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Background: Chronic kidney disease (CKD), characterized by sustained
inflammation and immune dysfunction, is highly prevalent and can eventually
progress to end-stage kidney disease. However, there is still a lack of effective
and reliable diagnostic markers and therapeutic targets for CKD.

Methods: First, wemerged data fromGEOmicroarrays (GSE104948 andGSE116626)
to identify differentially expressed genes (DEGs) in CKD and healthy patient samples.
Then, we conducted GO, KEGG, HPO, and WGCNA analyses to explore potential
functions of DEGs and select clinically significant modules. Moreover, STRING was
used to analyse protein-protein interactions. CytoHubba and MCODE algorithms in
the cytoscape plug-in were performed to screen hub genes in the network. We then
determined the diagnostic significance of the obtained hub genes by ROC and two
validation datasets. Meanwhile, the expression level of the biomarkers was verified by
IHC. Furthermore, we examined immunological cells’ relationships with hub genes.
Finally, GSEA was conducted to determine the biological functions that biomarkers
are significantly enriched. STITCH and AutoDock Vina were used to predict and
validate drug–gene interactions.

Results: A total of 657 DEGs were screened and functional analysis emphasizes their
important role in inflammatory responses and immunomodulation in CKD. Through
WGCNA, the interaction network, ROC curves, and validation set, four hub genes
(IL10RA, CD45, CTSS, and C1QA) were identified. Furthermore, IHC of CKD patients
confirmed the results above. Immune infiltration analysis indicated that CKD had a
significant increase in monocytes, M0 macrophages, and M1 macrophages but a
decrease in regulatory T cells, activated dendritic cells, and so on. Moreover, four hub
genes were statistically correlated with them. Further analysis exhibited that IL10RA,
which obtained the highest expression level in hub genes, was involved in
abnormalities in various immune cells and regulated a large number of immune
system responses and inflammation-related pathways. In addition, the drug–gene
interaction network contained four potential therapeutic drugs targeting IL10RA, and
molecular docking might make this relationship viable.

Conclusion: IL10RA and its related hub molecules might play a key role in the
development of CKD and could be potential biomarkers in CKD.
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1 Introduction

CKD affects approximately 10% of the global population and is
mainly characterized by impaired renal functions with persistent
inflammation and renal immune response (Lees et al., 2019; Holle
et al., 2022). CKD is a public health disease of concern as it can
progress to end-stage renal disease (ESKD) that requires dialysis or
kidney transplantation (Quon et al., 2011; Jankowski et al., 2021). The
exact mechanism of CKD progression is currently unclear, and limited
and non-specific treatments remain used to alleviate CKD progression
(Harari-Steinberg et al., 2013). Therefore, revealing the pathological
mechanisms and exploring the diagnostic biomarkers of CKD are the
focus of current research and are the keys to the early diagnosis and
treatment of CKD.

In the investigation of the CKD pathogenesis, it has been found
that immune responses and inflammatory mediators play significant
roles in the condition. Pro-inflammatory factors often reflect
elevated inflammatory levels in CKD and ESKD, which leads to a
significantly higher mortality rate (Zimmermann et al., 1999;
Stenvinkel et al., 2005; Honda et al., 2006; Zoccali et al., 2006;
Snaedal et al., 2009; Dekker et al., 2017). Underlying diseases,
lifestyle habits, and aging are adverse factors that increase
inflammation in CKD (Franceschi et al., 2007; GBD
2015 Mortality and Causes of Death Collaborators, 2016; GBD
2016 Causes of Death Collaborators, 2017). Inflammation may be
promoted and maintained by a decreased glomerular filtration rate,
reduced cytokine elimination, and metabolic acidosis (Glorieux
et al., 2004a; Glorieux et al., 2004b; Platten et al., 2009; Aveles
et al., 2010; Ori et al., 2013). When inflammation persists, it can
generate organized structures with T cells and lymphatic vessels that
correspond to what is called a tertiary lymphoid structure (TLS)
(Ruddle, 2014; Sato et al., 2016). TLS has been reported to be
associated with a variety of autoimmune kidney diseases,
including ANCA-associated glomerulonephritis, systemic lupus
erythematosus, membranous glomeruli, and IgA nephritis (Cohen
et al., 2005; Segerer and Schlöndorff, 2008; Pei et al., 2014; Seleznik
et al., 2016; Brix et al., 2018). B lymphocytes can directly invade non-
lymphoid organs such as the kidneys. The chemokine CXCL13 (also
known as the B1 cell attractor) expressed in the local stroma could
recruit B cells (Legler et al., 1998). These in turn secrete
lymphotoxins that promote the differentiation of the perivascular
matrix into lymphoid tissue into fibroreticular cells and dendritic
cells to consolidate new lymphocyte-like structure (Kratz et al., 1996;
Lee et al., 2006; Krautler et al., 2012; Dubey et al., 2017). In human
and mouse models, complex B-cell infiltration also occurs in
allogeneic immunity, i.e., renal transplant rejection (Steinmetz
et al., 2007; Cippà et al., 2019; Kreimann et al., 2020; Steines
et al., 2020). Additionally, a number of other immune cells are
also key regulators of CKD pathogenesis, such as macrophages and
CD4 positive T cells (Rabb et al., 2000; Glassock et al., 2015).
However, the immunological mechanism of CKD has not been
fully studied. Therefore, evaluating immune cell contributions and
exploring key genes associated with immune cells requires a
systematic approach, which is an urgent priority.

