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Hypoxia-inducible factors (HIFs), central regulators for cells to adapt to low

cellular oxygen levels, are often overexpressed and activated in breast cancer.

HIFs modulate the primary transcriptional response of downstream pathways

and target genes in response to hypoxia, including glycolysis, angiogenesis and

metastasis. They can promote the development of breast cancer and are

associated with poor prognosis of breast cancer patients by regulating

cancer processes closely related to tumor invasion, metastasis and drug

resistance. Thus, specific targeting of HIFs may improve the efficiency of

cancer therapy. In this review, we summarize the advances in HIF-related

molecular mechanisms and clinical and preclinical studies of drugs targeting

HIFs in breast cancer. Given the rapid progression in this field and

nanotechnology, drug delivery systems (DDSs) for HIF targeting are

increasingly being developed. Therefore, we highlight the HIF related DDS,

including liposomes, polymers, metal-based or carbon-based nanoparticles.
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1 Introduction

Breast cancer (BC) is one of the major diseases affecting

women’s health and the leading cause of female death worldwide.

According to the Global Cancer Statistics 2020 report, in terms of

morbidity, the number of new cases of BC in 2020 reached

2.3 million, accounting for about 11.7% of the total cases (Sung

et al., 2021). Triple-negative breast cancer (TNBC) is defined as

BC lacking expression of estrogen (ER), progesterone (PR) and

human epidermal growth factor receptor 2 (HER2) and is

classified as one of basal-like BC (BLBC) (Wolff et al., 2013).

BC treatment is divided into systemic and localized treatment

based on BC subtype and degree of metastasis. For non-

metastatic BC, local therapy is mainly used to eradicate the

tumor through surgical resection and radiotherapy, while for

metastatic BC or more aggressive triple-negative BC, systemic

therapy consisting of chemotherapy and immunotherapy are

used to prevent tumor metastasis and recurrence (Waks and

Winer, 2019). Although surgery, radiotherapy, chemotherapy,

targeted therapy, and immunotherapy have improved the

survival and quality of life of BC patients in recent decades,

the mortality rate of BC is high due to lack of therapeutic targets

and chemotherapy resistance. Therefore, finding effective

therapeutic targets and reducing drug resistance are

indispensable in the treatment of BC (Veronesi et al., 2005;

Barzaman et al., 2020).

The rapid proliferation of the tumor beyond its surrounding

vasculature results in the normal oxygen level to drop to less than

2%, and the areawith low oxygen is called the hypoxic area.Hypoxia

promotes tumor plasticity and heterogeneity and a more aggressive

and metastatic phenotype, which is seen in many solid tumors and

is an important feature of the BC tumor microenvironment (Harris,

2002). Hypoxia-inducible factor (HIF) is a key marker of hypoxia

and a core player involved in cell adaptation to hypoxia (Huang

et al., 2017; Rani et al., 2022). Recently, nanoparticles (NP), as an

effective drug delivery method have attracted special interest for

cancer treatment. Various ongoing studies aim to optimize this

method to ultimately reduce adverse reactions caused by traditional

methods. So far, the NP used in drug delivery research for targeting

HIF in BC includes liposomes NPs, polymers NPs, metal-based NPs

or carbon-based NPs. Using NP for drug delivery has many

advantages: 1) It improves the problems related to poor drug

solubility and bioavailability; 2) It enhances the permeability of

targeted drugs to cancer cells and slowly releases drugs; 3) NPs are

very small (1–100 nm), non-toxic, biodegradable, and cancer drugs

can be easily loaded onto these particles; 4) Delivery of multiple

drugs with differing properties can be achieved (Farokhzad and

Langer, 2009; Burgess et al., 2010). Compared with standard

chemotherapy methods, nano carriers can significantly reduce

the damage to healthy cells and tissues. Therefore, nano carriers

may be used in clinical applications in the future in NP based drug

delivery system (DDS) or in combination therapy. The main

purpose of this review is to briefly summarize the mechanism of

HIF-1 mediated angiogenesis, glycolysis, metastasis and drug

resistance. Furthermore, we discuss the current therapeutic

strategies targeting HIF-1, including HIF-1α inhibitors in

preclinical and clinical studies, as well as small molecules

targeting HIF-1α related signaling pathway. In addition, we

emphasize the current progress in HIF related drug delivery

systems.

