
Nanotechnology in cervical
cancer immunotherapy:
Therapeutic vaccines and
adoptive cell therapy

Xuyan Zhou1†, Haiying Lian1†, Hongpeng Li1, Meiling Fan2*,
Wei Xu1* and Ye Jin1*
1School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China, 2Gynecology
Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China

Immunotherapy is an emerging method for the treatment of cervical cancer

and is more effective than surgery and radiotherapy, especially for recurrent

cervical cancer. However, immunotherapy is limited by adverse effects in

clinical practice. In recent years, nanotechnology has been widely used for

tumor diagnosis, drug delivery, and targeted therapy. In the setting of cervical

cancer, nanotechnology can be used to actively or passively target

immunotherapeutic agents to tumor sites, thereby enhancing local drug

delivery, reducing drug adverse effects, achieving immunomodulation,

improving the tumor immune microenvironment, and optimizing treatment

efficacy. In this review, we highlight the current status of therapeutic vaccines

and adoptive cell therapy in cervical cancer immunotherapy, as well as the

application of lipid carriers, polymeric nanoparticles, inorganic nanoparticles,

and exosomes in this context.
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Introduction

Cervical cancer is caused by the growth of abnormal cells spreading to other parts of

the body. It is one of the most common female reproductive malignancies (Bedell et al.,

2020). Globally in 2020, there were 604,000 new cases of cervical cancer and

342,000 deaths. Cervical cancer is the fourth-leading cause of cancer incidence and

mortality among women worldwide after breast cancer, lung cancer, and colon cancer

(World Health Organization, 2022). Cervical cancer has a high incidence and tends to be

younger. Therefore, cervical cancer has become a substantial public health concern

(Ibrahim Khalil et al., 2022).

Smoking, poor hygiene, early initiation of sexual intercourse, and having multiple

sexual partners are risk factors for cervical cancer (Small et al., 2017). The main cause of

cervical cancer is persistent high-risk human papillomavirus (HPV) infection. E6 and

E7 are HPV oncoproteins that interact with the tumor suppressors p53 and
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retinoblastoma protein (pRb), respectively. Activation of

apoptotic pathways is disrupted by these interactions, which

subsequently promote cell proliferation and ultimately increase

progression of HPV-associated malignancies (Jee et al., 2021). At

present, more than 200 HPV subtypes have been identified that

primarily infect cells in mucous membranes and the epidermis

(Perri et al., 2003). These subtypes can be classified into high-risk

and low-risk types depending on whether or not they promote

the development of malignant lesions. Low-risk HPV types do

not cause cancer but can cause genital warts. In contrast, only

12 high-risk HPV types are oncogenic (Dell et al., 2008; Aranda-

Rivera et al., 2021). The most prevalent high-risk HPV type is

HPV 16, which is associated with approximately 50% of cervical

cancer cases, followed by HPV 18 and HPV 31 (Stuebs et al.,

2021).

Depending on the diagnosis, clinicopathological features,

and other risk factors of the disease stage, surgery or a

combination of chemotherapy and radiotherapy is included

as first-line therapy treatment (Cohen et al., 2019). Due to the

expansion of early detection methods and enhanced efficacy of

surgery and radiotherapy, the prognoses of patients with early

cervical cancer has been significantly improved. However,

most conventional treatments can only achieve therapeutic

effects on local solid tumors. The survival rates of patients

with advanced, recurrent, or metastatic cervical cancer are still

poor (Lee et al., 2019; Liontos et al., 2019). Indeed, the 5-year

survival rate of patients with cervical cancer is 60%–70% in

countries with high human development index (HDI). In

comparison, the survival rate drops to less than 20% in

countries with low HDI (Wakeham and Kavanagh, 2014).

Most antineoplastic drugs have severe side effects, limiting

their maximum tolerated dose. Together with the

development of drug resistance, this factor leads to

decreased therapeutic efficacy (Ghalkhani et al., 2022).

Therefore, it is crucial that more effective treatments

should be developed. Immunotherapy can eliminate tumors

and prevent tumor recurrence by eliciting long-term effects on

immune memory (Chen et al., 2022).