In this paper, we conducted a statistical analysis of differential
mRNA expression utilizing R tools and the LIMMA package,
integrating multiple datasets. A gene weighted co-expression
network was constructed according to calculated module
associations, gene significance correlations, and inter-module
correlations utilizing the R package WGCNA, and DEGs were
functionally analyzed with major module genes. STRING was used
to study protein interactions between key modular products. Using
Cytoscape’s MCODE and MCC algorithms, four hub genes were
identified in the network. Furthermore, we used ROC analysis and
two datasets to validate the selected signature genes and calculated the
relationship between immunity and signature genes by CIBERSORT.
For further screening, IL10RA was selected and validated by GSEA
analysis, which suggested that IL10RA is strongly involved in various
immune and inflammatory responses. Finally, the corresponding
therapeutic drugs of IL10RA were predicted and verified by
molecule docking. Figure 1 shows the flow chart of our study.

2 Materials and methods

2.1 Data download and preprocessing

Public microarray data containing clinical information on CKD
and normal kidney tissues was obtained from the NCBI GEO
GSE104948 and GSE116626 datasets. The GSE104948 data set
(RNA was extracted from the glomerular compartment), including
50 CKD kidney samples and 18 normal samples, was based on the
Affymetrix Human Genome U133 Plus 2.0 Array of the
GPL22945 platform. The GSE116626 data set (RNA was extracted
from archival formalin-fixed paraffin-embedded kidney biopsy
samples), including 74 CKD kidney samples and 7 normal samples,
was based on the Illumina HumanHT-12 WG-DASL
V4.0 R2 expression beadchip of the GPL14951 platform. To merge
the multiple datasets, we utilized the inSilicoMerging (Taminau et al.,
2012) R package to process the datasets. In addition, we used the
Johnson et al. method (Johnson et al., 2007) to remove group effects.
In total, 124 CKD samples and 25 normal samples of tissues were
included in the follow-up analysis of this study.

2.2 Differentially expressed genes (DEGs)
screening and functional correlation analysis

Here, differential analysis was conducted utilizing the limma R
package (Ritchie et al., 2015) to get genes that differ between the CKD
group and the control group. The statistical criterion for screening
RNA expression was | fold-change (FC) | > 1.5 and p-value <.05. Based
on the org. Hs.eg.db R package, the KEGG rest API, and the Molecular
Signatures Database, we obtained gene annotations for GO, KEGG,
and C5, respectively. Then, we performed function analysis utilizing
the ClusterProfiler R package to get the DEGs enrichment results.
p-value <.05 was statistically significant. The maximum gene set is
5000 and the minimum gene set is 5.
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2.3 Identification of clinically significant
modules based on weight gene correlation
network analysis (WGCNA)

Using gene expression profiles, we calculated the mean absolute
deviation (MAD) for each gene and excluded the 50% of DEGs with

the lowest mean absolute deviation. In addition, we used the R package
WGCNA to remove outlier DEGs and probes to construct a scale-free
co-expression network. Specifically, first the Pearson’s correlation
matrices and average linkage method were both performed for all
pair-wise Genes. Then, a weighted adjacency matrix was constructed
using a power function A_mn = |C_mn|̂β (C_mn = Pearson’s

FIGURE 1
A schematic diagram based on a comprehensive method of bioinformatics analysis and validation experiment of CKD.
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correlation between Gene_m and Gene_n; A_mn = adjacency between
Gene m and Gene n). β was a soft-thresholding parameter that could
emphasize strong correlations between Genes and penalize weak
correlations. After choosing the power of 6, the adjacency was
transformed into a topological overlap matrix (TOM), which could
measure the network connectivity of a Gene defined as the sum of its
adjacency with all other Genes for network Gene ration, and the
corresponding dissimilarity (1-TOM) was calculated. To classify
Genes with similar expression profiles into Gene modules, average
linkage hierarchical clustering was conducted according to the TOM-
based dissimilarity measure with a minimum size (Gene group) of
10 for the Genes dendrogram. To further analyze the module, we
calculated the dissimilarity of module eigen Genes, chose a cut line for
module dendrogram, and merged some modules. A total of eight co-
expression modules were obtained by merging the modules with a
distance less than 0.25. Lastly, GS and MM were calculated according
to correlations between gene expressions with clinical subtype and
correlations between gene expression and module feature vector,
respectively. In the clinically significant module, 16 highly
connective genes were screened as key genes according to the cut-
off criteria [(MM) > 0.8 and (GS) > 0.1].