2 Materials and methods

2.2 Data and processing

The expression profile and related clinical follow-up

information of BRCA were download from The Cancer

Genome Consortium (TCGA) database. A total of 1098 tumor

samples and 113 normal samples were included.
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2.2 Expression analysis

The expression of HIF1A in different subgroups wasmatched

by clinical annotation information. All statistical analyses were

implemented by R (v4.1.3) language. Statistical differences

between each two subgroups were calculated by Wilcoxon test.

2.3 Literature search

We mainly used “NCBI-Pubmed” to conduct online

literature search of all articles published in English over the

past 10 years. The search words include “hypoxia and HIF”, “HIF

and breast cancer”, “HIF and angiogenesis and breast cancer”,

“HIF inhibitor and breast cancer”, sorted by “best match”. Search

results were selected by year ranging from the most recent to the

earlier ones and also by impact factor of the article. Clinical

studies were searched by key words “HIF and breast cancer” and

article type set as clinical trials in Pubmed and also searched in

ClinicalTrials.gov.

3 Hypoxia-inducible factors

Hypoxia-inducible factors (HIFs) are transcription factor

responsible for activation of hypoxia genes. They are

heterodimers belonging to the basic helix-loop-helix/Per-Arnt-

Sim (bHLH/PAS) transcription factors, which are composed of

an oxygen-regulated 120 kDa α subunit, and an oxygen-

independent 91–94 kDa β subunit (Loboda et al., 2010). Three

HIF-α subtypes (HIF-1α, HIF-2α and HIF-3α) have been

reported, HIF-1α is the most classical and widely studied

(Konisti et al., 2012). HIF-1α and HIF-2α share 48% amino

acid sequence homology and similar domain arrangement, while

there are different hypoxia-sensitivities for different prolyl

hydroxylase sites (Pro564 and Pro402 in HIF-1α, Pro405 and

Pro531 in HIF-2α) (Iyer et al., 1998; Jokilehto and Jaakkola,

2010). HIF-1α is thought to be a key coordinator of cancer cell

responses to the hypoxic microenvironment by regulating

metabolic reprogramming, angiogenesis, stem cell

maintenance, matrix remodeling, metastasis and resistance to

chemoradiotherapy (Schito and Semenza, 2016). Numerous

studies have shown that the expression of HIF-1α was

elevated in BC and high expression of HIF-1α predicts poor

patient survival (Talks et al., 2000; Rajkovic-Molek et al., 2014;

Cui and Jiang, 2019; Shamis et al., 2021). By analyzing TCGA

data, we found that HIF-1α was highly expressed in TNBC.

Moreover, its expression was higher in ER- and PR-compared

with ER+ and PR + BC respectively (Figure 1). HIF-2α may play

an important role in a variety of cells other than endothelial cells

as well as in tumorigenesis Hu et al., 2003). HIF-3α mainly

depends on other HIF complexes (Bristow andHill, 2008). Under

normal microenvironment, the HIFα-subunit is degraded with

the aid of E3 ligase through hydroxylation by prolyl hydroxylase

domain protein (PHD) and polyubiquitination of VonHippel-

Lindau (VHL). Factor-inhibiting HIF-1α (FIH-1) is another

transcriptional regulator of HIF-1α and HIF-2α, which

interferes the binding of HIF to co-transcription factors (Rani

et al., 2022). Under hypoxic conditions, PHD activity is reduced.

So, HIF-α in cytoplasmic is accumulated and translocated to the

nucleus, where α subunit dimerizes with β-subunit and induces

transcription of target genes by binding to hypoxia response

elements (HREs) in promoters (Figure 2) (Wang et al., 1995;

Semenza, 2014; de Heer et al., 2020). Recently, it has been

described that, HIF-1α and HIF-2α can be regulated in an

oxygen-independent by regulators such as hypoxia-associated

factor (HAF), small ubiquitin-related modifier (SUMO)-specific

protease 1 (SENP1), and Int6/eukaryotic initiation factor (eIF) 3e

(Hashimoto and Shibasaki, 2015). Enhanced expression of HIF-

targeted genes is associated with many human diseases, including

ischemic cardiovascular disease, stroke, chronic lung disease, and

cancer (Semenza et al., 2000).

