), and abnormalities in glucose metabolism may precede
the decline in cognitive function (Chen, et al., 2010). In addition,
abnormal cholesterol metabolism is now considered as a potential
risk factor for AD and is expected to be a new target for AD
treatment (Loera-Valencia, et al., 2019; van der Kant, et al., 2019;
Sáiz-Vazquez, et al., 2020). Notably, transcriptomic analysis also
revealed impaired cholesterol biosynthesis in brain regions
susceptible to AD pathology (Varma, et al., 2021). Brain
cholesterol levels are closely related to the function of neurons,
glial cells, and memory formation (Li, et al., 2022).

MFSs showed therapeutic implications for insulin resistance and
cholesterol metabolism. This led us to speculate that MFS has
therapeutic implications for AD and to implement the reasons for
this study. This study investigates the effects of the methanolic extract
of MFSs using an AD transgenic mouse model and explored the
intrinsic mechanisms.

Material and methods

Animals

We used C57BL/6JOlaHsd150 inbred mice aged 9 months
(Experimental Animal Center of Kunming Medical University),
weighing 25 g–30 g at the beginning of the experiment. Transgenic
mice with familial two AD mutations (2 × FAD) were purchased
from the Jackson laboratory, 9-month-old males. Also, 2 × FAD
overexpresses the human APP SWE and PS1DEL9 genes, age-related
neuropathology overexpression of Aβ and age-dependent cognitive, and
learning dysfunction. The 2 × FAD mice were transgenic hemizygotes,
and non-transgenic wild-type (WT) littermates were used as controls.
Genotyping was carried out by quantitative real-time polymerase chain
reaction (qRT-PCR) analysis of tail DNA. All mice were housed,
5–6 mice/cage, under standard laboratory conditions (temperature:
22°C ± 1°C, humidity: 60%). Food and water were freely available
under a 12-h dark–light cycle in standard cages. All manipulations
were carried out during the light cycle.

Miracle fruit seed methanol extract material
and preparation

The methanol extract of MFS was obtained from the School of
Pharmacy, Zunyi Medical University. The seeds were air-dried and

then crushed into powder. A portion of the pulverized sample
(408.4 g) was extracted in methanol (2.042 L) by maceration for
72 h. After complete infusion, the mixture was filtered, and the
filtrate was concentrated under reduced pressure in a rotary
evaporator and freeze-dried. The extract powder was obtained and
stored away from light for further use.

Grouping of animals

All animals were 9-month-old male mice with four groups
(Table 1), namely, the WT group, AD control group, and AD-
2 mg/kg (dose of MFS) and AD-6 mg/kg groups (dose of MFS).
Before conducting this study, we used error degrees of freedom to
estimate the number of mice needed (Dell, et al., 2002). Finally, we
chose eight mice per group as the experimental number. The mice
completed the rat tail PCR assay and Morris water maze baseline
screening and were treated with once-daily gavage starting at
9 months of age, with the gavage dose calculated based on body
weight (.1 mL (mL) gavage dose/10 g mouse body weight). The
experimental process is shown in Figure 1A. The methanol extract
mixture of MFS was dissolved in double-distilled water (drug
concentrations were .2 mg/mL and .6 mg/mL, respectively), mixed
with ultrasound until completely dissolved, stored in a 4°C
refrigerator, and taken out when used. The 2 × FAD mice were
treated with 2 mg/kg (group 3) or 6 mg/kg (group 4), depending
on body weight by gavage once daily for 3 months, starting at
9 months of age.

All animal experiments conformed to the Guide for the Care and
Use of Laboratory Animals, published by the National Institutes of
Health. The animal surgery was legally approved and performed by the
Animal Welfare Ethics Committee of Zunyi Medical University
(approval number: ZMU21-2203-615). Animal stress and the use
of animals were minimized.

Behavioral tests

Morris water maze
The Morris water maze was performed to evaluate the spatial

learning and memory capacity of the mice at nine and 10 months
of age after gavage. The pool is divided evenly into four
quadrants, with the platform located in the center of one of
the quadrants. Edible white veggies were added to the pool with
the aim of hiding the small round table in the pool water. Each
mouse was trained in four quadrants for 60 s (s) per day for five
consecutive days. During the training process, the mice failed to
find the hidden platform within 60 s, and the experimenter gave
instructions. On the 6th day of the experiment, the platform was
removed, and the 60-s exploration training began. The mice were

TABLE 2 Primer information.

