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Background: Although immune microenvironment-related chemokines,

extracellular matrix (ECM), and intrahepatic immune cells are reported to be

highly involved in hepatitis B virus (HBV)-related diseases, their roles in

diagnosis, prognosis, and drug sensitivity evaluation remain unclear. Here,

we aimed to study their clinical use to provide a basis for precision medicine

in hepatocellular carcinoma (HCC) via the amalgamation of artificial

intelligence.

Methods: High-throughput liver transcriptomes from Gene Expression

Omnibus (GEO), NODE (https://www.bio.sino.org/node), the Cancer

Genome Atlas (TCGA), and our in-house hepatocellular carcinoma patients

were collected in this study. Core immunosignals that participated in the entire

diseases course of hepatitis B were explored using the “Gene set variation

analysis” R package. Using ROC curve analysis, the impact of core

immunosignals and amino acid utilization related gene on hepatocellular

carcinoma patient’s clinical outcome were calculated. The utility of core

immunosignals as a classifier for hepatocellular carcinoma tumor tissue was

evaluated using explainable machine-learning methods. A novel deep residual

neural network model based on immunosignals was constructed for the long-

term overall survival (LS) analysis. In vivo drug sensitivity was calculated by the

“oncoPredict” R package.

Results: We identified nine genes comprising chemokines and ECM related to

hepatitis B virus-induced inflammation and fibrosis as CLST signals. Moreover,

CLST was co-enriched with activated CD4+ T cells bearing harmful factors

(aCD4) during all stages of hepatitis B virus pathogenesis, which was also

verified by our hepatocellular carcinoma data. Unexpectedly, we found that

hepatitis B virus-hepatocellular carcinoma patients in the CLSThighaCD4high

subgroup had the shortest overall survival (OS) and were characterized by a
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risk gene signature associated with amino acids utilization. Importantly,

characteristic genes specific to CLST/aCD4 showed promising clinical

relevance in identifying patients with early-stage hepatocellular carcinoma

via explainable machine learning. In addition, the 5-year long-term overall

survival of hepatocellular carcinoma patients can be effectively classified by

CLST/aCD4 based GeneSet-ResNet model. Subgroups defined by CLST and

aCD4 were significantly involved in the sensitivity of hepatitis B virus-

hepatocellular carcinoma patients to chemotherapy treatments.

Conclusion: CLST and aCD4 are hepatitis B virus pathogenesis-relevant

immunosignals that are highly involved in hepatitis B virus-induced

inflammation, fibrosis, and hepatocellular carcinoma. Gene set variation

analysis derived immunogenomic signatures enabled efficient diagnostic and

prognostic model construction. The clinical application of CLST and aCD4 as

indicators would be beneficial for the precision management of hepatocellular

carcinoma.

KEYWORDS

hepatitis B virus, hepatocellular carcinoma, tumor microenvironment (TME), artificial
inteligence-AI, anti-tumor drug, prognosis, amino acids utilization

Introduction

Chronic hepatitis B virus (HBV) infection remains a major

health concern worldwide (Kramvis et al., 2022). First-line anti-

HBV drugs approved by FDA including PEG IFN-α and

nucleoside (acid) analogs (NAs) are not yet effective in

achieving functional cure referring to hepatitis B surface

antigen (HBsAg) and covalently closed circular DNA

(cccDNA) elimination (Levrero et al., 2018; Fanning et al.,

2019; Yang et al., 2019; Tout et al., 2020). Over 200 million

people are afflicted with chronic hepatitis B (CHB) and are at a

high risk of developing liver fibrosis (LF), liver cirrhosis, and

hepatocellular carcinoma (HCC) (Wangensteen and Chang,

2021). HBV-related diseases cause heavy economic pressure

and psychological burden to many families, especially in the

Asia-Pacific region, where HBV is highly prevalent (Wang et al.,

2017; Wong et al., 2019; Howell et al., 2020; Sarin et al., 2020).

Considerable evidence suggests that chemokines, the

extracellular matrix (ECM), parenchymal hepatic cells, tissue-

resident lymphocytes, and extrahepatic immune cells in the liver

microenvironment are associated with HBV-related diseases

progression (Yuen et al., 2018). CXCR3-related chemokines

(CXCL9 and CXCL10), directly produced by hepatocytes or

liver sinusoidal endothelial cells at the early stage of HBV

infection, can result in intrahepatic lymphocyte infiltration

(Rehermann, 2013). SPP1(the CD44 ligand) derived from

activated hepatic stellate cells (HSC) serves as a stimulator for

KLRG1+ NK cells that can mediate liver scarring limitation in

CHB pathogenesis (Wijaya et al., 2019) and has predictive value

in the prognosis of HCC (Shang et al., 2012; da Costa et al., 2015).

SOX9, which can be directly induced in HBV-infected human

hepatoma cells (Yang et al., 2020) has been identified as a risk

factor for cirrhosis and HCC (Chen et al., 2021; Damrauer et al.,

2021). However, these previous studies are performed just

through flow cytometry (FCM), immune fluorescence (IF),

and immunohistochemistry (IHC) with limited

subpopulations of liver-infiltrating lymphocytes (LILs) and a

small samples size; the orchestra of multiple chemokines and

ECM related genes with a variety of LILs during HBV

pathogenesis are not globally indicated.