2.4 Protein–protein interaction (PPI) network
and hub gene analyses

The PPI networks for modules with very robust filtering
conditions (score >0.7) were analyzed using the STRING database.
Cytoscape Software (version 3.8.2) was utilized to visualized these PPI
networks. The main functional modules were analyzed using
Cytoscape’s Molecular Complex Detection Technology (MCODE)
plug-in. Selection criteria are defined as follows: K Core = 2, Cut
Grade = 2, Maximum Depth = 100, Cut Node Score = 0.3. Cytoscape’s
plugin cytoHubba uses the MCC (Maximum Clique Centrality)
algorithm to score each node gene. The pivot genes were screened
using the top 5 nodal genes of each algorithm’s MCC score.
Predictions of gene function and mapping genes with comparable
effects were generated by GeneMANIA, a website for constructing PPI
networks. Some of the bioinformatics methods employed by network
integration algorithms are physical interactions, co-expression, co-
localization, gene enrichment analysis, genetic interactions, and locus
prediction. In this study, we used GeneMANIA to identify PPI
networks of eigengenes.

2.5 Diagnostic value of characteristic
biomarkers and data validation in CKD

To verify the predicted value of the screende hub genes, we
constructed a logistics model using PROC in the R package
(version 3.6.3) and used the GGPLOT2 package to visualize the
results. The diagnostic value of the identified biomarkers was
assessed by the area under the ROC curve (AUC, AUC was
between 0.5 and 1). The closer the AUC is to 1, the more
effective the diagnosis is. In addition, we performed a
controlled reliability analysis using the RNA expression
datasets GSE93798 and GSE104066 as validation sets.
GSE93798 includes 20 CKD samples and 22 control samples
(RNA was extracted from the glomerular compartment).

GSE104066 includes 70 CKD samples and 6 control samples
(RNA was extracted from the glomerular compartment).

2.6 Immunohistochemistry (IHC)

Paraffin-embedded kidney tissue sections from Chaohu Hospital
of AnhuiMedical University, including CKD patient group (n = 3) and
normal control group (n = 3), were obtained according to Institutional
Review Board-approved protocols, and informed consent forms were
signed by the patients. The expression of IL10RA (1:50, ZENBIO,
China), CD45 (1:50, ZENBIO, China), CTSS (1:50, ZENBIO, China),
and C1QA (1:50, Affinity, USA) were detected according to the
instructions of the immunohistochemistry kit (ZSBIO, China).

2.7 Evaluation of immune cell infiltration and
correlation analysis between diagnostic
markers and infiltrating immune cells

CIBERSORT (Chen et al., 2018) transforms normalized gene
expression matrices into immune cell invasiveness components to
estimate the relative frequency of immune invasion and is a
1,000 permutation deconvolution algorithm. Then build a
histogram to display the 22 types of content. A correlation
heatmap of immune cell infiltration in each sample was developed
to visualize correlations between immune cell subtypes. Additionally,
differential analysis between CKD and normal tissue immune cells was
also visualized by a violin plot. Importantly, associations between the
identified biomarkers and the level of infiltrating immune cells were
explored and visualized by dot-bar graphs using Spearman’s rank
correlation analysis.

2.8 Gene set enrichment analysis (GSEA) of
IL10RA

We utilized the GSEA analysis (Subramanian et al., 2005) to explore
regulatory target genes, biological process (BP) GO terms, KEGG
pathways, and Human phenotype Ontology in which the selected
IL10RA might be involved in CKD. The samples were divided into
low expression group (<50%) and high expression group (≥50%)
according to the expression level of IL10RA. Datasets in the Molecular
Signatures Database, including c3.all.v7.4. symbols.gmt, c5.
go.bp.v7.4.symbols.gmt, c2.cp.kegg.v7.4.symbols.gmt, and
c5.hpo.v7.4.symbols.gmt, were served as reference gene sets. Statistical
significance was assessed by comparing the enrichment score with the
enrichment results generated from1000 randompermutations of the gene
set to obtain p-value, and p < .05 was considered significant for GSEA
analysis using default parameters.

2.9 Drug-gene interaction and molecular
docking analyses of IL10RA

To explore drug-gene interactions, existing or/and potentially
relevant drug substances were identified using the STITCH
database (Szklarczyk et al., 2016). The PubChem database (Kim
et al., 2021) and the PDB database (Karuppasamy et al., 2020)
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were used to obtain the molecular structures of ligands and target
proteins. Docking simulations and visualization were performed
through PyMOL software (Nguyen et al., 2020) and AutoDock
Vina (Lam and Siu, 2017).

2.10 Statistical analysis

All data were processed and analyzed using R software. The Mann-
WhitneyU test (Wilcoxon rank sum test) was used to analyze differences
between two groups of continuous non-normal variables. A possible
correlation between two variables was detected by the Pearson correlation
coefficient. p < .05 considered the difference to be statistically significant.