Forward Reverse

APP 5′GACTGACCACTCGACCAGGTTCTG 3′ 5′CTTGTAAGTTGGATTCTCATATCCG 3′

PS1 5′AATAGAGAACGGCAGGAGCA 3′ 5′GCCATGAGGGCACTAATCAT 3′

GAPDH 5′AGGTCGGTGTGAACGGATTTG 3′ 5′GGGGTCGTTGATGGCAACA 3′
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placed in the water from the other side of the original platform
quadrant, and the time spent in the target quadrant (the quadrant
where the platform was originally placed) was recorded. The time
the mouse took to enter the quadrant and the number of times the
mouse passed the platform were used as measures of spatial
memory. Finally, at the end of the experiment, the mice were air-

dried and placed in their home cage. Training intervals were
15–20 min.

Open-field test
The mice were tested at nine and 10 months in an open-field

experiment. The open-field test was chosen to further assess the

FIGURE 2
Morris water maze test and open-field test by gavage of the methanol extract of MFS in 10-month-old mice. The Morris water maze test was
performed in 10-month-old male WT C57 mice and AD model mice after 1 month of gavage. The results showed that after treatment, the spatial learning
and memory functions of AD model mice improved, with the 6 mg/kg group having a more pronounced effect. By 1 month of gavage treatment, in the
open-field test, there were no statistical differences in the total distance, number of grooming, and number of rearing in the treated group compared
to the control group (data are expressed as mean ± standard deviation, WT, n = 9; control, n = 8; 2 mg/kg, n = 8; 6 mg/kg, n = 8). (A) Escape latency
(seconds) during platform trials. (* indicates WT compared to the control group p < .05; @ indicates the control group compared to the 2 mg/kg treatment
group p < .05; # indicates the control group compared to the 6 mg/kg treatment group p < .05). (B) Trajectory diagram of the last day of training and day
6 of testing for the Morris water maze test. (C) Distance traveled (centimeters) on the last day of training in the Morris water maze test. (D) Number of
crossings over the target platform of the Morris water maze test at day 6. (E) Distance in the open-field test (millimeters). (F) Number of rearing. (G)
Number of grooming.
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movement (motor function), autonomous behavior, exploratory
behavior, and tension of the experimental animals in their new
environment. The mice were placed in a room, a 30 cm × 30 cm ×
35 cm open area with appropriate lighting conditions and a video
camera fixed on top. Each mouse was placed in the middle of the open
area and allowed to explore freely for 10 min. The total distance and
average speed over a 10-min period were then automatically recorded
by Supermaze, a video tracking software system supplied by NewSoft
Information Technology (Shanghai, China), as an indicator of exercise
activity. After each trial, the walls and floors of the open field were
cleaned.

Tissue harvest
The mice were anesthetized with 2.5% isoflurane and then

euthanized. The eyes were removed, and the whole blood of the
mice was taken out. Their chest was opened, and the tip of the
perfusion tube was fixed to the ascending aorta. Then,
20 mL–30 mL of normal saline (.9% sodium chloride) was injected
at a constant rate to clean the blood, and brain tissue was exposed and
collected. The right brain was fixed in 4% paraformaldehyde solution
for 5 days, embedded using paraffin, and sectioned for morphological
examination. The left brain was harvested and frozen to −80°C at room
temperature for later molecular examination.

Nissl staining
Neuronal cells in the cortical and hippocampal sections were

observed by Nissl staining. The cut brain slices (4 µm) were baked
for 1 h in a 60°C oven. The brain slices were dewaxed and placed in
a Nissl staining solution (Beyotime, C0117) to react for 15 min.
Then, they were washed in distilled water, dehydrated in graded
concentrations of ethanol (70%, 80%, 90%, and 100%), cleared in
xylene, and finally capped with neutral balsam to seal the sections.
Whole-section scanning light microscopy was performed for dark
and surviving neurons (digital whole section scanner, Pannoramic
MIDI, magnification × 200, × 400). Five random fields (× 200)
were selected by blind observers and used to quantify the number
of positive cells. Three sections were selected for each animal,
and the mean of the cell counts in the right hippocampus and
cortex [including cortical, hippocampal cornu ammonis 1(CA1),
CA2, CA3, and dentate gyrus (DG) areas] was provided for each
animal.

Quantitative real-time PCR

The prepared cortex and hippocampus were homogenized and
lysed. Total RNA was extracted with TRIzol reagent (Takara BioInc.,
Otsu, Japan) and then reversely transcribed into cDNA with Revert
Aid™ First Strand cDNA Synthesis Kit (Thermo, United States) and
All-in-One miRNA First Strand cDNA Synthesis Kit (GeneCopoeia).
The qRT-PCR was then performed to detect the relative expression of
mRNA, and APP and PS1 were detected at nine months of age. The
primer sequences are shown in Table 2. Next, the reaction was
performed in a DNA thermal cycler (ABI 7300), according to the
following standard protocol: one cycle of 95°C for 5 min, 40 cycles of
95°C for 10 s, annealing of 52°C for 20 s, and extension of 72°C for 20 s.
Relative expressions were calculated with normalization to GAPDH
values by using the 2−ΔΔCT−11−ΔΔCT method.