4 HIFs in the microenvironment of BC

TME is a complex network composed of different cell types,

signaling molecules, and extracellular matrix components, which

together coordinate tumor progression (Catalano et al., 2013).

The cellular components of the TME include cancer cells,

surrounding immune cells and endothelial cells, cancer

associated fibroblasts (CAFs), etc. (Spill et al., 2016; Del Prete

et al., 2017). Similar to most solid tumors, hypoxia is an inherent

property of the BC TME. HIF-1, as the driver of hypoxia, plays a

key role in the activation of CAFs and it promotes persistent

chronic inflammation in the TME (Whitaker-Menezes et al.,

2011; Martinez-Outschoorn et al., 2014; Mao et al., 2021). In

addition, immune evasion is considered to be one of the main

strategies for tumor survival in the TME. HIF-1 signaling

suppresses the immune system in the hypoxic TME, allowing

cancer cells to evade immune responses by triggering the

expression of immunosuppressive molecules (Barsoum et al.,

2014; Semenza, 2014; Schito and Semenza, 2016; Jiang et al.,

2019; You et al., 2021). Activation of the HIF signaling pathway

maintains oxygen homeostasis by mediating the expression of

multiple genes involved in regulating many critical functions of

cells, including growth, metastasis, drug resistance, and

maintenance of stemness (Bao et al., 2012; Semenza, 2017;

Chen et al., 2020).

4.1 The association of HIFs and
angiogenesis in BC

When in the initial stage of tumor growth (tumor

volume <0.5 mm), tumor obtains nutrients and oxygen by
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diffusion, when tumor masses grow larger than 0.5 mm,

nutrients obtained by diffusion are insufficient to sustain

tumor growth, and new vasculature is formed to maintain the

growth state (Hanahan and Weinberg, 2000). Activation of this

“angiogenic switch” will form a new vasculature, which is

inevitable for the growth and metastasis of malignant tumors

(Hanahan and Folkman, 1996). Compared to normal tissue,

tumor vascular distribution results in abnormal vascular

distribution (dilated, tortuous, disorganized) and dysfunction

(hyper penetration, edema) (Rapisarda and Melillo, 2012;

Viallard and Larrivee, 2017). And tumor angiogenesis

perfusion is reduced, which in turn exacerbates the hypoxic

environment and maintains HIF-1α stability (Rey et al., 2017).

Angiogenesis is also known as basic condition for tumor

progression, proliferation and metastatic spread. HIFs is an

important hub for regulating angiogenesis (Hashimoto and

Shibasaki, 2015; Olejarz et al., 2020). BC angiogenesis can be

activated by HIFs-mediated downstream pathways, primarily

vascular endothelial growth factor (VEGF) (Darbeheshti et al.,

2021). VEGF as one of the key downstream targets of HIFs

pathway belongs to the endothelial growth factor family and

plays a central role in angiogenesis through its effects on

endothelial cell migration, proliferation, permeability and

survival (Semenza, 2000; Schoppmann et al., 2006; Kallergi

et al., 2009; Ahluwalia and Tarnawski, 2012; Saponaro et al.,

2013). A study showed that RAB11B-AS1, a long noncoding

RNA, enhances the expression of VEGFA and ANGPTL4 in

hypoxic BC cells in a HIF2α-dependent manner, leading to

tumor angiogenesis and metastasis (Niu et al., 2020). Research

evidence has also shown that hypoxia could induce the HIF-1α/
G-protein estrogen receptor (GPER) in CAFs, which regulates

VEGF and finally elicit hypoxia-dependent tumor angiogenesis

(De Francesco et al., 2013). It has also been shown by Kallergi

et al. (2009) that HIF-1α co-express with VEGF in patients with

metastatic breast cancer. The direct link between HIF-1α and

VEGF suggests that HIF-1α has a profound role in angiogenesis,

Anti-angiogenic therapies such as VEGF inhibitor may cause

drug resistance by increasing intratumoral hypoxia and

upregulating HIF-1α. Clinical trials have been designed to test

the efficacy of bevacizumab combined with HIF-1α to conquer

drug resistance (Falchook et al., 2014; Jeong et al., 2014).