3 Results

3.1 Data preprocessing

After merging the GSE104948 and GSE116626 datasets, we
removed batch-to-batch variance from the matrix of gene
expression (Supplementary File S1, S2). In Figure 2A, the box
diagram shows that the sample distribution of each data set is
quite different before the batch effect is removed, revealing that the
batch effect exists. The sample distributions of the two datasets tend to
be consistent after excluding the batch-to-batch variance, and the
medians are on the same straight line. Figure 2B depicts UMAP results
for multiple datasets with different colors representing different

FIGURE 2
Data preprocessing of GSE104948 and GSE116626. (A) Box diagram showing the sample distribution of each data set before batch correction and after
batch correction. (B) UMAP analysis showing the sample distribution of each data set before batch correction and after batch correction. (C) Density map
showing the sample distribution of each data set before batch correction and after batch correction.
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datasets before showing batch deletion. As shown, the two datasets do
not intersect with each other and are independent of each other. After
removing the batch-to-batch variance, the sample distributions
between datasets tend to be consistent. From the density map in

Figure 2C, we can observe that there is a great difference in the sample
distribution of each data set before excluding the batch effect. The
sample distributions between the datasets tend to be consistent after
eliminating the batch effect.

FIGURE 3
Identification of DEGs for CKD. (A) Volcano plots showing DEGs between CKD and normal group. (B) Cluster heatmap showing the top 50 significantly
upregulated DEGs and the top 50 significantly down-regulated DEGs. (C) Top 20 of Human phenotype Ontology analysis. (D) Top 20 of GO biological
processes analysis. (E) Top 20 of KEGG pathway analysis.
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3.2 Function enrichment analyses of the DEGs

After preprocessing the data with R software, we extracted the
DEGs in the gene expression matrix. Under the criteria of
p-value <.05 and | fold-change (FC) | >1.5, 657 genes were

identified as DEGs, with 521 genes up-regulated and 136 genes
down-regulated (Supplementary File S3). Figures 3A, B show a
volcano plot of DEGs and a heatmap of the top 50 DEGs. Next,
Human phenotype ontology, GO and KEGG signaling pathway
enrichment analyses were performed to dissect the biological

FIGURE 4
Identification of modules associated with the clinical traits of CKD based on WGCNA analysis. (A) Dendrogram of all differentially expressed genes
clustered based on a dissimilarity measure (1-TOM). (B) Clustering heatmap of module feature vector. (C) Heatmap of the correlation between module
eigengenes and clinical traits of CKD. (D) Top 20 of GO biological processes analysis. (E) Top 20 of KEGG pathway analysis.
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functions and signaling pathways involved in 657 selected DEGs
(Supplementary Files S4–S6).

The top 10 results of Human phenotype Ontology show that
nephritis, membranoproliferative glomerulonephritis, and impaired
oxidative burst were significantly enriched (Figure 3C), which
indicates the reliability of our data. More importantly, the top
10 GO analysis shows that a large number of biological processes
related to immune and inflammatory responses are significantly
enriched, including cell activation, immune response, immune
system process, leukocyte activation, and myeloid leukocyte
activation (Figure 3D). In terms of KEGG Pathway, complement
and coagulation cascades, ECM-receptor interaction, and Fc

gamma R-mediated phagocytosis are significantly enriched
(Figure 3E). The results above strongly suggest that autoimmunity
and inflammation play essential roles in the development process
of CKD.

3.3 Weighted gene co-expression network
construction and identification of clinically
significant modules

Based on the screened 657 DEGs expression profile, WGCNA
was performed to identify the major modules most associated with

FIGURE 5
Identification of hub genes for CKD. (A) PPI network of key genes. (B) The intersection of the key genes calculated byMCC andMCODE is visualized using
Venn diagram. (C) Hub genes and their co-expression genes were analyzed via GeneMANIA.

Frontiers in Pharmacology frontiersin.org08

Liu et al. 10.3389/fphar.2022.1069810

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1069810


CKD (Supplementary Files S7–S10). Eight modules were identified
after merging strong association modules with a cluster height limit
of 0.25 (Figure 4A). The module feature vector clustering was
investigated next, and the results revealed the distance between
them (Figure 4B). Furthermore, the correlations between modules
and clinical symptoms were explored. The red module (r = 0.45, p =
1.0e-8), the turquoise module (r = 0.52, p = 1.6e-11), the black
module (r = 0.50, p = 6.9e-11), and the blue module (r = 0.53, p =
5.8e-12) are positively correlated with CKD, while the pink module
(r = −0.61, p = 1.2e-16), the brownmodule (r = −0.41, p = 1.6e-7), the
magenta module (r = −0.36, p = 5.5e-6), and the grey module
(r = −0.58, p = 5.7e-15) are negatively correlated with CKD
(Figure 4C).