Collection of the targets of miracle fruit seeds
and correlation with Alzheimer’s disease
pathology

The main components in MFSs were obtained from the
literature. To collect target information for the compounds in the
MFS, the chemical components already present in the traditional
Chinese medicine systems pharmacology database and analysis
platform (TCMSP) database were screened for active ingredients
using oral bioavailability (OB ≥ 30%) and drug-likeness (DL ≥ .18)
values. The remaining components for which detailed information
was not available in the TCMSP database were predicted using
SwissTargetPrediction (http://www.swisstargetprediction) (Daina,
et al., 2019). SDF and 2-dimensional (2D) chemical structures
were obtained from the PubChem database (https://pubchem.
ncbi.nlm.nih.gov/) (Kim, et al., 2016), which is the largest free
database of organic small-molecule bioactivities. Particularly, 2D
structures of components were input into SwissTargetPrediction,
and the target species was set as Homo sapiens. Subsequently, the
target information of MFSs was collected and organized.
Additionally, the targets of AD were obtained from the
GeneCards database (https://www.genecards.org/) (Fishilevich,
et al., 2017). Afterward, we obtained the intersection of AD-
related genes and the potential targets of MFSs. The common
targets were the MFS targets involved in the AD pathway. In the
end, the UniProt protein database (https://www.uniprot.org/)
(UniProt, 2021) was used to standardize and integrate protein
targets and genes.

Protein–protein interaction network
construction and screening of its core targets

The PPI network of the target protein was collected with the
STRING database (https://cn.string-db.org/) (von Mering, et al.,
2005), which was used to establish connections between AD and
MFS-related intersection targets. The analysis results were saved as
TSV files and imported into Cytoscape software (http://www.
cytoscape.org/, ver. 3.6.0) (Shannon, et al., 2003) for visualization.
The organism was set as Homo sapiens. In the PPI network,
betweenness centrality (BC) refers to the degree of mutual
independence between nodes. The higher the BC, the more control
a node will have over the network because more information will pass
through that node, and themore important that node will be in the PPI
network. The computation of BC is calculated by network analysis (a
plug-in for Cytoscape) and the top 10 targets ranked by BC were
selected as the core targets.

GO and KEGG enrichment analyses

The Metascape database (https://metascape.org/gp/index.html#/
main/step1) (Zhou, et al., 2019) was used to carry out the GO and
KEGG pathway analyses of those intersection targets. GO enrichment
analysis included molecular function (MF), biological process (BP),
and cellular composition (CC). GO enrichment analysis and top
20 KEGG pathways sorted by the p-value were visualized using an
online tool (http://www.bioinformatics.com.cn/).
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Molecular docking

To verify the binding of the core target to its corresponding MFS
components, the 3D molecular structure of the MFS was downloaded
from the PubChem database. The high-resolution crystal structures of the
target protein were obtained from the RCSB Protein Data Bank (PDB
database, http://www.rcsb.org/) (Burley, et al., 2017). The binding affinity
betweenMFS compounds and AD targets was performed with AutoDock
4.2 and AutoDockTools (ADT). Finally, the interaction ability between
the protein and the ligand was assessed by the scoring of the binding
energy, and visualized and embellished by using PyMOL software.

Statistical analysis

Statistical analysis was performed using SPSS 21.0 statistical software
(IBM) and graphs were generated using Prism 6 (GraphPad). The data
were first tested for normality. With data conforming to normal
distribution, for comparisons between three or more groups, one-way
analysis of variance (ANOVA) and Tukey’s post-hoc analysis were
applied. Two groups of data were analyzed by t-test. Data that did not
conform to the normal distribution were analyzed using the
Kruskal–Wallis test. Data are presented as mean ± standard deviation
(x ± SD). When p < .05, the difference was statistically significant.

FIGURE 3
Nissl staining of the brain after gavage treatment for 1 month. After gavage treatment for 1 month, total surviving neurons increased, and dark neurons
decreased (DG, dentate gyrus; CA, cornu ammonis) (n= 3, eachmouse provides three data, data are expressed asmean± standard deviation). (A)Nissl staining
of the cortex and hippocampus in WT, control, 2 mg/kg, 6 mg/kg group. (B) Quantitative histogram of cortical total surviving neuron statistics in mice. (C)
Quantitative histogram of cortical dark neuron statistics in mice. (D)Quantitative histogram of hippocampal total surviving neuron statistics in mice. (E)
Quantitative histogram of hippocampal dark neuron statistics in mice. (F) Histogram of surviving total neurons in different subdivisions of the mouse
hippocampus. (G) Histogram of dark neurons in different subdivisions of the mouse hippocampus.
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Results