However, in the setting of cervical cancer, immunotherapy

is still associated with clinical challenges such as low

immunogenicity, inefficient targeting, and immunotoxicity

(Song et al., 2015, 20). With the rapid development of

nanotechnology, clinical diagnoses and treatments for

cervical cancer have greatly improved. For example,

nanotechnology-mediated delivery of drugs can increase

drug solubility, control drug release rates in vivo, and

improve drug stability. Also, nanotechnology-mediated

delivery systems have the ability to deliver one or more

treatments (e.g., chemotherapeutic drugs and/or

immunotherapeutic agents) to the lesion site. Additionally,

combining nanotechnology with imaging modalities can

facilitate visualization of the drug delivery process (Irvine

and Dane, 2020; Martin et al., 2020). Furthermore,

mesoporous silica and gold nanoparticles can enhance the

sensitivity of clinical cervical cancer diagnoses and enable

early detection and timely treatment (Palantavida et al., 2013;

Yin et al., 2020). In this review, we discuss the utility of

therapeutic vaccines and adoptive cell therapy in cervical

cancer immunotherapy, as well as summarize the

application of nanotechnology in this context.

Immunotherapy and cervical cancer

Immunotherapy leverages immunological principles and

methods to activate and enhance the body’s immune system.

Immunotherapy can enhance the ability of immune system to

recognize, attack, and neutralize tumor cells, thereby inhibiting

tumor growth (Duan et al., 2019; Zhang et al., 2022). The

mechanisms underlying therapeutic vaccines and adoptive cell

therapy are shown in Figure 1.

The ideal antigens for cervical cancer therapeutic vaccines

are the E6 and E7 viral oncoproteins, which are constitutively

expressed by HPV-infected host cells (Miles et al., 2017).

Following exposure to co-stimulatory molecules, antigen-

presenting cells (APCs) can uptake pathogens and present

pathogenic peptides on their surfaces, which can then be

recognized by the major histocompatibility complex (MHC)

(Purcell et al., 2007; Stark et al., 2019). Live-vector vaccines,

such as the bacterial vectors Listeria monocytogenes (Lm),

Lactococcus lactis, Lactobacillus plantarum, and Lactobacillus

casei are highly immunogenic (Bermúdez-Humarán et al.,

2004; Cortes-Perez et al., 2005; Sewell et al., 2008).

ADXS11-001 is a live attenuated Lm vaccine that generates

an immune response against the HPV 16 E7 oncoprotein.

Preliminary results from phase III clinical trials have

demonstrated the efficacy of this vaccine against recurrent

or persistent cervical cancer (Vonsky et al., 2019). The

currently available viral vaccines that target E6 and

E7 antigens include adenovirus, alphavirus, Venezuelan

equine encephalitis virus (VEER), and cowpox virus,

among others (Liu et al., 2000; Cassetti et al., 2004; Hsieh,

2004; Gomez-Gutierrez et al., 2007). For example, Cassetti

et al. (Cassetti et al., 2004) assembled HPV 16 E6/E7 genes

into a VEER vector via point mutations in order to treat an

HPV 16-related mouse tumor model. This study showed that a

cytotoxic T lymphocyte (CTL) response against E7 was

induced, resulting in tumor regression.

Peptide/protein-based vaccines have the following

characteristics: easy production, favorable safety profiles, and

storage stability (Vonsky et al., 2019). Phase II clinical trials of the

SGN-00101 vaccine (composed of HPV 16 E7 and

Mycobacterium bovis heat shock protein) have shown that it

can induce the regression of grade II and III cervical

intraepithelial neoplasia (Roman et al., 2007). Unlike peptide-

based vaccines, protein-based vaccines contain all antigenic
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epitopes of E6 and E7 and are not restricted by MHC class I.

However, both vaccines exhibit low immunogenicity and poor

stability in vivo. Lipids or other adjuvants should be added to

enhance their immune efficacy (Menderes et al., 2016; Smalley

Rumfield et al., 2020).