4.2 The association of HIFs and glycolysis
in BC

Increasing research evidence suggest that cancer is not only a

genetic disease but also a metabolic disease, in which glycolysis is

an important player. It has long been recognized that although

there are adequate oxygen levels in the TME, the metabolic

demands of cancer cells are shifted from aerobic respiration to

the uptake of glycolytic glucose, the reprogram known as the

FIGURE 1
HIF-1α expression in different types of breast cancer tissue samples compared with normal tissue from TCGA database.
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Warburg effect. Another study also showed that HIF-1α may

drive glycolysis independent of hypoxia TME, the targets of HIF-

1in the glycolytic pathway include hexokinase 2 (HK2), lactate

dehydrogenase A (LDHA) and glucose transporter 1 (GLUT1,

also known as solute carrier family A1, SLC2A1), and accelerate

the process of glycolysis by downregulating the expression of

enzymes of the tricarboxylic acid cycle, the factors that contribute

to this situation may be pyruvate kinase isoform M2 (PKM2)

physically interacts with HIF-1 and stimulates HIF-1 activity, but

not pyruvate kinase isoform M1 (PKM1) (Christofk et al., 2008;

Luo et al., 2011). When cancer cell metabolism is shifted to

aerobic glycolysis, pyruvate is replaced by lactate and released

into the TME, creating an immunosuppressive environment that

promotes tumor cell growth, metastasis and invasion (Liberti and

Locasale, 2016; El-Sahli and Wang, 2020).

Hexokinase 2(HK2) is an enzyme that catalyzes the

phosphorylation of hexose, it is the first and the rate-limiting

enzyme of the glycolytic pathway. CircRNF20 is a 499 bp

circular RNA derived from RNF20 Gene that can promote

tumor progression via miR-487a/HIF-1α/HK2 in BC (Cao et al.,

2020). O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a

type of glycosylation, which regulates glycolysis via HIF-1α/
GLUT1 signal pathway in BC cells (Ferrer et al., 2014). Circular

RNA circRBM33 inhibits the expression of downstream glycolysis-

related proteins (HK2, GLUT1) through the miR-542-3p/HIF-1α
axis, thereby preventing glycolysis and promoting BC cell apoptosis

(Jiang et al., 2022). However, other studies have shown that Pyruvate

dehydrogenase kinase 1 (PDK1) is a key switch of tricarboxylic acid

(TCA) cycle in mitochondria. Signal-induced proliferation-

associated 1 (SIPA1), a member of Rap1GAP family, promotes

FIGURE 2
Regulation of HIF under normoxic and hypoxic conditions. When oxygen is abundant, HIF is hydroxylated by prolyl hydroxylase domain protein
(PHD) enzymes at two specific proline residues, enabling it to bind VHL. VHL targets hydroxylated HIF subunits for ubiquitin-mediated proteasomal
degradation. Under hypoxic conditions, inactivation of PHD and FIH-1 results in HIF stabilization and translocation into the nucleus where it stabilizes
and dimerizes with HIF-1β, which together with the co-transcription factors p300 and CBP, drives hypoxia Transcription of target genes of
response elements (HREs).
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aerobic glycolysis by regulating the SIPA1/HIF-2α/PDK1 axis,

leading to tumor invasion and metastasis in vivo (Yao et al.,

2021). Therefore, HIF-1 α plays an important role in glucose

metabolism, and providing energy for cancer cells by controlling

glucose metabolism may be another promising pathway.

Interestingly, here is a view that the ‘glycolytic switch’ occurs

before the angiogenesis. Glycolysis could induce HIF-1α
accumulation leading to high expression of VEGF (Figure 3)

(Zare et al., 2021). Studies have reported that aerobic glycolysis

can induce angiogenesis by producing lactate to acidify the

extracellular environment and promote VEGF expression (Shi

et al., 2001; Jung et al., 2011). Another study also suggested that

lactate and pyruvate, the end products of glycolysis, regulate

VEGF expression by increasing HIF-1α accumulation (Lu et al.,

2002).