We performed functional enrichment to explore more about the
biological functions of the DEGs in eight modules (Supplementary
Files S11, S12). The results of GO and KEGG analysis revealed that
DEGs in the turquoise module were linked to a large number of
biological processes and pathways related to autoimmunity,
inflammation, and infection. GO enrichment analysis showed that
turquoise module DEG genes have leukocyte activation involved in
immune response, cell activation involved in immune response,
leukocyte degranulation, and neutrophil activation (Figure 4D).
KEGG analysis was associated with Chemokine signaling pathway,
Natural killer cell mediated cytotoxicity, Complement and
coagulation cascades, and Viral protein interaction with cytokine
and cytokine receptor (Figure 4E). According to GS > 0.8 and
MM > 0.1, 16 genes in the turquoise module are identified as key
genes (MS4A6A, RAC2, GPR65, LYZ, MYO1F, PYCARD, LCP1,
CTSS, AOAH, IL10RA, CD53, EVI2A, C1QA, NCF2, PTPRC,
MS4A4A).

3.4 Hub gene identification

To further discover CKD-related hub genes and their
mechanisms, we mapped the above 16 key genes with high
expression in the turquoise module of the CKD group, uploaded
them to the online STRING database, and constructed a PPI network
(Supplementary File S13). A PPI network with 15 nodes and 43 edges
was realized (Figure 5A). Among the 15 nodes, the top 4 genes with a
high binding degree were found by Cytoscape (version 3.8.2) MCODE
and MCC calculation methods. These genes, which were identified to
play hub roles in CKD, are listed as follows: IL10RA, CD45, CTSS, and
C1QA (Figure 5B). The specific information of the hub genes is shown
in Table 1.

Next, we explored the co-expression networks and potential
functions of hub genes according to the GeneMANIA database
(Figure 5C) (Supplementary File S14). They revealed the
sophisticated PPI networks with the protein domains of 0.60%,
pathway of 1.88%, genetic interactions of 2.87%, co-localization of
3.64%, predicted of 5.37%, co-expression of 8.01%, physical
interactions of 77.64%. Function analysis indicated that they are
mainly related to a variety of immune and inflammatory pathways,
including humoral immune response mediated by circulation,
B cell mediated immunity, complement activation, adaptive
immune response, humoral immune response, interleukin-8
production, and receptor signaling pathway via JAK-
STAT, revealing their essential role in contributing to CKD
pathogenesis.TA
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3.5 Diagnostic value and validation of hub
gene on CKD

We conducted ROC analysis to study the relationship between
hub gene expression and the prognosis of CKD patients
(Supplementary File S15). An AUC greater than 0.800 is
considered to have excellent specificity and sensitivity for the
diagnosis of CKD. As shown in Figure 6A, the AUC value of
IL10RA was 0.821 (95% CI: 0.730-0.911), CD45 was 0.836 (95%
CI: 0.739-0.933), CTSS was 0.861 (95% CI: 0.773-0.949), and C1QA
was 0.836 (95% CI: 0.749-0.923). More importantly, the
combination of all 4 hub genes is 0.881 (95% CI: 0.795-0.966).
The results showed that IL10RA, CD45, CTSS, and C1QA have high
diagnostic value.

Furthermore, two new CKD-related datasets, including GSE93798
(Figure 6B) and GSE104066 (Figure 6C), validated the above four hub
DEGs (Supplementary File S16). Through verification, the mRNA
expression of each hub gene was significantly overexpressed in CKD,
compared with the control. The validation results fully support the
assumption that IL10RA, CD45, CTSS, and C1QA may be diagnostic
markers of CKD.

3.6 Increased expression of hub gene in
kidney tissues of CKD

To verify the expression of IL10RA, CD45, CTSS, and C1QA in
CKD, we treated kidney tissues with IHC and found that IL10RA,
CD45, CTSS, and C1QA were all highly expressed in the CKD tissues
compared with the control subjects, which is consistent with our
bioinformatics prediction (Figures 7A–H).

3.7 Immune cell infiltration analysis

To examine differences in immune patterns between CKD and
normal tissues, the matrix of gene expression estimated the infiltration
ratio of 22 immune cells using the CIBERSORT method (Supplementary
Files S17–S19). In each sample, a histogram depicted the composition of
22 types of immune cells (Figure 8A). Colors on every histogram exhibit
the percentages of immune cells, with a sum of 1 for each sample. The
results indicated that naive B cells (137), neutrophils (136),
M1 macrophages (133), M2 macrophages (131), and resting
CD4 memory T cells (129) were the most abundant immuno-

FIGURE 6
Diagnostic effectiveness and dataset validation of the hub genes for CKD. (A) ROC curves to assess the diagnostic efficacy of hub genes. (B) Data
validation of hub genes by GSE93798. (C) Data validation of hub genes by GSE104066.