Construction and characterization of AD
transgenic mice

The 2 × FAD transgenic mice purchased from the Kunming
Medical University Laboratory Animal Department, overexpressing
human APP and PS1 transgenes. To verify whether APP/PS1 was
overexpressed, the expression of APP/PS1 in mice was detected by
PCR, and non-transgenic wild-type littermates were used as controls
(Figure 1B). Specific primers were synthesized for the human APP and
PS1 genes, with amplification fragments of 350 bp for APP and 644 bp
for PS1: 1) APP amplification primers: sense 5′-GACTGACCACTC
GACCAGGTTCTG-3′, anti-sense 5′-CTTGTAAGTTGGATTCTC

ATATCCG-3’; 2) PS1 amplification primers: sense 5′-AATAGA
GAACGGCAGGAGCA-3′, anti-sense 5′-GCCATGAGGGCACTA
ATCAT-3’. Reaction conditions: one cycle of 95°C for 5 min, 40
cycles of 95°C for 30 s, annealing of 60°C for 30 s, and extension of
72°C for 10 min. The data showed a bright band at 350 bp (APP) and
608 bp (PS1) compared with WT, which was consistent with the
expected position of the target gene fragment (Figure 1B).

Baseline screening
Nine-month-oldWTmale C57BL/6J mice and 2 × FADmice were

screened at baseline using the Morris water maze test to assess the
learning and memory function. The results showed that compared
with the WT group, the AD model mice had evident spatial learning
and memory dysfunction in the 9-month-old mice. This was reflected

FIGURE 4
Flow chart of study design. (MFS, miracle fruit seed; AD, Alzheimer’s disease).
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in a significant increase in the time of latency to target (Figure 1C,
p < .05) and escape distance to the platform (Figures 1D,E, p < .001).
In the detection test without the platform, there were fewer that
passed the platform area (Figure 1F, p < .001).

Methanolic extract of the MFS improves cognitive
dysfunction in AD mice

Compared with the untreated control group, the treated group
performed better in the Morris water maze test when given by
gavage with the methanol extract of MFSs for 1 month. Among
them, the therapeutic effect was more notable in the 6 mg/kg
treatment group than in the 2 mg/kg group. This was reflected in a
significant reduction in escape latency times and escape to
platform distances (Figures 2A,B,C, p < .05). A progressive
platform learning trial was conducted, and the 6 mg/kg group
traversed the platform area more often compared to the control
group in the detection trial without a platform (Figure 2D,
p < .001).

Methanolic extract of the MFS has no effect on
autonomous and exploratory behaviors in ADmice

To further explore the effects of MFS on mood and activity in
mice, an open-field test was conducted on 10-month-old mice.
There was no difference in the number of grooming and rearing in
the MFS treatment group compared to the control group (Figures
2F,G, p > .05), and the total distance (Figure 2E, p > .05). In addition,
the WT group showed an increase compared to control and
treatment groups in total distance (Figure 2E, p < .05).

Methanolic extract of the MFS treats neuronal
damage and neurological deficits

To investigate how the methanolic extract of MFS exhibits its
neuroprotective effect on the AD mouse model, Nissl staining was
further performed on the mouse brain sections. Also, it was found
that the treatment groups treated neuronal damage and
neurological deficits compared with the untreated control group
of the same age (Figure 3A). Compared with the control group, the
treatment group retained more total cortical neurons (6 mg/kg vs.
control, p = .003; 2 mg/kg vs. control, p < .001, Figure 3B) and
fewer dark neurons (6 mg/kg vs. control, p < .001, Figure 3C). As
for the hippocampus, the 6 mg/kg treatment group showed more
total neurons retention and fewer dark neurons when compared
with the control group (total neurons, 6 mg/kg vs. control, p <
.001; dark neurons, 6 mg/kg vs. control, p = .043), whereas there
was no statistical difference in the 2 mg/kg treatment group
(Figures 3D,E, p > .05).

In the total neuron statistics of different hippocampal
subdivisions, the 6 mg/kg group retained more total neurons in
CA2, CA3, and DG compared with the control group (p < .01).
However, there was no statistical difference in the 2 mg/kg
treatment group compared with the control group (p > .05).
Notably, there were fewer total neurons in CA1, CA2, CA3,
and DG in the 2 mg/kg treatment group than in the 6 mg/kg
group (Figure 3F, p > .05). In the different dark neuron regions of
the hippocampus, the 6 mg/kg group showed fewer dark neurons
in the CA1 region (p < .05) than in the control group. In contrast,
there was no statistical difference in the 2 mg/kg group compared
with the control group and 6 mg/kg treatment group (Figures
3F,G, p > .05).TA
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Acquisition and screening of drug
components