4.3 The association of HIFs with EMT and
metastasis in BC

Tumor metastasis is a process by which cancer cells spread

from the initial site of primary tumor growth to distant organs,

where they survive, proliferate and form secondary tumors. EMT

is an important part of tumor metastasis. It is the process of

transformation from epithelial cells to cells with a mesenchymal

phenotype through a specific program (Lee et al., 2006; Lee et al.,

2011). Cancer cells that undergo EMT have strong invasive

capacity and are resistance to apoptosis (Suarez-Carmona

et al., 2017). Hypoxia is often an environmental feature of

EMT, and activated HIF-1α induces cancer EMT through

multiple molecules and pathways, including inflammatory

cytokines, epigenetic regulators, and transcription factors (Bao

et al., 2012). One study has shown that hypoxia induces HIF-1α
expression, which induces the expression and activity of major

transcription factors including TWIST, Snail, Slug, SIP1, STAT3,

and ZEB, leading to the suppression of E-cadherin and induction

of vimentin in BC cells. Inhibition of HIF-1α significantly

enhanced the expression of E-cadherin (Zhou et al., 2016).

Another report also revealed that hypoxia promoted the

expression of Slug and Snail and decreased E-cadherin during

HIF1-induced EMT through Notch pathway (Chen et al., 2010).

He et al. (2020) demonstrated that hypoxia-induced HIF-1α
regulated BC cells migration and EMT through the MiR-338-

3p/ZEB2 axis. Moreover, research evidence showed that HIF-1α

FIGURE 3
Hypoxia-inducible factor-1α promotes glycolysis by regulating key enzymes in the process of glycolysis, which produces lactic acid
acidificationmicroenvironment and affects glucosemetabolism, thus promoting vascular endothelial growth factor expression and angiogenesis. In
addition, HIF-1 α can also directly regulate tricarboxylic acid cycle and affect glucose metabolism with glycolysis-independent method.
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and integrin-linked kinase (ILK) formed a regulatory feedback

loop which promoted EMT by modulating the expression of

various EMT regulators/makers, including Snail, Zeb1,

E-cadherin, and vimentin (Chou et al., 2015). Moon et al.

(2021) found that MRPL52 acted as a transcriptional target of

hypoxia-inducible factor (HIF-1α) and MRPL52 augmented

epithelial-mesenchymal transition, migration and invasion of

hypoxic BC cells by activating the ROS-Notch1-Snail signaling

pathway. Angiopoietin-like protein ANGPTL4 is also a HIF-1α
target that promotes lung metastasis when overexpressed in BC

cells (Zhang et al., 2012). The above evidence suggested that HIF-

1α acted as a crucial regulator of hypoxia induced EMT and

metastasis through various mechanisms. In addition,

angiogenesis is associated with metastasis because permeability

and heterogeneous vascular systems contribute to the

extravasation of tumor cells into normal tissues to escape the

harsh hypoxia environment as shown in Figure 4. Metastasis is a

major prognostic challenge for BC patients, and it may be a

feasible way to inhibit BC metastasis by targeting HIF-1 α.

4.4 The association of HIFs and cancer
stemness of BC

Cancer stem cells (CSCs) are a small subset of solid tumor cells

with self-renewal and differentiation properties and tumorigenic

potential and they spread to different parts of the body to form

secondary tumors (Bai et al., 2018). Hypoxia may contribute to the

formation of CSCs niches within tumors. Studies have confirmed

thatHIF targeting of cancer cell stemness-related genesmay be a key

inducer of stemness dynamics under pathological conditions. By

increasing the expression of HIFs and enhancing the activity of

HIFs, tumor cells acquire a stem phenotype and reach a higher

degree of malignancy (Mohyeldin et al., 2010; Mathieu et al., 2011;

Conley et al., 2012). Study has shown that the percentage of BC stem

cells (BCSCs) is increased in a HIF-1 -dependent manner (Xiang

et al., 2014). CD47 is a ubiquitously expressed cell surface

glycoprotein belonging to the immunoglobulin superfamily,

which is closely related to the self-renewal, tumorigenesis and

chemotherapy resistance of BCSCs. When BC cells are in a

FIGURE 4
HIF-1α regulates the angiogenesis andmetastasis of BC. HIF-1α promotes angiogenesismainly by stimulating VEGF transcription, and promotes
BC metastasis through EMT process. Angiogenesis can also promote transfer to normal tissues.
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hypoxic environment,HIF induces theCD47 expression to promote

breast CSC phenotype (Zhang et al., 2015). As a widely distributed

transmembrane glycoprotein, CD44 is one of the important

markers of CSCs. It has been reported that down-regulation of

HIF-2α expression can reduce the stemness of BC cells through the

CD44/PI3K/AKT/mTOR signaling pathway (Zhang et al., 2015).