The core mechanism underlying amino acid metabolic

adaptations in cancer cells to grow in a nutrient-deficient

tumor microenvironment (TME) was recently reported, and

LYSET (TMEM251) and other amino acid utilization-

associated genes (ATF4, TSC2, VPS18, RAB7A, SLC7A5,

SLC3A2, TGFBRAP1, GNPTAB, and GCN2) have been

primarily screened out mainly through CRISPR-Cas9 based

high-throughput method (Pechincha et al., 2022). Although

these key players essential for tumor cell proliferation in harsh

TME conditions and LYSET invovled in lysosomal biogenesis

have been uncovered in the latest studies (Pechincha et al., 2022;

Richards et al., 2022), their impact on pan-cancer clinical

outcomes remains unknown. The metabolic status of amino

acids in HCC patients with different immune subtypes

according to HBV pathogenesis-relevant immunosignals is

worthy of further study.

Currently, precise diagnosis and prognosis of HBV-related

liver diseases have attracted much attention (Petrizzo et al., 2018;

Zheng et al., 2020). The main obstacle to artificial intelligence

(AI) models’ establishment in genome medicine is that neither

gene microarray nor RNA-seq data are suitable for direct

learning (Oh et al., 2021). Although several AI models based

on these high-dimensional biological data have been constructed

to detect liver cancer at an early stage and assess the prognosis
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(Long et al., 2019; Tao et al., 2020; Christou and Tsoulfas, 2021;

LiuW. et al., 2021; Liu X. et al., 2021), the input data used in these

models are relatively complex and not easy to follow. Until now,

the optimal model with a promising predictive value for clinical

utilization has been far from reaching a general consensus (Le

Berre et al., 2020; Christou and Tsoulfas, 2021; Liu X. et al., 2021;

Oh et al., 2021; Wang et al., 2022). “Gene set variation analysis

(GSVA)” R package (GSVA, for short) (Aran et al., 2017;

Charoentong et al., 2017), CIBERSORT (Newman et al.,

2015), MCP-counter and TIMER were primarily developed

and used for novel immune cell subtype identification and

concentration evaluation using tissue transcriptome data

(Aran et al., 2017; Charoentong et al., 2017; Danaher et al.,

2017; Finotello and Trajanoski, 2018; Thakur et al., 2022).

Among these tools, GSVA has been widely used in tumor

(Charoentong et al., 2017; Deng et al., 2019; Shen et al., 2019;

Xiao et al., 2020; Gong et al., 2021; Zhuang et al., 2021) and non-

tumor researches (Hu et al., 2021; Shen et al., 2021; Yu et al.,

2021) for core module identification at the gene-set level. AI-

based models constructed using low-dimensional biological

pathway data generated by GSVA as inputs have become

popular and demonstrate promising effects (Chawla et al.,

2022; Martinez et al., 2022). However, the application of

GSVA-derived core immunosignals with even lower

dimensionality for efficient feature selection, which benefits

machine learning and deep learning in precision oncology,

has not been researched.

In this study, immunogenomic profiling of liver

transcriptomes was performed to explore the core

immunosignals involved in the entire disease course of

hepatitis B and their extended clinical applications in early

diagnosis, prognostic assessment, and precision usage of anti-

cancer drugs. First, we employed GSVA to identify a meaningful

HBV pathogenic gene module, named CLST. The potential role

of CLST in predicting liver injury and detecting HBV-LF was

uncovered. Co-enrichment of CLST and activated CD4+T cells

(aCD4) in liver tissue from HCC patients was identified and

experimentally verified in our in-house RNA-seq data. Next, a

high enrichment score for nutritional utilization of amino acid-

related genes was demonstrated as a predictive factor for poor

overall survival (OS). The link between nutritional utilization of

amino acids and CLST/aCD4 dysregulation in patients with

HBV-HCC was explored. Powerful and explainable machine

learning methods were then incorporated to construct tools

for tumor tissue identification. Simultaneously, a novel deep

residual neural network model (GeneSet-ResNet) based on

CLST and aCD4 was proposed for long OS(LS) status

prediction. Finally, the utility of aCD4 and CLST for

evaluating anti-HCC drug sensitivity was evaluated. A new

strategy for the construction of novel gene set-based AI

models will be helpful for precision medicine.

Materials and methods

Raw data collection and proceeding

A total of 11 Gene Expression Omnibus (GEO) datasets were

downloaded from the GEO database (https://www.ncbi.nlm.nih.

gov/geo/). The CHCC cohort comprising Chinese patients with

HBV-HCCwas obtained fromNODE (https://www.bio.sino.org/

node). The TCGA-LIHC cohort, consisting of HCC patients, was

collected from The Cancer Genome Atlas (TCGA). Brief

information about the 13 cohorts and workflow of this study

are provided in Additional files (Supplementary Table S1;

Supplementary Figure S1). R Studio (Version 1.4.1103) was

used to obtain raw data (normalization, gene ID convention,

clinical information collection) based on the recommended R

packages. The CHCC-GSE14520 dataset comprising 396 tumor

tissue samples from HBV-HCC patients was cross-technology

combined. The non-biological effects across CHCC and

GSE14520 were corrected through “SVA” R package (Tang

et al., 2021).

Collection and sequencing of liver cancer
tissue

Fresh liver cancer tissue specimens from HBV-HCC patients

surgically resected from the Shanghai Public Health Clinical

Center affiliated with Fudan University (SPHCC) were

collected, aliquoted, and stored in a liquid nitrogen tank

at −80°C within 2 h. Total tissue RNA was extracted and sent

for transcriptome high-throughput sequencing (RiboBio Co.,

Ltd.) to compare changes in the transcript mRNA levels of

related genes in liver cancer.