Frontiers in Pharmacology frontiersin.org10

Liu et al. 10.3389/fphar.2022.1069810

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1069810


infiltrating cells in all 149 samples. In the following study, 22 kinds of
immune cells in CKD samples were evaluated for their correlation
(Figure 8B). The correlation heat map of 22 immune cells showed
that naive B cells (GBD 2016 Causes of Death Collaborators, 2017),

regulatory T cells (Dekker et al., 2017), monocytes (Zimmermann et al.,
1999), M2 macrophages (Zoccali et al., 2006), and activated NK cells
(Honda et al., 2006) are associated with most immune cells. However,
activated CD4 memory T cells (Holle et al., 2022), M0 macrophages

FIGURE 7
(A) Immunohistochemical analysis of IL10RA expression in control group. (B) Immunohistochemical analysis of IL10RA expression in CKD group. (C)
Immunohistochemical analysis of CD45 expression in control group. (D) Immunohistochemical analysis of CD45 expression in CKD group. (E)
Immunohistochemical analysis of CTSS expression in control group. (F) Immunohistochemical analysis of CTSS expression in CKD group. (G)
Immunohistochemical analysis of C1QA expression in control group. (H) Immunohistochemical analysis of C1QA expression in CKD group.
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(Holle et al., 2022), CD8 T cells (Quon et al., 2011), resting CD4 memory
T cells (Quon et al., 2011), and eosinophils (Quon et al., 2011) are only
associated with a few immune cells. Violin plots of the difference in
immune cell infiltration indicated that, compared with the normal control
sample, gamma delta T cells, activated NK cells, monocytes,
M0 macrophages, and M1 macrophages infiltrated more, while naive
B cells, regulatory T cells and activated dendritic cells infiltrated less
(Figure 8C).

3.8 Correlation between hub genes and
immune cells

We further explored whether there is a potential correlation
between immune cell abundance and hub gene expression using
Pearson’s correlation analysis (Supplementary File S20). As
shown in Figures 9A–D, a total of seven immune cell populations
that are related to all four core genes, of which naive B cells, resting
memory CD4 T cells, regulatory T cells, and activated dendritic cells
were statistically negatively with IL10RA, CD45, CTSS, and C1QA,
while gamma delta T cells, monocytes, M0 macrophages, and
M1 macrophages were positively correlated with them, suggesting
they may play essential roles in CKD development.

3.9 GSEA of IL10RA

Since IL10RA plays an important role in immune infiltration, and the
log2FC of IL10RA is the largest of the central genes, we performed an
IL10RA analysis using the GSEA method to gain insight into the
biological processes and predict the potential signal pathways of
IL10RA expression in CKD (Supplementary Files S21–S24). The top
10 results of MSigDB C5 Human phenotype Ontology showed IL10RA
was involved in abnormalities in various immune cells, including
abnormal leukocyte, abnormal granulocyte, abnormal neutrophil,
abnormal myeloid leukocyte morphology, and abnormal lymphocyte
physiology (Figure 10A). In addition, high levels of IL10RA may affect
several manipulated downstream potential genes, including MAML1,
PEA3, BACH2, ELK1, ZNF597, ETS2, MIR92A, and TEL2 (Figure 10B).

More importantly, the top 10 results of MSigDB C5 GO biological
processes showed IL10RA regulated a large number of immune system
responses, including antigenic processing and presentation of polypeptide
antigen, immune response regulating signal pathway, regulation of
response to biotic stimulus, T cell receptor signaling pathway, myeloid
leukocyte mediated immunity, I kappaB kinase NF kappaB signaling, and
response to interferon gamma (Figure 10C). Meanwhile, MSigDB
C2 KEGG gene sets found that in addition to B cell receptor signaling
pathway, T cell receptor signaling pathway, and Fc gamma R-mediated

FIGURE 8
Immune infiltration analysis of CKD. (A) The ratio of 22 immune cells of each sample of CKD. (B) The correlation between each of immune cells. (C) The
proportion of immune cells in CKD and control.
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phagocytosis, IL10RAwas also related to a large number of inflammation-
related pathways, including chemokine signaling pathway, apoptosis, Nod
like receptor signaling pathway, Toll like receptor signaling pathway, and
cell adhesion molecules cams. Thus, the above results suggest that the
immune and inflammatory responses play essential roles in IL10RA
contributing to the CKD pathogenesis (Figure 10D).

3.10 Drug-Gene interaction and molecular
docking analyses of IL10RA

Searching for targeted drugs for IL10RA provides a new strategy for
potential drug therapy for CGN. Based on the STITCH database, we
obtained 4 small molecular drugs, including chitin, selenomethioni,
leupeptin, and isosorbide din (Supplementary File S25). Then, the above
4 bioactive compound ligands were docked with the protein IL10RA to
evaluate the binding potential. As shown in Figures 11A–D, the docking
3D model of protein IL10RA and four small molecules drugs with the
firmest binding, showing their potential to alleviate or even reverse CKD
development (Supplementary File S26).

