

OPEN ACCESS

EDITED AND REVIEWED BY Michael Heinrich, University College London, United Kingdom

*CORRESPONDENCE Elwira Sieniawska, elwira.sieniawska@umlub.pl

SPECIALTY SECTION

This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

RECEIVED 11 October 2022 ACCEPTED 17 October 2022 PUBLISHED 28 October 2022

CITATION

Makunga N, Kai G and Sieniawska E (2022), Editorial: Metabolomics as a tool in ethnobotany-driven drug discoveries. *Front. Pharmacol.* 13:1066875. doi: 10.3389/fphar.2022.1066875

COPYRIGHT

© 2022 Makunga, Kai and Sieniawska. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Metabolomics as a tool in ethnobotany-driven drug discoveries

Nokwanda Makunga¹, Guoyin Kai² and Elwira Sieniawska³*

¹Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa, ²Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences Zhejiang Chinese Medical University, Hangzhou, China, ³Department of Natural Products Chemistry, Medical University of Lublin, Lublin, Poland

KEYWORDS

bioactivity, natural products, bioinformatics, drug leads, pharmacology

Editorial on the Research Topic

Metabolomics as a tool in ethnobotany-driven drug discoveries

Ethnobotany-driven drug discoveries is an ongoing challenge aiming to prove well known traditional applications of medicinal plants. The classical activity screening is nowadays more frequently replaced by efficient and conclusive metabolomicsbioinformatics based approach. Metabolomics is a dynamic and rapidly evolving field that provides insights into primary and secondary metabolites present in any living organism. It creates unique chemical fingerprints of the cell metabolism and sheds light about pathological disease conditions, progress of treatment options, establishment of new therapies or validation of traditional treatments. Typical hyphenated separation and detection techniques applied in metabolomic studies are GC-MS, LC-MS, LC-NMR, or GC-NMR, which are often followed by computational analysis and data processing using different statistical tools. The modern research platforms that are now available to researchers enable a fast and reliable determination of mechanisms of action behind plant extracts, the monitoring of diseases biomarkers and last but not least the selection of active principles in crude plant extracts or herbal mixtures. With a growing number of studies providing evidence on the activity of natural remedies from ethnobotanical resources, the field ethnopharmacology is becoming an important and decisive area of interest. Experimental assessments of medicines used in traditional knowledge need to be coupled with the use of modern chromatographic and spectroscopic techniques that are supported with bioinformatic software. Such an integrated approach is an important step when aiming to bridge the gap between tradition and science.

The studies collected within Research Topic explored disease profiles in patients after the treatment with traditional herbal composition (Ma et al.), mechanism of action of traditional herbal composition combined with classical treatment (Li et al.), metabolomic profiles of herbal extracts in relation to their protective action in human disease (Liu et al.; Salem et al.), and active biomarkers in herbal extracts (Emamzadeh et al.) Plant Chinese traditional medicines were a subject of two studies, which focused on the determination of

Makunga et al. 10.3389/fphar.2022.1066875

metabolites affected by the treatment. Ma et al. evaluated the effects of Zuojin pil, a well-known formula used from 15th century in digestive system diseases. The metabolomic analysis revealed significantly changed levels of dozen of metabolites as well as inflammatory factors (COX-2, IL-4, and IL-17) suggesting that Zuojin pil acts as an inflammatory suppressor to regulate comprehensive metabolism disorders. Li et al. discussed the antiplatelet molecular mechanism of action of several Bloodactivating Chinese botanical drugs. Besides proteomics and transcriptomics, metabolomics provided methodology to describe platelets as biomarkers and targets for diagnosis and treatment of cardiovascular diseases.

With the application of metabolomics Salem et al. explained the better antihypertensive effect of Hibiscus sabdariffa L. calyces extract obtained with hot water over the cold extraction. UPLC-MS/MS analysis traced high quantities N-feruloyltyramine, caffeoylshikimic acid, dicaffeoylquinic acid, delphinidin-3,6"-p-coumarylglucoside, kaempferol-7,6"p-coumarylglucoside, and myricetin which contributed to high bioactivity observed in animals. Similarly, Liu et al. investigated the effectiveness of Lacquer oil from the drupes mesocarp of Toxicodendron vernicifluum inflammation postpartum depression. metabolomics, they found 57 chemical markers discriminating black lacquer oil and white lacquer oil, of which 17 potential biomarkers have been declared to possess anti-inflammatory and/or antidepressant activities determined in vitro and in vivo. Also anti-HIV biomarkers were described in NMR-based metabolomic investigation. Emamzadeh et al. screened 57 Helichrysum species and performed OPLS-DA and hierarchical cluster analyses to correlate phytochemical composition and biological activity of the samples. The chlorogenic acids, compounds with cinnamoyl functional

groups, and quinic acid were the most prominent compounds in the *Helichrysum* species with anti-HIV activity.

The presented research, not only confirmed the usefulness of metabolomics in determination of the mechanism of action of traditionally used formulations, but also identified the active principles responsible for the activity. Moreover, metabolomics was shown as complementary to other "omics", underlining the power of comprehensive, systematic approach, which is currently realized within systems biology.

Author contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.