Identification of differentially expressed
genes (DEGs)

Grading (G) and staging (S) systems have been utilized for

the efficient evaluation of inflammation and fibrosis in chronic

liver diseases, respectively. DEGs (S1/S0, S2/S0, S3/S0, and S4/

S0) of GSE84044 were downloaded from the supplementary

materials provided in a previous study (Wang et al., 2017) and

visualized using GraphPad Prism. DEGs (G1/G0, G2/G0, G3/

G0, and G4/G0) of GSE84044 were screened primarily via

“Limma” R package and visualized via “ggplot2” R package,

“pheatmap” R package or “EnhancedVolcano” R package. As

for the “Enhanced Volcano” R package, upregulated genes with

fold change (FC) > 1.5 and p-value < 0.05 were considered

statistically significant. Venn analysis was used to identify

overlapping DEGs.
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Functional annotation and hub genes
screening

Gene Ontology (GO) analyses were performed to

investigate the biological function annotation of overlapping

DEGs of GSE84044 using “clusterProfiler” R package and

visualized via the “ggplot2” R package. Kyoto Encyclopedia

of Genes and Genomes (KEGG) signaling pathway analyses

were based on “clusterProfiler” R package and also visualized

via the “ggplot2” R package. A PPI network of overlapping

DEGs from GSE84044, containing 57 nodes and 89 edges, was

constructed using the STRING database. Cytoscape software

was used to visualize and screen the hub genes. Protein and

protein interaction (PPI) analyses of member genes of

aCD4 were conducted and visualized using online tools

provided by the STRING database.

ssGSEA score calculation

The enrichment scores (ES) of 28 LILs and CLST in liver

samples from the GEO database or NODE were calculated

primarily via the “GSVA” R package with single sample gene

set enrichment analysis (ssGSEA) algorithm (Hanzelmann

et al., 2013; Charoentong et al., 2017; Yu et al., 2021). A

total of 28 gene sets consisting of cell-specific marker genes

represent 28 LILs (Charoentong et al., 2017). CLST and amino

acid utilization-associated gene signatures were defined in this

study according to previous studies (Subramanian et al., 2005;

Barbie et al., 2009).

Correlation and comparison

The heatmap showing spearman comparison among hub

genes and grading (or staging) was calculated and drawn by using

the “Hmisc” R package. The “Hmisc” R package was utilized to

calculate the correlations between selected genes and LILs. The R

package “ggcorrplot” was used to calculate correlations between

CLST and LILs. The results were visualized using the “pheatmap”

R package. Comparisons of differences between the two groups

were performed and visualized as box plots or dot plots via the

“ggplot2” R package, and heatmap via the “pheatmap” R package,

respectively according to the guidelines. Statistical significance

was set at p < 0.05.

Diagnostic values evaluation and overall
survival analysis

The diagnostic values of CLST and LILs immune signals for

identifying whether CHB patients are living with liver injury or

liver fibrosis were calculated through COX analysis using the

“pROC” R package based on liver transcriptomes of

GSE83148 and GSE84044, respectively. OS analysis was

performed using the Kaplan-Meier survival” R package based

on expression values of hub genes or ES of identified

immunogenomic signals in tumor tissues of GSE14520 and/or

CHCC with available survival information. Kaplan-Meier curves

were drawn and plotted via the “survminer” R package. Statistical

significance was set at p < 0.05.

Explainable machine learning algorithms
for tumor tissue detection

Nine powerful AI algorithms, including logistic regression

(LR), linear discriminant analysis (LDA), K neighbors (KNN),

Gaussian naive Bayes (GNB), support vector machine (SVM),

random forest (RF), decision tree (CRAT), gradient boosting

decision tree (GBDT), and LightGBM (LGBM, leaf-wise GBDT)

were evaluated for tumor detection. The area under the curve

(AUC) was calculated to quantify predictive performance.

Shapley additive explanation method (SHAP) was

implemented to provide the model-level quantitative

interpretation by evaluating the importance of each feature to

the classification.

Long term OS analysis via GeneSet-
ResNet

A two-dimensional (2-D) ResNet-18 model, called

GeneSet-ResNet, was proposed in this study, where the

input layers receiving 2-D pseudo-images were converted

by the expression values of unique feature genes of both

CLST and aCD4 that could be detected in the liver

transcriptomes of HCC patients. The sample imbalance

between HCC patients with long-term overall survival (LS)

and those with short-term overall survival (SS) was solved

using Borderline SMOTE. Repeated stratified K-fold cross-

validations (splits = 10, repeats = 30, and random state = 2022)

were used in the GeneSet-ResNet model. In each 10-fold

cross-validation, the dataset was randomly divided into a

training set (70% of the samples) for batch training and a

test set (10% of the samples) for performance evaluation. The

model performance was also validated using a validation set

comprising 20% of the samples. In addition, excellent training

results and generalization ability were achieved by employing

the root-mean-square propagation (RMsprop) optimization

algorithm and the learning rate decay method. Accuracy

(ACC) were calculated as follows:

ACC � TP + TN( )/ TP + TN + FN + FP( )

TP, true positive; FP, false positive; TN, true negative; FN, false

negative.
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The area under the curve (AUC) was calculated to quantify

predictive performance.

Chemotherapy sensitivity prediction

The half-maximal inhibitory concentration (IC50) for

patients with HCC based on liver transcriptomes was

predicted using the “calcPhenotype” algorithm provided by a

ridge regression model (“oncoPredict” R package) (Maeser et al.,

2021). The differences in sensitivity between first-line and

emerging drugs used for HCC treatment between HBV-HCC

patients in the CLST high aCD4 high subgroup and those in the

CLSTlowaCD4 low subgroup were analyzed using the Wilcoxon

test. Statistical significance was set at p < 0.05.

Results

CLST definition

The gene expression profiles of HBV-LF were re-analyzed

according to a previous study. Overlapping DEGs upregulated in

S2, S3, and S4 when compared to the S0 group were selected

(Supplementary Figures S2A, S2B). Chemokine signaling

pathways in which cargo-carrying genes encoding CXC

subfamily ligands and CCL subfamily ligands were observed

to be primarily enriched (Supplementary Figures S2C, S2D).