To further explore the potential mechanism and key targets ofMFS in
treating AD, we conducted network pharmacology and molecular
docking analysis on drug component action targets and disease
pathogenic targets to explore the possible mechanism of MFSs in
treating AD (Figure 4) (Wei, et al., 2021). Through the
aforementioned research, we found that MFSs have a therapeutic
effect on AD. However, the possible mechanisms are still unclear. A
total of 74 compounds were found and downloaded through a search of
the available open literature (Qi, et al., 2012; Ma, et al., 2016; Jian and
Qiao, 2018; Huang et al., 2020). Components with their information are
given in Table 3. Of these, chemical components of No. 1–54 can be
searched in the TCMSP database. Two components met the requirement:
OB ≥ 30% and DL ≥ .18. There were ethyl oleate and 2-monoolein.

The remaining 20 chemical components are not currently
included in the database. Among these 20 compounds,

10 components successfully predicted their targets, including cis-8-
octadecenoic acid, cis-10-octadecenoic acid, 9,10-epoxystearic acid, 2-
dodecenal, 5-methyltridecane, 5-ethyl-2,2,3-trimethylheptane,
2,2,4,6,6-pentamethylheptane, ethyl palmitate, 2,2,3,3-
tetramethylpentane, and tetradecane. The other 10 components
were not successfully predicted due to the lack of relevant and
similar information in the database, including 18-
methylnonadecanoic acid, 2-decyltetradecanoic acid, tridecane, 3-
methylene, 2,3-dimethylundecane, 2,8-dimethylundecane, 2,5-
dimethyldodecane, 2,2,3-trimethyldecane, 2,2,4,4-tetramethyloctane,
3,7-dimethyldecane, and 2,3-dimethyldecane.

AD and MFS network construction

Among the 12 compounds, 347 targets were obtained from
TCMSP and SwissTargetPrediction databases. A total of
111,501 AD-related targets were obtained from the GeneCards

FIGURE 5
Alzheimer’s disease and miracle fruit-related targets and PPI network. The search obtained 11,501 AD-related targets, 347 MFS-related targets, and
293 disease–drug common targets. The top 10 core targets were screened by betweenness centrality. As the figure shows, the larger area of the circle could
be considered asmore important in this network. (A)Disease–drug target Venn diagram. (B) PPI network of drug and disease common targets. (C)Core target
PPI network. (D) Pie chart of the top six molecular functions of MFS-AD common targets.
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database. The intersection of 11,501 AD-related targets and 347 MFS-
related targets, and a total of 293 targets were identified as the potential
therapeutic targets for MFS in the treatment of AD (Figure 5A). These
293 targets were uploaded to the STRING database, and then the
prediction of association between them was performed and then
imported into Cytoscape for PPI network construction. In the PPI
network, the darker the color of the graph and the larger the area, the
higher the BC score is represented. It also means that the target plays a
more important role in intercorrelation (Figure 5B). We used the
Panther database to perform MF analysis on common targets, and the
top six groups include metabolite interconversion enzyme (n = 73),
protein-modifying enzyme (n = 60), transmembrane signal receptor
(n = 59), transporter (n = 32), gene-specific transcriptional regulator
(n = 25), DNA metabolism protein (n = 8), and others (n = 36)
(Figure 5D). In Figure 5C, the top 10 key genes which ranked by BC
scores, were obtained as to be the hub genes, namely, AKT1 (BC =
14,078), MAPK3 (BC = 5,678), ESR1 (BC = 5,017.), PPARG (BC =

4,371), PTGS2 (BC = 4,348), EGFR (BC = 4,198), PPARA (BC =
2,955), CNR1 (BC = 2,856), ABCB1 (BC = 2,291), and MAPT (BC =
2,019).

GO and KEGG pathway enrichment analyses

A total of 293 potential therapeutic targets were analyzed using
Metascape for GO enrichment analysis. The top 10 significantly
enriched terms involving more targets in the BP, MF, and CC,
which are shown in Figure 6. MFSs may regulate the system process,
behavior, and circulatory system process via amide binding, protein
kinase activity binding postsynaptic membrane, synaptic membrane,
and dendrite to exhibit its therapeutic effect on AD (Figure 6A).