Nucleic acid-based vaccines can be classified as DNA or

RNA vaccines. The vaccines inhibit carcinogenesis by

maintaining immunogenicity (e.g., by mutating or

recombining oncogenes) (Choi et al., 2020; Turinetto et al.,

2022). However, the vaccines containing intact E6/E7 gene

fragments carry the risk of cell transformation. Specific

human leukocyte antigen epitopes can be expressed by

mutating the p53/pRB binding site in E6/E7 or by changing

the gene sequence, but does not produce antigen protein to

circumvent this hazard (Öhlschläger et al., 2006; Brinkman

et al., 2007). Nucleic acid vaccines are not only stable and

easily produced, but also can be administered repeatedly.

However, they are less immunogenic and diffuse, and show

low immunogenicity. Adjuvants, combination treatments,

and multiple vaccination methods should be needed to

enhance immunogenicity (Menderes et al., 2016).

Unlike the other three vaccines, dendritic cell (DC)-based

vaccines are the only vaccines that can activate naive T cells.

In vitro, DCs can be sensitized with viral peptides, DNA, or

RNA. Subsequently, HPV antigens are loaded in a vaccine

and inject into the body to increase the efficacy of antigen

presentation (Kumbhari et al., 2020; Fu et al., 2022). DC-

based vaccines can also be used as delivery adjuvants to

enhance T cell-mediated immunity in HPV-associated

lesions. However, due to their complexity and costly

production, these vaccines cannot be produced on large

scale (Zeng et al., 2018).

Adoptive cell therapy (ACT) involves the amplification of

highly effective tumor-reactive cells collected from patients

through in vitro activation or genetic engineering

transformation. ACT is a form of personalized medicine

that can amplify the immunity of many cell types,

including chimeric antigen receptor-natural killer cells

(CAR-NKs), cytokine-induced killer cells (CIKs), tumor-

infiltrating lymphocytes (TILs), T cell receptor-T cells

(TCR-Ts), and chimeric antigen receptor-T cells (CAR-Ts)

(Ye et al., 2017; Yeh et al., 2017; Rohaan et al., 2019). The

preparation of T cell receptors are complicated in vitro, which

are required presentation by the MHC system. So it is difficult

to produce on a large scale (Dai et al., 2019). In contrast, CAR-

NKs can kill a broad spectrum of tumor cell types efficiently

and without pre-sensitization. Studies have shown that

increasing proportion of NKs in the external environment

FIGURE 1
The mechanisms of therapeutic vaccines and adoptive cell therapy for cervical cancer.
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of cervical cells can ablate HPV colonization and suppress

infection in tissues, thereby preventing cervical intraepithelial

neoplasia from progressing (Lucena et al., 2016).

Application of nanotechnology in
immunotherapy of cervical cancer

Nanotechnology can be used for passive targeting systems

because of the enhanced permeability and retention (EPR) effect.

In addition, it can enhance the ability of active targeting via surface

modification of targeted molecules. Applying nanotechnology

enables drugs, antibodies, and immunomodulators to be enriched

at the tumor site (Shi and Lammers, 2019; Liu et al., 2021).

Subsequently, it reverses immunosuppression in the tumor

microenvironment (TME) and activates tumor-specific cytotoxic

T cells, thereby improving the efficacy of immunotherapy (Figure 2)

(Zhang et al., 2012; Batty et al., 2019). Currently, nanotechnology

carriers commonly used for cervical cancer immunotherapy include

lipid carriers, polymeric nanoparticles, inorganic nanoparticles, and

exosomes. The advantages and limitations of these methods are

shown in Table 1.

Lipid-based nanocarriers

Lipid-based nanocarriers are safe and exhibit good

biocompatibility. Liposomes are closed, spherical vesicles with

a bilayer membrane structure, which are consisted of natural

phospholipids (soy phospholipids and lecithin), synthetic

phospholipids, or cholesterol (Luiza Ribeiro de Souza et al.,

2012). Liposomes can be prepared via the film dispersion,

reverse evaporation, chemical gradient, hot-melt, and solvent

injection methods. Depending on the preparation technique,

single unilamellar vesicles (SUVs), large unilamellar vesicles

(LUVs), or multivesicular liposomes (MLVs) can be obtained.