Of the overlapping DEGs, 15 hub genes belonging to the

chemokine-related gene cluster and ECM-related gene cluster

with the highest maximal clique centrality (MCC) score were

screened (Figures 1A,B). The majority of 15 hub genes were also

significantly upregulated in the G2, G3, and G4 groups compared

to the G0 group (Supplementary Figures S3A–D). Fourteen hub

genes that were positively associated with G and S were listed in

this study as GS-associated hub genes (Figure 1C). These genes

were confirmed to be upregulated in the liver tissues of HBV-

infected patients (Figure 1D) and CHB patients with liver injury

(Supplementary Figures S3D−E) compared to normal controls.

All GS-associated hub genes were highly enriched in CHB

patients at immune active (IA) phases (Liu et al., 2018) and

displayed a similar expression pattern in CHB patients at

immune tolerance phases (IT) and immune carrier phases

(IC) (Supplementary Figure S3F). To further uncover the

original inducers of GS-associated hub genes, the liver

transcriptomes of HBV-infected human hepatocyte chimeric

mice were analyzed. We found that GS-associated hub genes

that could be detected in liver tissues of human hepatocyte

FIGURE 1
CLST identification. (A) PPI network of overlapping DEGs by STRING (GSE84044). (B) Seven chemokine-related genes and eight ECM-related
genes in two groupswere further identified using Cytoscape ofMCODE plug-in. (C)Correlations among expression values of 14 hub genes, G scores,
and S scores. (D) Dot plots of 14 GS-associated hub genes in liver samples of CHB group and control group. (E) Heatmap of nine hub genes in HBV-
infected mice and control mice. (F) Heatmap showing ES of gene set comprised of 14 GS-associated hub genes and CLST in HBV-PHH and
control PHH.
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chimeric mice were upregulated upon HBV infection (Figure 1E)

and significantly expanded in ex vivo HBV-infected human

primary hepatocytes (PHH) (Figure 1F). Therefore, in our

study, we defined GS-associated hub genes as a gene set,

including CCL19, CCL20, CXCL9, CXCL10, LUM, SOX9,

SPP1, THBS1, and THBS2, named CLST.

CLST, co-expanded with LILs, could
effectively predict HBV-liver inflammation
and fibrosis

The host immune response plays an important role in HBV

pathogenesis. Therefore, the landscape of CLST and LILs in CHB

and LF is presented in this section. Both CLST and LILs were

highly enriched in HBV-infected patients (Figure 2A), CHB

patients with a higher score of liver inflammation that was

characterized by G (Figure 2B), and with a higher score of LF

that was characterized by S (Figure 2C). As shown in Figure 2D,

17 overlapping LILs, including NKT, MDSC, and activated

T cells bearing CCL20 (aCD4), were screened from 28 LILs.

Overlapping LILs were co-expressed with CLST in liver samples

of CHB (Figure 2E) and HBV-LF (Figure 2F). Generally, we can

conclude that CLST can be directly induced upon initial HBV

infection and is associated with liver inflammation (G) and LF

(S). All AUCs of CLST, NKT, MDSC, and activated T cells

bearing CCL20 (aCD4) in predicting abnormal serum ALT/AST

levels were above 0.85 (Figures 2G,H). Moreover, CLST was

ranked as the leading gene set, followed by NKT, aCD4, and

MDSC, which effectively segregated LF from normal liver

samples (Figure 2I).

CLST synergizing with aCD4 were risk
signals in HBV-HCC

The batch effect among GSE83148, GSE84044, and

GSE14520 was removed by using the SVA algorithm

(Supplementary Figures S4A,B). Enrichment Scores of CLST,

NKT, aCD4, and MDSC were identified to be significantly higher

in tumor tissues of HBV-HCC than in those without HBV in the

integrated gene microarray dataset (Supplementary Figure S4C).

Correlation analyses were performed in normal and tumor tissue

mixed samples of two independent HBV-HCC cohorts (Figures

3A,B) and our HBV-HCC data (Figure 3C), and severe positive

relationships between CLST and aCD4 were verified. In addition,

FIGURE 2
Co-enrichment and diagnostic values of CLST, NKT, MDSC, and aCD4 in CHB and HBV-LF. (A) Boxplot comparing immune signals between
patients with chronic HBV infection and normal tissues from patients without HBV infection. (B) Boxplot comparing immune signals between
patients with inflammation (G ≥ 1) and those without inflammation (G = 0). (C) Boxplot comparing immune signals between patients with liver fibrosis
(S ≥ 1) and those without liver fibrosis (S = 0). (D) Venn diagram of upregulated LILs. (E,F) Correlation heatmap showing the co-enrichment
pattern of CLST and LILs in CHB and HBV-LF. (G–I) ROC curves of CLST and LILs for predicting liver injury and LF.
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CLST and aCD4 were significantly co-enriched in the tumor

tissues of the three independent HBV-HCC cohorts (Figures

3D–F). Interestingly, positive correlations among CLST, liver-

resident CD4+ T naïve-like cells (CD4+TLR-NL), acquisition of a

TH17 polarization state (CD4+TLR-NL), CD4+TEM-TH1/TH17, and

immune checkpoints (ICs) indicated their cross-talk in the tumor

tissue of HBV-HCC (Figure 4A).

Additionally, PPI analysis revealed that CCL20 was the

leading gene exhibiting the closest relationship with aCD4 in

HBV-HCC patients (Figure 4B). Further survival analysis

suggested that a higher aCD4/CLST/CCL20 was associated

with significantly shorter OS (Supplementary Figure S5). The

CLSThighaCD4high (Figure 4C) and aCD4highCCL20high

(Figure 4D) subgroups showed worse OS probabilities,

highlighting the application of CLST and aCD4 for the

establishment of diagnostic and prognostic models in HCC

patients.