To explore the potential therapeutic mechanism of MFSs in
treating AD, 293 common genes were analyzed by pathway
enrichment. The top 20 pathways are shown in Figure 6B. Among

FIGURE 6
GO function enrichment and KEGG pathway enrichment analysis of AD in the treatment of MFS. (A)GO function enrichment analysis bubble diagram. (B)
KEGG pathway enrichment analysis bubble diagram. (C) Sankey diagram of targets involved in the AD signaling pathway. The color of the Sankey diagram
indicates the corresponding functional classification of the gene (classification according to MF of each target). (D) Sankey diagram of targets involved in the
neurodegeneration-multiple disease signaling pathway (classification according to MF of each target). (E) PPI network of enriched genes in the AD
signaling pathway. (F) PPI network of enriched genes in neurodegeneration-multiple disease signaling pathways.
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these potential therapeutic pathways, Alzheimer’s disease, pathways in
cancer, and the pathway of neurodegeneration-multiple disease were
the most significantly enriched pathways. In addition, insulin
resistance, PI3K/Akt signaling pathway, cAMP pathway, and
MAPK signaling pathway were also included, which were also
important in AD pathology. For further investigation of the
mechanistic role of 293 targets in the key pathways, we performed
PPI and MFS analyses of the pathways included in the targets. In the
Alzheimer’s disease pathway which contained 30 MFS-AD-treating
targets, more targets were related to protease and serine/
threonine–protein kinase, including two core targets, AKT1 and
MAPK3 (Figure 6C). PPI network diagrams were constructed, and
AKT1 and MAPK3 were also in key positions (Figure 6E). In the
neurodegeneration-multiple disease pathway which contained
29 MFS-AD-treating targets, most targets were associated with
serine/threonine–protein kinase and G-protein coupled receptors,
including MAPK3 (Figure 6D). The PPI network suggested that
MAPK3 may have an important role in MFSs treating AD.

To identify the main targets for the treatment of AD in MFS, we
visualized the AD pathway in Figure 7. Among them, the red labels
represented the genes in the AD pathway among the targets of the MFS
effect, which may also be the key targets of the MFS therapeutic AD
mechanism. Aβ generation was highly correlated with the enzyme that
cleaved APP, including α-secretase (ADAM17), β-secretase (BACE1),
and γ-secretase (PSEN1, PSEN2, PSENEN, APH1A, APH1B, and
NCSTN). Among Tau-related pathways, the therapeutic effects of
MFS may be via MAPT, GSK-3β, and GSK3B. Among the MFS-AD
targets, AKT1 occupied an important position and was also an essential
part of the insulin resistance-related AD disease pathway.

Molecular docking analysis of MFS-AD targets

In this study, the interaction of 10 core targets andMFS was verified
by molecular docking. In the process of molecular docking, target genes
were applied, AKT1 (PDB:1UNP), MAPK3 (PDB:6GES), ESR1 (PDB:

FIGURE 7
MFS targets involved in the AD pathway (hsa05010) were shown in the mechanism diagram of AD pathology. The target in red font represented the
possible therapeutic target of MFS involved in the AD pathway.
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6PSJ), PPARG (PDB:8DSZ), PTGS2 (PDB:5F19), EGFR (PDB:5HG8),
PPARA (PDB:3ET1), CNR1 (PDB:5U09), ABCB1 (PDB:7A69), and
MAPT (PDB:4E0N). Figure 8 shows the top five highest binding
energies of MFSs to key amino acids for demonstration. The results
of the binding free energy indicate that the core components of MFS
have good binding activity to the core target, which
were −6.04, −4.63, −4.43, −4.31, and −4.05 kcal Mol −1 (Table 4).

Discussion

Currently, the number of people with AD is increasing every year.
However, due to the complex mechanisms, multiple protein, and
pathways involved in the development and progression of AD, there is
no definitive treatment. In this study, we first discovered that MFSs
have a therapeutic effect on AD and revealed the possible mechanism

FIGURE 8
Molecular docking diagrams of AD-MFS and top five hub genes.
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from network pharmacology and molecular docking, which provides a
new idea for the treatment of AD. First, we performed behavioral
screening of the AD mouse model (APP/PS1 overexpression) and
found significant cognitive dysfunction at nine months of age, similar
to the behavioral experiments observed in the literature (Yao, et al.,
2015). Then, we treated the AD mouse model with the MFS
methanolic extract for 1 month and found that the learning and
memory function was improved. Finally, to explore the possible
mechanisms of MFS for AD, we performed an analysis using
network pharmacology and molecular docking and found an
important role of AKT1 and the insulin pathway in it.