The particle size of liposomes is typically ranging 20 nm to a few

microns (Al-Jamal et al., 2008; Filipczak et al., 2020). Because of

the amphipathic nature of liposomes, water-soluble and lipid-

soluble components (e.g., chemotherapeutic drugs, plant

extracts, and immune cytokines) can be encapsulated in

liposomes. Meanwhile, specific ligands of tumor cell receptors

are loaded onto the liposome surfaces in order to improve

targeting ability (Filipczak et al., 2020). For example, Chen

et al. (Chen and Huang, 2008) developed an improved

liposome N-[1-(2,3-Dioleoyloxy) propyl]-N,N,N-

trimethylammonium chloride (DOTAP)/E7 lipopeptide

vaccine to treat HPV-positive tumors. Compared to natural

E7, this vaccine reduced the amount of antigen required to

inhibit tumor growth and improved the production of

functional CTL responses. Additionally, Karimi et al. (Karimi

et al., 2020) combined an late HPV capsid protein (L1)/E6/

E7 recombinant gene with Archaeosomes to produce an

Archaeosome-L1/E6/E7 vaccine for in vivo evaluation. They

found that Archaeosomes resulted in an approximately 3-fold

increase in apoptosis levels compared to L1/E6/E7 recombinant

gene. It also promoted immune responses to DNA vaccines and

exhibited inhibitory activity on tumor cells.

Lipid nanoparticles contain natural or synthetic solid

lipids, liquid lipids, and surfactant carrier molecules. Drugs

are adsorbed or encapsulated in the lipid core to form particles

of 50–1,000 nm in size, which in turn can be prepared by

extrusion, ultrasonic, or homogenization methods (Sheoran

et al., 2022). Due to the use of electroporation during the

transfer of CAR-encoding mRNA into T cells, the integrity

CAR-T plasma membrane were compromised, which reduces

FIGURE 2
Nanotechnology-mediated immunotherapy for cervical cancer.
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the next gene expression (Guevara et al., 2020). Patel et al.

(2022) developed ionizable lipid nanoparticles to deliver

CAR-encoding mRNA into T cells, producing functional

CAR-T cells with enhanced tumoricidal activity. The core

cavity is more suited to the encapsulation of oligonucleotide

drugs, whereas other lipid carriers are more suitable for small

molecule inhibitors or lipids. For example, Kranz et al. (2016)

found that using lipid carriers such as 1,2-dioleoyl-sn-glycero-

3-phosphoethanolamine, [1-(2,3-dioleyloxy) propyl]-N,N,N-

trimethylammonium chloride, and cholesterol. The uptake

and expression of different macrophage populations in

lymphoid organs can be enhanced by modulating the

negative net charge of the nanoparticles.

Polymeric nanoparticles

Polymeric nanoparticles are artificial spherical nanoparticles

that generally range from 10 to 500 nm in size. They can be

prepared by numerous methods including emulsification,

aggregation, coacervation, and the supercritical antisolvent

technique, among others (Ali, 2020). Polymeric nanoparticles

have different classifications according to their structural and

functional properties, such as number of polymeric monomers

can be classified as unimolecular and multimolecular. Block

polymers can be classified as single- and composite-

component polymers. Also, most polymeric materials have

large molecular weights (Castro et al., 2022). During the

TABLE 1 Advantages and limitations of nanotechnology.

Nanotechnology Advantages Limitations References

Lipid-based
nanocarriers

PEGylated liposome Improve bioavailability Low cellular uptake (Ishida et al., 2003; Mishra
et al., 2004)

Biodegradability Accelerated blood clearance
phenomenon

Biocompatibility

Tween 80 modified
liposomes

High physical stability Easy to hemolysis phenomenon (Thumrongsiri et al., 2022)

Enhanced blood-brain barrier permeability Only suitable for intramuscular
injection

Lipid Nanoparticles High encapsulation efficiency Difficult to achieve industrial
production

(Yang et al., 2013)

Improve bioavailability

High physical stability

Biocompatibility

Polymeric
nanoparticles

PLGA nanoparticles Biocompatibility Low drug loading (Pandita et al., 2015)

Enhance controlled and prolonged effects of
drug release

PAMAM nanoparticles High transfection efficiency Existence of cytotoxicity (Choi et al., 2004; Li et al.,
2021)

Proton sponge effect

Inorganic
nanomaterials

AuNPs High physical stability Toxic effect on the biological system (Artiga et al., 2019)