Patients with HBV-HCC in the
CLSThighaCD4high subgroup were
characterized by an unfavorable status of
excess nutritional usage of amino acids

As shown in Figure 5A, LYSET, ATF4, VPS18, RAB7A,

SLC7A5, TGFBRAP1, and GNPTAB were previously

identified as proteins involved in the nutritional utilization of

amino acids (Pechincha et al., 2022; Richards et al., 2022).

Surprisingly, survival analysis showed that a higher gene

expression level of LYSET/ATF4/VPS18/RAB7A/SLC7A5/

TGFBRAP1/GNPTAB was associated with a significantly

shorter OS in HBV-HCC patients (Figures 5B–H). HBV-HCC

patients in the CLSThighaCD4high and CLSTlowaCD4low subgroups

exhibited a distinct pattern of GSVA-based amino acid

utilization-associated gene signature. Consistently, a higher ES

of the amino acid utilization-associated gene signature

represented a worse OS probability (Figure 5I). The ES of

amino acid utilization-associated gene signature was found to

increase in the CLSThighaCD4high subgroup, reflecting a shorter

OS (Figure 5J).

An explainable machine learning model
based on feature genes belonging to CLST
and aCD4 was powerful for tumor tissue
detection

Nearly half of the feature genes belonging to aCD4 at

higher levels were associated with a significantly shorter OS in

the CHCC cohort (Supplementary Figure S6). Among them,

seven genes (KIF11, CCNB1, EXO1, KNTC1, PRC1, RGS1,

and CCL20) were identified as overlapping risk factors for

survival in the GSE14520 cohort (data not shown). Thus,

fifteen feature genes comprised of nine genes from CLST

and seven genes from aCD4 were ultimately used to

construct a diagnostic model for tumor tissue detection.

FIGURE 3
Correlation between CLST and LILs in tumor tissues of patients with HBV-HCC (A–C) Pearson correlation analysis showing co-enrichment
among CLST, aCD4, NKT, and MDSC in liver tissues of GSE121248, GSE14520, and our in-house RNA-seq data. (D–F) Pearson correlation analysis
showing co-enrichment among CLST, aCD4, NKT, and MDSC signals in liver tumor tissues of three independent GSE datasets.

Frontiers in Pharmacology frontiersin.org07

Huang et al. 10.3389/fphar.2022.1079566

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1079566


Briefly, nine AI algorithms were trained and validated to

separate tumor tissues from the normal liver, cirrhosis, and

tumor tissues in the GSE25097 cohort. Of the nine AI

algorithms, SVM outperformed in terms of the highest

ACC (Supplementary Figure S7A), showed potent

robustness with stratified K-fold cross-validations, and

achieved the highest average AUC that could accurately

separate tumor tissue from any other type of liver sample

(Figures 6A,B). The efficiency of SVM was further tested in an

independent HCC cohort (TCGA-LIHC), with an AUC of 0.97

(Figure 6C). SVM also was powerful in separating tumor

tissues at early stage (BCLC stage 0-A) from non-tumor

tissues (GSE14520) among nine AI algorithms

(Supplementary Figure S7B) and achieved an average AUC

of 0.99 and 0.99 with stratified K fold cross-validations

(splits = 5 and 10), respectively (Figures 6D,E). The

diagnostic power of SVM was also excellent in an

independent test set (CHCC), with an AUC of 0.98

(Figure 6F). The SHAP summary plot suggested that

CCNB1, PRC1, CCL20, KIF11, and EXO1 were the top five

variables that had important impacts on the performance of

SVM in the CHCC cohort (Figures 6G,H).

Deep learning model fed by feature genes
from CLST and aCD4 was efficient for LS
prediction

The process of generating gene expression pseudo-images

and the GeneSet-ResNet architecture using resnet-18 as the

backbone for LS prediction is illustrated in Figure 7A. In

brief, there were 26 small squares (rows = 2, columns = 13)

in each pseudo-image representing the expression value of

26 unique feature genes from one HBV-HCC sample. The

sample imbalance between the LS and SS subgroups was

solved using borderline SMOTE generated synthetic minority

samples. The LS and SS subgroups in HBV-HCC were further

classified using the GeneSet-ResNet model with gene expression

pseudo-images as inputs. Model performance was evaluated in

30 repeated stratified 10-fold cross-validations. As shown in

Figure 7B, an average AUC of 0.907 and ACC of 0.919 over

30 repeats of the stratified 10-fold cross-validation for LS

(survival time >5 years) prediction were achieved in the

CHCC-GSE14520 dataset. Interestingly, the GeneSet-ResNet

model outperformed the TCGA-LIHC dataset in LS prediction

(Figure 7C). These results suggest that GeneSet-ResNet, based on

FIGURE 4
Prognostic values of CLST and aCD4 for OS prediction in HBV-HCC. (A)Heatmaps showing correlations betweenCLST, aCD4, MDSC, NKT, and
specific immune genes in HBV-HCC. (B) PPI analysis of member genes belonging to aCD4 and correlations among aCD4, CLST, and hub gene
expression values. CCL20was an overlapping gene in both aCD4 andCLST (GSE14520). (C,D) KM survival analysis of OS in tumor tissues with a higher
ES of both aCD4 and CCL20 or a higher ES of both aCD4 and CLST in two independent HBV-HCC cohorts. Time was calculated in years. The
log-rank test for p-value and p-value <0.05 was considered significant.
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CLST and aCD4, is a robust deep learning model for 5 years LS

prediction in HCC.