At present, plant therapy for AD has attracted more and more
attention because of its comprehensive effects and less side effects
(Mithu et al., 2014; Sun et al., 2014; Yan et al., 2017; Martínez-Coria
et al., 2019; Singh et al., 2019; Baranowska-Wójcik et al., 2020;
Hosseini et al., 2021; Nowak et al., 2021; Sohn et al., 2021;
Anupama et al., 2022). The mystery fruit, which we used in this
study, has also received more attention due to its good antioxidant
properties, including lowering cholesterol (Huang et al., 2020),
antidiabetic effects (Obafemi, et al., 2019), reducing serum uric
acid levels (Shi et al., 2016), and anti-oxidative damage (Chen
et al., 2015). In addition, 12 phenolic substances were identified
and quantified in the flesh of the mystery fruit, demonstrating that
the mystery fruit is an antioxidant-rich fruit with an important role in
scavenging free radicals (Du, et al., 2014). Polyphenols have been
shown to have great potential in the treatment of degenerative
diseases, especially in AD (Sylla, et al., 2015; Nabavi, et al., 2018;
Seo, et al., 2018; Reddy, et al., 2020). MFSs have been reported to act on
the insulin pathway, increasing insulin synthesis and reducing
inflammation, which was an important reason that motivated us to
use it as a potential therapeutic approach for AD (Ma, et al., 2016;
Obafemi, et al., 2019).

In the experiment, we clarified the therapeutic significance of
MFSs on AD memory function using the Morris water maze test.
Regarding the research on AD, it has also been recently found that
memory disorders are accompanied by mood disorders, including
anxiety and depression, in the early stages (Mendez, 2021; Pentkowski,
et al., 2021). As previously reported, in the APP/PS1 model mice, we
also have observed an increase in anxiety-like behavior (Guo, et al.,
2012). The open-field test is a common method for assessing anxiety-
like behavior and has now been used in AD transgenic rodents to
detect anxiety. This was manifested by a decrease in total distance and
the number of rearing, and an increase in the number of grooming in
the open-field test. However, after one month of treatment with MFSs,
the anxiety behavior of AD model mice was not improved. This
implies that the short-term treatment of MFSs has an efficacy on
memory improvement in AD, but no effect on anxiety. This may

require longer term treatment to demonstrate whether there is a clear
effect on mood.

This study identified a therapeutic effect of MFSs for AD, but the
mechanism involved is unclear. We found more surviving neurons in
cortical and hippocampal regions in the treatment group through
Nissl staining, especially in the 6 mg/kg treatment group. In the case of
AD, learning and memory dysfunction is one of the critical
manifestations. The cerebral cortex and hippocampus are closely
related to the cognitive function of the brain (Hu, et al., 2019).
Atrophy of the medial temporal lobe and hippocampal region was
also found during the progression of AD (Ferreira, et al., 2020). The
hippocampus is one of the important brain regions involved in
learning and memory regulation affected by AD and belongs to the
limbic lobe, which is subdivided into the DG and parts of CA. In the
DG region of the adult hippocampus, there are still newborn
hippocampal neurons. Newborn neurons in the DG region not
only project to CA2 but also promote excitation of CA3 vertebral
neurons, affecting memory formation and recording (Llorens-Martín,
et al., 2015). The proliferation of such neurons is an important link in
the preservation of hippocampal function, including memory,
learning, and emotion (Rao, et al., 2022). Previous studies have
shown significant neuronal loss in the CA1 and DG regions of the
hippocampus at 16 months of age in APP/PS1 mice (Chao, et al.,
2018). In the current research, it was found that neuronal loss was
observed in both APP/PS1 (Ou, et al., 2018) and AD patients
(Stygelbout, et al., 2014). Unlike most areas of the adult
mammalian brain, neural stem cells with the capacity to generate
new neurons are present in the hippocampus, a process known as
neurogenesis (Vieira, et al., 2018). Hippocampal neural stem cells are
found mainly in the subgranular zone and constitute most excitatory
neurons in the DG (Babcock, et al., 2021). Several studies have shown
that adult hippocampal neurogenesis produces neurons that are
important for learning memory and emotion regulation (Sahay,
et al., 2011; Anacker and Hen, 2017; Sakalem, et al., 2017). In our
study, we found that MFSs significantly increased the number of
neurons and inhibited the apoptosis of hippocampal neurons,
especially in the DG. These results suggest that MFSs not only
repaired damaged neurons but also prevented the loss of neurons
in the hippocampal region of AD mice, which may be related to
neurogenesis in the DG region. It might explain the improvement of
learning and memory we observed in MFS-treated AD mice.

As with many natural plants to a point, MFS affects many targets
in the treatment of AD. Based on the literature and database
information, we have described the relatively important target.
AKT is a serine/threonine protein kinase, which is activated by the
insulin signal to promote cell survival, cell growth, cell proliferation,
and regulate glucose/lipid metabolism (Manning and Cantley, 2007).
Insulin signaling is genetically stable as an evolutionarily conserved
pathway. Insulin is a protein hormone secreted by the β cells of the
pancreas, stimulated by endogenous or exogenous substances such as
glucose, lactose, ribose, arginine, and glucagon. It is also the only
hormone in vivo that lowers blood glucose and promotes glycogen, fat,
and protein synthesis. Regarding AD, more therapeutic mechanisms
are also being investigated, and one of the areas is impaired brain
metabolism, especially the role of insulin. Insulin has long been
thought to be associated with AD (Akhtar and Sah, 2020; Spinelli,
et al., 2020). Insulin has a role in promoting dendritic spine formation
and nutritional synapses in the brain (Lee, et al., 2011). In some
studies, treatment with insulin and medications that promote insulin

TABLE 4 Docking results of target protein and binding energy.