Moreover, HIF-1α can regulate BC cell stemness by regulating

CD133+ stem cell population (Schwab et al., 2012). These studies

highlight the important role of HIFs in the maintenance of BCSCs

(Figure 5).

4.5 The association of HIFs and drug
resistance in BC

Chemotherapy drugs are still the cornerstone of cancer

treatment. Their killing effect on tumor cells is oxygen-

dependent, and most of them kill cells by oxidizing free

radicals and reactive oxygen species in the cells. Long-term

or severe hypoxic conditions have been shown to promote

resistance of tumor cells to chemotherapeutic drugs (Harris,

2002; Semenza, 2007). Increased drug resistance in hypoxic

FIGURE 5
HIF-1α-mediated stemness and drug resistance. On the one hand, HIF-1α can induce drug resistance by regulating stem cell surface markers.
On the other hand, HIF-1α promotes chemotherapy resistance through drug resistance-related proteins.
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tumors has been reported both in cells and animal models.

Resistance has been attributed to the upregulation of HIF-1,

which was associated with poor overall survival (Campbell

et al., 2019; de Heer et al., 2020). The transcription of

numerous target genes can be activated by HIF-1, which

promoted physiological changes associated with treatment

resistance, including multidrug resistance 1 protein (MDR1),

multidrug resistance-related protein 1 (MRP1), and BC

resistance protein (BCRP) (Figure 5). Doublier et al.

(2012) found that HIF-1 is activated and participates in

the transcriptional activity of the MDR-1 gene, which

promotes the resistance of MCF-7 cells to doxorubicin by

regulating the MDR1/P-glycoprotein (P-gp, ABCB1) axis.

MRP1 is an organic anion transporter. Study has shown

that knockdown of HIF-1α attenuated cheomoresistance

via affecting the expressions of apoptosis-related molecules

such as Bax and Bcl-2 and drug transporters as P-gp and

MRP1 (Wang et al., 2018). Besides, HIF-1-mediated

chemoresistance is closely related to autophagy, apoptosis,

stemness and glycolysis (Mimeault and Batra, 2013; Chen F

et al., 2019; Li et al., 2020).

Collectively, these findings highlight the importance of HIFs

in carcinogenesis and progression, which have prompted the

scientific community to focus on the importance of HIF-1 and

enable the discovery of new drugs that specifically inhibit HIF-1α
or its target genes.

5 Therapeutic strategies targeting
HIF-1α in BC

Here we summarize HIF-1α inhibitors that are in clinical

trials, and various compounds that target HIF-1α or the HIF-1α
pathway in basic research. Finally, we will introduce the latest

drug delivery systems for HIF-1 α, which are designed to improve

drug selectivity and ensure drug concentration.

5.1 HIF-1α inhibitors in clinical trials

We found some clinical studies on HIF-1α-related drug

therapy for breast cancer as shown in Table 1. Unfortunately,

they did not achieve some of the expected results. Three projects

were completed in the second phase, but none of the projects

successfully collected data on the response to HIF-1 α treatment,

and two of them were terminated in advance. As for the reasons

for early termination of the study, a small sample size and a small

number of patients are the main causes, while serious adverse

events caused by non-specific cytotoxicity are another possibility.

As a result, more specific and safer preparations are needed for

targeting HIF-1α in BC in clinic, which may take some time.

5.2 HIF-1α inhibitors under investigation

Since HIF-1α is closely related to the key processes in tumor

progression and its expression is also associated with patient

survival, it is not surprising that targeting HIF-1α has been

extensively studied as possible therapeutic strategy against

cancers. At present, there are no HIF-1α inhibitors approved

by the FDA for BC treatment. The reported HIF-1α inhibitors for
BC are still in basic research, so there is still an urgent need to

discover novel HIF-1α inhibitors with sufficient potency, low

toxicity, good druggability. HIF-1α inhibitors work by

suppressing different processes in the HIF pathway: 1) HIF-1a

protein accumulation 2) DNA binding 3) transcriptional activity

4) HIF-1a translation. Small molecule inhibitors targeting HIF-

1α are shown in Table 2.