CLST and aCD4 guided precision anti-HBV
immunotherapy and anti-cancer
chemotherapy

The ESs of CLST and aCD4 in liver transcriptomes from a

CHB cohort treated with IFN-α therapy were calculated, and the

results indicated that CLST and aCD4 were remarkably

upregulated in treatment responders (Figure 8A). These

results suggest that the sensitivity of anti-HBV

immunotherapy can be predicted using CLST and aCD4. The

ESs of CLST and 28 LILs in the liver tissues of treatment

responders pre- and post-IFN-α were also evaluated. CLST

and LILs tended to be downregulated in responders after

receiving PEG IFN-α (Figure 8B). Both CLST and aCD4 were

significantly suppressed in paired samples with the engagement

of PEG IFN-α (Figure 8C). Moreover, only aCD4 and CLST levels

showed a significant positive correlation in these responders

(Figure 8D). The sensitivities of the CLSThighaCD4high and

CLSTlowaCD4low subgroups in HBV-HCC patients to

198 anticancer chemotherapies from a resource for therapeutic

biomarker discovery in cancer cells (Genomics of Drug

Sensitivity in Cancer, GDSC) were compared (Supplementary

Table S2; Figure 8E). HBV-HCC patients in the CLSThighaCD4high

subgroup were more sensitive to the majority of anticancer drugs

(167/198) than those in the CLSTlowaCD4low subgroup

(Figure 8E). In terms of first-line chemotherapy selection,

patients in the CLSThighaCD4high subgroup were more sensitive

to sorafenib (Figure 8F). Patients in the CLSTlowaCD4low

subgroup were more sensitive to two emerging

chemotherapies: SB505124 (TGF-β receptor inhibitor) and

dihydrorotenone (Figure 8F).

Discussion

Although most of the feature genes in CLST, including

intrahepatic mRNA for CXCL9 (Wang et al., 2017; Jiang

et al., 2021), CXCL10 (Wang et al., 2017; Singh et al., 2020;

Jiang et al., 2021), CCL20 (Zhao et al., 2014), SOX9 (Xu et al.,

2016; Yang et al., 2020), SPP1 (Shang et al., 2012), and LUM (Xu

et al., 2016) have been reported involved in several HBV-related

diseases, there are no reports systemically describing their

landscape during all the stages of HBV related diseases even

less the integration of these genes as a gene set for predicting liver

FIGURE 5
The prognostic value of nutritional utilization of the amino acid-associated gene signature in HBV-HCC (A) Lysosomal nutrient generation and
nutritional utilization of amino acids for tumor cell growth. LYSET (TEME251), ATF4, VPS18, RAB7A, SLC7A5, TGFBRAP1, andGNPTABwere involved in
this process. (B–H) Plots depict the KM survival curves for each nutritional utilization of amino acid-associated genes in HBV-HCC patients from the
CHCC cohort divided into low and high expression groups according to the gene expression value. (I) KM survival curves for OS in tumor tissues
of HBV-HCC patients from CHCC cohort with a high ES of the “nutritional utilization of amino acid-associated gene” signature and a low ES of the
“nutritional utilization of amino acid-associated gene” signature. (J) Differences in the enrichment levels of the “nutritional utilization of amino acid-
associated gene” signature between HBV-HCC patients from the CHCC cohort in the CLSThighaCD4high subgroup and those in the CLSTlowaCD4low

subgroup.
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injury and LF, to our best knowledge. Host-encoding genes can

serve as prognostic biomarkers in LF, and a fibrosis risk score

(FRS) has been established; however, none of these studies

considered global immunogenomic information in

consideration (Xu et al., 2016; Zhou et al., 2017; Singh et al.,

2018). “GSVA” R package is a powerful tool for analyzing and

exploring the complex involvement of the immune

microenvironment in larger samples (Moeini et al., 2019;

Chawla et al., 2022; Martin-Serrano et al., 2022). Through

GSVA, we identified hub genes associated with HBV

pathogenicity and demonstrated that the CLST signal initially

induced by HBV infection was co-enriched with the majority of

LILs in CHB and HBV-LF patients. CLST was ranked as the

leading factor for efficient diagnosis of CHB patients living with

LF compared to those without LF. Interestingly, CLST and

aCD4 exhibited the strongest correlation in the largest HBV-

HCC cohort among multiple independent cohorts and were

verified in our in-house HBV-HCC patients. These

observations suggest that the CLST-aCD4 axis plays an

important role in HCC pathogenesis. Mechanistically, CLST

and aCD4 were found to be highly associated with both Th1/

Th17 polarization and ICs in tumor tissues.

TH17 has beenwidely reported to be an important inflammatory

factor in HCC (Bansal, 2020; Ma et al., 2020; Li et al., 2021). Recently,

the expansion of liver-resident CD4+T naïve-like cells (CD4+TLR-NL)

acquiring a TH17 polarization state has been proven to be a candidate

contributor to primary sclerosing cholangitis (PSC) pathogenesis

(Poch et al., 2021). Immune checkpoints (ICs) are associated with

poor clinical outcomes in HCC (Ma et al., 2019; Wang et al., 2019;