4 Discussion

The kidneys are highly susceptible to excessive inflammatory
responses due to the system’s autoimmunity (Kurts et al., 2013). In

particular, renal tubular epithelial cells (TECs), which play critical roles as
antigen-presenting cells, interact directly with neutrophils, monocytes,
and T lymphocytes through the activation of cell adhesion molecules that
are caused by tubular injuries. In addition, damage usually spreads to
distant organs (including the heart, liver, lungs) after kidney injury, which
is a vicious circle (Kosugi and Sato, 2012; Cantaluppi et al., 2014). It has
been suggested that cytokines produced by circulating immune cells and
damaged organs maymediate kidney-to-kidney crosstalk (Lv et al., 2020).
Persistent renal injury can lead to irreversible pathological changes, such
as glomerular aging, interstitial fibrosis, etc., regardless of the primary
disease processes, and finally lead to the development of CKD (Livingston
et al., 2016). Therefore, the prevention of renal immunity and
inflammation is crucial to decrease mortality and morbidity after renal
injury. The ideal approach to identifying appropriate treatments for this
type of disease includes early diagnosis and treatment of CKD, as well as
identification of inflammation induced by diverse potential mechanisms
and immune system involvement. As a result, identifying the potential
biomarkers associated with CKD development is an effective method for
preventing and treating CKD.

In this study, we screened 1178 differentially expressed genes
(DEGs) and found 657 genes were upregulated and 521 were
downregulated. Subsequent GO enrichment analysis showed a large
number of biological processes related to immune and inflammatory
responses (immune response, immune system process, myeloid
leukocyte activation) are significantly enriched, while KEGG
enrichment analysis showed some correlation with complement and

FIGURE 9
The correlation between the hub gene and the immune cell. (A) IL10RA; (B) CD45; (C) CTSS; (D) C1QA.
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coagulation cascades and ECM-receptor interaction, along with Fc
gamma R-mediated phagocytosis. Besides, Human phenotype
Ontology further confirms the results above. The DEGs were mainly
mapped in nephritis, membranoproliferative glomerulonephritis, and
impaired oxidative burst. This suggests that the DEGs could have a
function in participating in the pathogenesis of CKD.

Next, we identified eight CKD-related modules based on WGCNA
analysis. DEGs in the turquoise module were found to be involved in
plenty of inflammation and immune-related biological processes and
pathways. Furthermore, 16 key genes in the turquoise module were
screened according to MM > 0.8 and GS > 0.1. Finally, we obtained
four hub genes through PPI network and interaction analysis, namely,
IL10RA, CD45, CTSS, and C1QA (all upregulated genes). Many of them
have been implicated in immune and inflammatory responses in other
diseases, but fewer have been mentioned in the development of CKD.
IL10RA (interleukin-10 receptor alpha subunit) is a protein-coding gene

that mediates interleukin-10 immunosuppressive signaling. Mutations in
the gene that encodes the subunit protein of IL10R are associated with a
hyper-inflammatory immune response in the gut (Glocker et al., 2009;
Shouval et al., 2014; Oh et al., 2019; Liu et al., 2021). CD45/PTPRC
(leukocyte common antigen/protein tyrosine phosphatase receptor type
C) is a transmembrane glycoprotein expressed on almost all
hematopoietic cells except mature red blood cells, and is an essential
regulator of T and B cell antigen receptor-mediated activation (Al
Barashdi et al., 2021). CTSS (cysteine protease cathepsin S) regulates
biological activities in and out of cells, including immunity and
inflammation (Toyama et al., 2020). There is evidence that CTSS may
be beneficial in treating renal fibrosis. Among its functions, CTSS may
regulate fibrosis via the TGF/SMAD pathway and influence ECM
deposition as well as epithelial-mesenchymal transition (EMT) (Yao
et al., 2019). The C1QA (complement component 1, Q
subcomponent, alpha polypeptide) encodes C1q, a major component

FIGURE 10
Result of Gene Set Enrichment Analysis of IL10RA. (A) Regulatory target genes enriched by IL10RA. (B) Biological processes enriched by IL10RA. (C) KEGG
pathways by IL10RA. (D) Human phenotype Ontology enriched by IL10RA.
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of serum complement, which identifies immune complexes and initiates
the classical complement pathway (Lao et al., 2008). C1QA deficiency is
associated with lupus erythematosus and glomerulonephritis (Held et al.,
2008; Namjou et al., 2009). Furthermore, the ROC curve analysis and two
CKD validated datasets verified the reliability of their diagnostic value.
More importantly, a significant increase in IL10RA, CD45, CTSS, and
C1QA was observed by IHC in clinical CKD patients.

In order to fully comprehend the dysfunctional inflammatory cells
in CKD, an immune infiltration analysis was performed. It was found
that CKD tissue owned a higher gamma delta T cells, activated NK