Ultra-small size, large surface area-to-volume
ratio and high reactivity

Low permeability

Easy surface modification

Mesoporous silica
nanoparticles

Biocompatibility Uncertainty between particle size and
toxicity

(Shahabi et al., 2015)

Large surface area-to-volume ratio

Porous structure

Exosomes Genetic engineering
modified exosomes

Biocompatibility The drug loading process was not
controllable

(Stremersch et al., 2016)

High biological permeability Existence of cytotoxicity

High targeting

Chemically modified
exosomes

Simple preparation Functional proteins that may damage
membrane surface

(Haney et al., 2015)

Controllable process
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formation of nanoparticles, hydrophobic drugs can be

encapsulated in the inner core thereby protecting them in the

systemic circulation (Kim et al., 2016). Moreover, the hydrophilic

shells of polymeric nanoparticles can be modified with active

targeting ligands, which can aggregate drugs at tumor sites and

improve the therapeutic potentials of chemotherapeutic drugs

(Ke et al., 2014). Polymeric materials are characterized by good

biodegradability and biocompatibility. Such as polylactic acid,

poly (D,L-lactide-co-glycolic acid) (PLGA), and polyglutamic

acid which have been extensively investigated for cancer

prevention and immunotherapy (Pan et al., 2013; Sadr et al.,

2018). For example, co-delivery of an HPV 16 E7 DNA vaccine

with interleukin-12 (IL-12) using chitosan increased DNA

vaccine E7-specific lymphocyte proliferation and CTL activity

(Tahamtan et al., 2018). Moreover, the combined action of

chitosan and IL-2 increased HPV 16 L1 antibody titers and

mucosal protection (Ma et al., 2015). Additionally,

Nagapoosanam et al. (Nagapoosanam et al., 2019) loaded

targeted hTERT and siRNA onto PLGA nanoparticles. The

nanocarriers enabled the stable release of siRNA for 72 h and

significantly accelerated HeLa cell apoptosis. Finally, Galliverti

et al. (Galliverti et al., 2018) combined an HPV E7 synthetic long

peptide with ultrasmall polymeric nanoparticles to promote the

infiltration of CD8+ T cells. Accompanied aggregation of

regulatory T cells was not observed, contributing to the

enhanced antineoplastic effects of this vaccine.

Inorganic nanoparticles

Inorganic nanomaterials are composed of inorganic

substances with structural units of at least one nanoscale

dimension in three-dimensional space (typically 1–100 nm)

(Meena et al., 2020). Inorganic nanoparticles can be prepared

via the chemical co-precipitation, microemulsion, and pyrolysis

methods (Islam et al., 2012). Inorganic nanoparticles are widely

used in drug delivery and tumor therapy due to their unique

physical and chemical properties, ease of surface modification,

and good biocompatibility (Hao et al., 2020). The primary

inorganic nanoparticles used in the context of HPV-related

diseases are copper oxide, silica, gold, and zinc oxide (Bayda

et al., 2018). For example, Yang et al. (2021) developed a novel

nanocomposite, polyethyleneimine-modified dendritic

mesoporous silica nanoparticle that was loaded with

microRNA-125a. This particle showed excellent cellular

uptake capacity in the TC-1 cervical cell line. Intratumoral

injection synergistically enhanced immune responses and

reversed the immunosuppression. Also, it enhanced the

infiltration of NKs and CD8+ T cell. In addition, Yi et al.

(2016) developed suppression-targeted gold nanoparticles

(AuNPs) by loading monodispersed unimer polyion

complexes—which consisted of therapeutic siRNA, cyclic Arg-

Gly-Asp, and blocking cations—onto AuNPs. These particles not

only effectively delivered the HPV E6-targeting siRNAs, but also

suppressed xenograft tumors derived from HeLa cells. Finally,

Dey et al. (2020) found that chitosan-conjugated copper oxide

nanoparticles could inhibit the proliferation of cervical cancer

cells and promote the infiltration of CD4+ T cells by triggering

humoral IgG-dependent immune responses and activating

immune cells to induce cellular immunity.

Exosomes

Exosomes are small intranuclear particles with a lipid bilayer

structure. These extracellular vesicles typically exhibit a cup-

shaped morphology and a diameter of approximately 30–150 nm

(Raposo and Stoorvogel, 2013). Exosomes can be secreted by

various cell types such as tumor cells, lymphocytes, and DCs.