Core target PDB ID Binding energy/(kcal Mol −1)

EGFR 5HG8 −6.04

PPARG 8DSZ −4.63

AKT1 1UNP −4.43

ESR1 6PSJ −4.31

PPARA 3ET1 −4.05
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signaling have also been found to improve neuropathology and as
cognition in AD with diabetes (Craft, et al., 2017; Kellar, et al., 2021).
PI3K/Akt signaling pathways are also considered to be classical
pathways affecting insulin secretion. A study showed that insulin
resistance was positively correlated with Aβ deposition in the frontal
and temporal regions of the brain in insulin-resistant but
normoglycemic AD patients (Willette, et al., 2015). This indicates
that the onset of insulin resistance may precede the deposition of Aβ in
the pathology process of AD. Notably, it was found that defective
insulin signaling in the brain of AD patients may contribute to
synaptic damage and cognitive deficits, and that normalization of
insulin signaling may be beneficial (Gralle, 2017; Ferrario and Reagan,
2018). Abnormal insulin signaling leads to impairment of the PI3K/
Akt signaling pathway, causing oxidative stress, impaired energy
metabolism, neuroinflammation, mitochondrial dysfunction,
autophagy dysfunction, and neurogenic death, all of which
promote the development of AD and exacerbate cognitive
dysfunction. AKT1 has been implied to be involved in insulin
signaling, associated with the AD pathological process, so
AKT1 may be a potential mechanism for MFS treatment of AD.

To further investigate the effect of MFS on AD, we used molecular
docking to study the binding ability of MFS to the target protein. The
results showed that MFS binds most stably to EGFR with a binding
energy of −6.04 kcal Mol -1. EGFR is a transmembrane protein and
pro-activation of EGFR is one of the most common pathogenic driver
events under various inflammatory conditions, including
neurodegenerative diseases such as AD (Tavassoly and Tavassoly,
2021). In the embryonic brain, EGFR expression is essential for
strengthening neural axon growth (Lu, et al., 2014). In the adult
brain, EGFR expression may be elevated again by the presence of
inflammation, especially in the subventricular zone, hippocampus,
and cerebellum (Romano and Bucci, 2020). Hyperphosphorylation of
EGFR in AD activates GSK-3 and eventually dephosphorylates Akt,
leading to reduced β-linked protein signaling and Wnt signaling
pathways (Krejci, et al., 2012). This leads to abnormal neuronal
energy metabolism, cytoskeletal dysregulation, and reduced
autophagy (Jayaswamy, et al., 2022). These factors affect synapses
and lead to amyloidogenic pathway activation (Palomer, et al., 2019).
Recent studies on AD using EGFR inhibitors were also found to
improve memory function in APP/PS1 mice (Jayaswamy et al., 2022)
and to mediate autophagy in early AD (Wang, et al., 2017). Therefore,
EGFR inhibition may be a potential modality for AD treatment and
may be one of the mechanisms of action of MFS for AD.

Among the common targets of AD and MFS, most of them were
enriched in the AD pathway, including the insulin signaling pathway,
Wnt signaling pathway, and calcium signaling pathway (Figure 7).
Also, AKT1 and EGFR have important roles in these pathways.
Therefore, MFSs may play a therapeutic role in AD by affecting
the insulin pathway and Wnt signaling pathway through genes
such as AKT and EGFR. This study is a preliminary effect analysis
and will be followed by the isolation of MFS monomer for the
treatment of AD and the search for natural anti-AD ingredients.

Conclusion

In conclusion, our study suggests that MFSs could be a potential
treatment for AD. Moreover, this therapeutic mechanism may be
achieved by increasing surviving neurons and affecting the insulin

pathway and Wnt pathway signaling pathways. In addition, this
discovery not only expands the medicinal value of MFS, but also
opens up more possibilities for phytological treatment options for AD.
Further studies should be conducted to identify the components
behind the medicinal properties of MFS and the corresponding
mechanisms of action.

Limitation

Of course, there are also some limitations in this study. First,
there is a lack of further research on drugs, including in vivo
metabolism and toxicology. The drug composition lacks in vivo
data support, and the experimental group will follow up with
experiments on drug monomers for the treatment of AD. Second,
the mechanism of MFS in treating AD lacks further molecular
mechanism research and in vitro research. Third, the current
network pharmacology is a static point analysis, lacking more
powerful research on the dynamic changes of diseases and
chemical changes in the internal process.
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