cells, monocytes, M1 macrophages, and M2 macrophages, but
relatively lower ones of naive B cells, regulatory T cells and
activated dendritic cells. Additionally, our study revealed that
major infiltration cells were statistically related to each hub gene
(IL10RA, CD45, CTSS, and C1QA). In particular, naive B cells, resting
memory CD4 T cells, regulatory T cells, and activated dendritic cells
were statistically negatively correlated with all hub genes, and gamma
delta T cells, monocytes, M1 macrophages, andM2macrophages were
positively correlated with them. Accordingly, they may be associated
with the dysfunction of inflammatory cells in CKD and may have a
pivotal role in its immunomodulation. Tregs (regulatory T cells) are a
type of CD4+ T cells that suppress the immune response of effector
T cells, B cells, and innate immune cells. Renal and systemic
inflammatory immunity are restricted by multiple mechanisms of
Tregs (Ghali et al., 2016). Recent studies suggest that Tregs numbers
are decreased and their regulatory functions may be impaired in
kidney disease (Hu et al., 2016). Recent research has shown that
renal macrophages are heterogeneous with multiple functions,
including remove adherent pathogen, maintain immune tolerance,
initiate and regulate inflammatory response, promote renal fibrosis,
and degrade the ECM (Wen et al., 2021). The majority of tissue
macrophages are derived from monocytes. The bone marrow
produces the cells of the monocytes/macrophages system that reach
organs through the blood, migrate through the microvessels through
the venules, and further differentiate into macrophages, specific organ
tissues. Activated monocytes/macrophages enhance autoimmune
responses in mice and other species (Steiniger et al., 2001). The
macrophage can be divided into two distinct phenotypes: classical
macrophage activation (M1 macrophage), which releases
inflammatory cytokines and fibrosis; and activated macrophage
(M2 macrophage), which is associated with immune regulation and
tissue remodeling function (Liu et al., 2014). The function of dendritic
cells in regulating T-cell activation and tolerance is the focus of most
research on these cells as professional antigen-presenting cells (Lu,
2012). Research has shown that dendritic cells are crucial in initiating
innate immunity and orchestrating inflammation following kidney
ischemia-reperfusion (Li and Okusa, 2010). They are responsible for
inducing and regulating inflammatory responses in response to fluid
that is freely filtered and protecting the kidney from infection (Rogers
et al., 2014). In spite of this, there are few studies that explore the
relationship between CKD and naive B cells, resting memory
CD4 T cells, and gamma delta T cells, which might be an
interesting finding.

We chose IL10RA, which obtained the highest expression level
in hub genes, to do further analysis. GSEA analysis showed IL10RA
was involved in abnormalities in various immune cells and regulated
a major number of immune system responses and inflammatory
pathways, such as NF-kappaB signal pathways, Nod like receptor
signal pathways, Toll like receptor signal pathways, and apoptosis,
demonstrating that IL10RA may be a potential biomarker for CKD
diagnosis and prognosis. NF-κB signal pathways have long been
recognized as typical pro-inflammatory pathways and these
pathways are activated by inflammatory cytokines, such as TNF-
α and IL-1β (Lawrence, 2009). Activation of the NF-κB signaling
pathway has been implicated in the pathogenesis of a variety of
human diseases, including brain and kidney diseases, and plays an
important role in the initiation and progression of inflammation
(White et al., 2020). The NOD-like receptor (NLR) family of
proteins is a group of pattern recognition receptors (PRRs)

FIGURE 11
Molecular docking analysis of drug–gene interaction. (A)Molecular
docking between IL10RA and chitin. (B) Molecular docking between
IL10RA and selenomethioni. (C)Molecular docking between IL10RA and
isosorbide din. (D) Molecular docking between IL10RA and
leupeptin.
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known to mediate the initial innate immune response to cellular
injury and stress, whose activation not only occurs in immune cells,
but also in residential cells such as endothelial cells and podocytes in
the glomeruli (Conley et al., 2017; Platnich and Muruve, 2019).
Studies have shown that activation of the NLRP3 inflammasome
may lead to glomerular injury and the development of ESRD,
thereby triggering inflammation and other cellular damage
(Komada and Muruve, 2019). Similarly, the toll-like receptor
family (TLRs) serves a key manipulative role in the innate
immune system, and recent research shows the transduction of
TLR signaling is related to the inflammatory response to various
exogenous and endogenous stimuli in the kidney (Garibotto et al.,
2017). In addition to their established roles in host defense, TLRs
also play new roles, controlling body balance, disrupting, and
repairing wounds (Ramnath et al., 2017). As an activated form of
programmed cell death, apoptosis keeps the body environment
stable (Zhao et al., 2019). Genes directly control cell apoptosis
and proliferation, which ensure dynamic equilibrium of the
body’s cells (Guan et al., 2019). Apoptosis has been found to be
an essential component of glomerular remodeling, mediating the
excessive regression of glomerular cells during CGN repair (Shimizu
et al., 1996; Hughes and Savill, 2005). Moreover, we further
identified four potential therapeutic drugs targeting IL10RA,
which provides a possible therapeutic strategy for CKD.
Molecular docking revealed that the exact molecular binding
makes this relationship more reliable.

5 Conclusion

In sum, we identified 4 hub genes, IL10RA, CD45, CTSS, and
C1QA, from CKD-related genes, which are mainly involved in the
inflammatory response and maladjustment of immune cells in CKD.
In particular, IL10RA might play a role in abnormalities in various
immune cells and the activation of inflammation-related pathways.
Therefore, IL10RA and its related hub molecules might be potential
key biomarkers in the development of CKD, and our study would
provide a new perspective on the etiopathogenesis and therapeutic
programs of CKD.
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