They are ubiquitous in body fluids such as blood, urine, and

cerebrospinal fluid (Rashed et al., 2017; Wu et al., 2021).

Exosomes can facilitate signal transduction between immune

TABLE 2 Clinical application of nanotechnology-based therapy for cervical cancer.

Therapeutic agents Therapeutic
method

Pathways Phase/
Status

Trial
number

References

Liposomal HPV-16 E6/
E7 Multipeptide Vaccine PDS0101,
Cisplatin

Immunotherapy and
chemoradiation

JAK/STAT II/Recruitment NCT04580771 (Gutiérrez-Hoya and Soto-Cruz,
2020; Smalley Rumfield et al., 2020)

Pegylated liposomal doxorubicin
hydrochloride, Carboplatin

Chemotherapy Bcl-2 I-II/
Completed

NCT00032162 (du Bois et al., 2007; Xia et al., 2020)

Nanoparticle Albumin-Bound
Rapamycin

Immunotherapy PI3K/Akt/mTOR Early I/
Completed

NCT02646319 (Jain et al., 2021; Zhang et al., 2021)

BIND-014 (docetaxel nanoparticles for
injectable suspension)

Chemotherapy PI3K II/Terminated NCT02479178 (Von Hoff et al., 2016; Liu et al.,
2019)

Irinotecan liposome, apatinib, PD-1
antibody

Chemoradiation,
immunotherapy

PI3K/Akt/mTOR,
PD-1/PD-L1

II/Completed NCT04569916 (Boussen et al., 2010; Guo et al., 2020;
He et al., 2021)
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cells, thereby activating downstream effector cells. It enables the

presentation of tumor-specific antigens to the immune system

and inhibits tumor immune escape (Rodrigues et al., 2018).

Bioactive components (e.g., drugs, nucleic acids, and proteins)

can be encapsulated into exosomes via membrane fusion,

electroporation, genetic engineering, and ultrasound loading to

achieve targeted drug delivery to specific cells or tissues

(Chakravarti et al., 2020). For example, Chen et al. (2018)

developed a DC-derived exosome (Dexo) loaded with the E7

(49–57) peptide. Dexo effectively induced the cytolytic activity of

CD8+ T cells against TC-1 cervical cancer cells in vitro. Also, it

induced the proliferation of CD8+ T cell and the secretion of

interferon γ. In addition, the Dexo vaccine promoted E7 antigen-

induced immune responses in the splenocytes of immunized

mice. Furthermore, Cenik et al. (2022) demonstrated that

docetaxel-loaded exosomes (Exo-Doc) could reduce docetaxel

dosage and toxicity. At the same time, they induced

mitochondrial apoptosis in HeLa cells and increased the

metastasis of resistant cells. Finally, Roy et al. (2022)

identified adipocyte-derived stem cell exosomes (ACS-exos).

Delivery of microRNA-7 to cervical cancer cells with ACS-

exos induced downregulation of X-linked inhibitor of

apoptosis protein. This study showed that the successful

isolation and transfection of exosomes are critical to the use

of exosomes for cancer therapy. Moreover, exosome-loaded

nucleic acids can be delivered to target cells, leading to altered

protein expression.

Conclusion

In this review, we discuss the application of therapeutic

vaccines and adoptive cell therapy to cervical cancer.

However, immunotherapy for cervical cancer is marred by

challenges such as low immunogenicity, poor targeting, and

immunotoxicity. In our summary, we found that the

combination of nanotechnology and immunotherapy can

eliminate the adverse effects of immunotherapy agents and

improve their therapeutic efficacy in cervical cancer. However,

these nanotherapeutic agents are still in the preclinical stages of

development (Table 2). Due to uncertainty concerning the EPR

effect in tumor tissues of different patients, it is unknown

whether nanotechnology will improve drug delivery in tumor

tissues. Moreover, many challenges remain with respect to

translating industrial products to the clinic. Therefore, this

review describes a foundation for nanotechnology-mediated

cervical cancer immunotherapy. Further research pertaining to

the large-scale production, safety, and stability of nanocarrier-

loaded immunotherapeutics is needed.
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