Shen et al., 2022). Interestingly, in this study, positive correlations

among CLST, CD4+TLR-NL, CD4+TEM-TH1/TH17, and ICs indicated

their crosstalk in the tumor tissue of HBV-HCC. Th17 cells recruited

via the CCL20-CCR6 axis in the tumor microenvironment (TME)

are drivers of worse clinical outcomes (Zhang et al., 2009; Liao et al.,

2013; Li et al., 2016; Li et al., 2017) and ICs have been well

demonstrated to account for immunosuppressive

microenvironment formation that favors anti-tumor immune

evasion (Sangro et al., 2021). Our study leads to the hypothesis

that CLST and aCD4 bearing CCL20 are important causes of

damaged immune surveillance and TME generation. Actually, a

recent study provides a solid foundation for the association

between CCL20 and TME and it will be promising for further

study in HBV related diseases (Fan et al., 2022). Correspondingly,

a higher ES of CLST or aCD4 implies a shorter OS. We provide

insights into the 25 member genes of aCD4 and highlight that nearly

half of these genes are significantly associated with worse survival

rates. Obviously, aCD4 could be referred to as a special CD4+T cell

subset at the station of activation. Currently, novel functional immune

FIGURE 6
Fifteen feature genes of CLST and aCD4were promising diagnostic signals for tumor tissue identification. (A,B) ROC curves of expression values
of 15 feature genes for HCC tumor prediction among HCC tumor, adjacent non-tumor, cirrhotic, and normal liver samples using SVM with stratified
K-fold cross-validations (n_splits = 5 and 10). (C) ROC curves of expression values of 15 feature genes as a diagnostic set for the separation of HCC
tumors from non-tumor liver samples via SVM. (D,E) AUC of ROC curves of expression values of 15 feature genes as diagnostic markers for
early-stage HBV-HCC tumor identification from non-tumor liver samples via SVM with stratified K-fold cross-validations (n_splits = 5 and 10). (F)
ROC curves of expression values of 15 feature genes as diagnostic markers for separation of tumor tissues at the early stage of HBV-HCC from non-
tumor liver samples in the CHCC cohort via SVM. (G,H) SHAP profiles of 15 feature genes of the outperformed SVMmodel in the CHCC cohort. The
dot plot shows the effect of the expression value of the feature gene on the model output. The bar plot shows the decreasing average feature
importance of the expression value of the 15 feature genes on the influence of the final model output for predicting tumor tissues at an early stage.
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subsets at the single-cell level resolution have been studied (Song et al.,

2020; Lian et al., 2022) and the definition of aCD4 in HBV-related

diseases is worthy of further exploration.

Further research in this study also highlights that HBV-HCC

patients with dual higher ES of both CLST and aCD4 predict worse

overall survival. To uncover the underlying mechanism, we focused

on the characteristics of the amino acid utilization system in

CLSThighaCD4high and CLSTlowaCD4low subgroups. Non-glucose

nutrients, such as amino acids, lactate, acetate, and

macromolecules, can also be absorbed by cancer cells as

alternative energy sources (Kamphorst et al., 2015; Pechincha

et al., 2022). Both the macropinocytosis and lysosomal catabolic

signaling pathways in malignant tumor cells are activated in

nutrient-deficient environments (Commisso et al., 2013;

Kamphorst et al., 2015; Palm et al., 2015; Pechincha et al., 2022).

The increased activity of extracellular protein uptake and lysosomal

breakdown constitute an alternative source of amino acids that

enables cancer cell growth (Pechincha et al., 2022). Interestingly, we

found that each amino acid utilization-associated gene represents a

risk factor that affects the clinical outcome of HBV-HCC patients. A

lower ES of amino acid utilization associated gene signature in

HBV-HCC patients is beneficial for improving survival. We

propose that unfavorable nutritional utilization of amino acids

may be a potent carcinogenic factor for HCC progression, and

the potential link between excess amino acid usage and a

dysregulated immune microenvironment according to CLST and

aCD4 still requires further experimental exploration.

Dual higher ES of both CLST and aCD4 was critical for the

poor progression of HBV-HCC, implying the potential role of

CLST/aCD4 interaction in promoting poor clinical outcomes. To

test the potential value of CLST and aCD4 in the construction of

prognostic models, we present a methodology to compare

survival rates for the first time. The survival-sensitive deep

residual neural network model based on these two gene sets,

named GeneSet-ResNet, outperformed the deep residual neural

network classifier in 5 years of LS prediction in liver cancer. This

model takes the expression values of low-dimensional feature

genes belonging to immunogenomic gene sets as inputs. The

gene expression pseudo-images generated in this study were

simpler than ever (Hao et al., 2018; Oh et al., 2021; Wang

et al., 2022) and hold promising predictive values, thus

providing a perspective on their future use in other cancer types.

FIGURE 7
Unique feature genes belonging to CLST and aCD4 were promising prognostic signals in LS prediction. (A) Process of LS prediction in HCC
patients (generation of gene expression pseudo-images with CLST and aCD4, oversampling with synthetic minority samples, input layer, detailed
architecture of the deep residual networkmodule, and output layer for LS status prediction). (B) The average AUC and ACC values of 30 repeats for LS
status (>5 years) prediction in HBV-HCC patients. (C) The average AUC and ACC values of 30 repeats for LS status (>5 years) prediction in HCC
patients.
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Fifteen feature genes from CLST and aCD4 were

incorporated to perform nine AI algorithms with K-fold

cross-validation to detect tumor tissues in HCC. The SVM-

derived model was built and worked robustly with high

accuracy and a powerful AUC in both training cohorts and

independent test cohorts. Our bioinformatics analysis indicated

that CLST and aCD4 are powerful diagnostic and prognostic

signals across all stages of HBV infection that are suitable for

constructing AI models in HCC. There is an urgent need for

robust tools to detect tumors at an early stage and predict tumor-

related death due to the limitation of efficient HCC treatments,

and the AI models developed in this study will facilitate the

improvement of clinical management and precision medicine.

PEG IFN-α treatment has the potential to prevent advanced

HBV-LF and HBV-HCC occurrence in responders (Liang et al.,

2016; Ye and Chen, 2021). The liver transcriptomes of HBV patients

receiving standard PEG IFN-α were analyzed to test whether first-

line therapy exerts an anti-HBV effect by modulating CLST and

aCD4 signals. Correspondingly, CLST and aCD4 were significantly

suppressed in responders to PEG IFN-α. These findings suggest that
the impact of PEG-IFN-α on improving liver function and

inhibiting disease progression during HBV infection is closely

related to the CLST-aCD4 axis, which requires further

experimental verification. HCC is resistant to current therapies

(Song et al., 2021; Rai and Mukherjee, 2022; Xia et al., 2022;

Zhang et al., 2022), and a novel strategy that considers the

immunology of the disease to improve treatment remains

important (Donne and Lujambio, 2022; Rai and Mukherjee,

2022; Shen et al., 2022). Significant differences in sorafenib

response between the CLSThighaCD4high and CLSTlowaCD4low

subgroups illustrated that CLST and aCD4 might be important

biomarkers for optimizing the use of multi-kinase inhibitors for

precision HCC treatment. More importantly, TGF-β inhibition

therapies may constitute a promising option for treating HCC in

the future. Employing the CLST-aCD4 signal as a predictor allows

the appropriate selection of HCC patients that could benefit from

interrupting the TGF-β/TβR signaling pathway.

In conclusion, via GSVA and AI, our study provides a

comprehensive understanding of immune microenvironment-

related gene characteristics involved in HBV infection and detect

subtle clues for clinical management of HBV-related HCC,

providing basis for precision medicine.

There are still limitations in our current study. Although a large

number of web accessible high throughput data were enrolled in this

FIGURE 8
CLST and aCD4 were involved in drug sensitivity to anti-HBV immunotherapy and anti-cancer chemotherapies. (A) Comparisons of CLST and
aCD4 between PEG IFN-α treatment responders and non-responders (GSE27555). (B) Heatmaps showing differences in liver samples from HBV-
infected patients pre and post PEG-IFN-α treatment (GSE66698). (C) Boxplot of pairwise comparisons of CLST, aCD4, NKT, and MDSC between the
control group and PEG IFN-α-treated group (GSE66698). (D) Correlations among CLST, aCD4, NKT, and MDSC in PEG IFN-α-treated liver
samples (GSE66698). (E) Volcano plot of the sensitivity of HBV-HCC patients in the CLSThighaCD4high subgroup and CLSTlowaCD4low subgroup to
198 anti-cancer drugs. (F) Comparisons of the sensitivity to first-line chemotherapy (sorafenib) and emerging chemotherapies (SB505124,
dihydrorotenone) between the CLSThighaCD4high subgroup and CLSTlowaCD4low subgroup (CHCC).
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study, more experiments are needed for further validation before

clinical application of CLST/aCD4 signals in HBV related diseases.

The current study only focuses on the clinical application of

immunosignals in precision medicine of HBV-related liver

diseases, and their specific in HCC at pan-cancer level are

promising in further research.
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SUPPLEMENTARY FIGURE S1
Detailed steps of the study.

SUPPLEMENTARY FIGURE S2
Venn diagram and functional annotation of DEGs in HBV-LF. (A) Histogram
bar chart of upregulatedDEGs at differential S were drawn using GraphPad
Prism (GSE84044). (B) The Venn diagram of overlapping upregulated
DEGs among S2/S0, S3/S0, and S4/S0 performed by online tool http://
bioinformatics.psb.ugent.be/webtools/Venn/. (C) Visualization of GO
analysis of 64 DEGs and extracellular matrix (ECM) with the most counts
and lowest p value. MF: molecular function. CC, cellular component;
BP,biological process. (D) Visualization of KEGG pathway analysis.
Chemokine signaling pathway was highly enriched.

SUPPLEMENTARY FIGURE S3
Validation of GS associated hub genes in HBV-LF and CHB. (A-C) Volcano
plots illustrate hub genes that upregulated in G2, G3, and G4 when
compared to the G0 group (GSE84044). (D,E) Volcano plot performed
by “EnhancedVolcano” R package showing 14 GS associated hub genes
were upregulated in HBV patients with abnormal ALT and AST when
compared to HBV patients with normal ALT and AST, respectively
(GSE83148). (F) Heatmap of GS associated hub genes in CHB patients at
IC, IT, and IA phases (GSE65359).

SUPPLEMENTARY FIGURE S4
Comparisons of immune signals in tumor tissues with HBV and normal
tissues without HBV. “SVA” R package was utilized to merge and normalize
three microarray datasets (GSE83148, GSE84044, and GSE14520). Batch
effects were visualized using PCA algorithm before (A) and after removing
(B) via the ComBat function provided by “SVA” R package. (C) Boxplot of
comparisons of immune signals in HBV-tumor tissue samples and normal
samples without HBV infection in combined data.

SUPPLEMENTARY FIGURE S5
Kaplan-Meier (KM) survival analysis. Kaplan-Meier (KM) survival plot for
patients according to aCD4 and CLST in HCC (GSE14520).KM analysis of
CCL20 in tumor tissues from HBV-HCC patients for OS in two
independent cohorts (CHCC, left; GSE14520, right).

SUPPLEMENTARY FIGURE S6
OS analysis of feature genes belonging to aCD4. The association between
each of feature genes belonging to aCD4 and OS probability in HBV-
HCC tumor tissues (CHCC). Time was calculated by year.

SUPPLEMENTARY FIGURE S7
SVMoutperformed in nine AI algorithms for HCC tumor tissue identification.
(A)Comparison of nine AI algorithms based on expression value of
15 feature genes as a prognostic set with ACC calculation for HCC tumor
identification amongHCC tumor, adjacent non-tumor, cirrhotic and healthy
liver samples (GSE25097). (B) Comparison expression value of fifteen
feature genes based on nine AI algorithms with ACC calculation for
predicting tumor tissue at early stage of HCC (GSE14520).
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