For example, based on Aryl Carboxamide Derivatives,

68 new aryl carboxamide compounds were synthesized and

inhibitory effect was evaluated by dual luciferase-reporter

assay. The results showed that compound 30 m was the most

active inhibitor with the lowest cytotoxicity. It effectively

attenuated hypoxia-induced HIF-1α protein accumulation in a

TABLE 1 HIF-1α related clinical studies in BC.

Drug Status Phase Main Outcomes Toxicity NCT
Number

Digoxin Completed Phase 2 There was not enough data to analyze HIF-1alpha
expression because of the limited tumor samples

No over grade 2 adverse event related to
digoxin occurred

NCT01763931

Vinorelbine Completed Phase 2 The study was terminated early Elevated liver enzymes (grade 3) 22.2%,
Febrile infection (grade 5) 11.1%

NCT03007992

Paclitaxel plus
bevacizumab

Completed There was no significant difference between HIF-
1alpha polymorphism and longer PFS in patients
treated with paclitaxel and bevacizumab

NCT01935102

Bevacizumab,
docetaxel

Completed Phase 2 The rate of serious adverse events is about
18.06% and the rate of other adverse events
is 98.61% in total

NCT00559754

Propofol,
Sevoflurane

Unknown Not
Applicable

NCT03005860
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TABLE 2 HIF-1α inhibitors under investigation in BC.

Compound Dose HIF-1
activity
IC50

Cell
growth
inhibition
IC50

Model Duration
of
treatment

Routes
of
administration

Type
of
study

Mechanism Results References

KC7F2 40 uM 15 uM 20 uM MCF-7 8–72 h — in vitro decrease HIF-1a protein
accumulation

Inhibit cancer cell growth
in a dose-independent
manner

Narita et al.
(2009)

LXY6090 0.4 nM-100uM 4.11 ± 0.4 nM T47D: 245.7 ±
15.2 nM; MCF-7:
352.7 ± 14.2 nM; MX-
1: 108.2 ± 2.1 nM

T47D,
MCF-7,
MX-1

16–96 h — in vitro downregulate HIF-1a
protein and mRNA level
by promoting HIF-1a
proteasome degradation

Inhibit breast cancer cells
growth dose-dependently

Lai et al. (2016)

25 mg/kg/d to
100 mg/kg/day

— — Mouse
model
(MX-1)

14 days ip in vivo depress HIF-1a
expression in vivo

Inhibit MX-1 cells
subcutaneous xenograft
tumors growth in a dose
dependent manner

Quercetin 10–100 uM — — SkBr3 1–8 h — in vitro inhibiting HIF-1a protein
accumulation

Did not affect cancer cell
activity

Lee and Lee,
(2008)

Aryl Carboxamide
Derivatives (30 m)

0.5–30 uM 0.32 uM — MDA-
MB-231

24 h — In vitro inhibit HIF-1a protein
accumulation and
promote its degradation

Suppress cancer cells
angiogenesis activity dose-
dependently, and inhibit
cancer cell invasion and
migration

Liu et al. (2019)

15–30 uM/
2 days

— — Mouse
model
(MDA-
MB-231)

3 weeks ig in vivo inhibit HIF-1a protein
accumulation

Inhibit lung colonization
of tumor cells without
obvious body weight loss
in a dose-depended
manner

LXY6006 0.1–1 uM 0.35 ±
0.11 nM

1.3–249.7 nM T47D, MD-
MBA-231,
MX-1

4–5 days — in vitro inhibit HIF-1a nuclear
accumulation

Arrest cell cycle, and hold
back cancer cells growth

Lang et al.
(2014)

LXY6006 60 or
120 mg/kg/
6 days per week

— — Mouse
model
(MX-1 or
MX-1/
Taxol)

13 days ig in vivo — Arrest both normal and
taxol-resistant breast
cancer xenograft growth
with slight body weight
loss

Aminoflavone 0.06-1uM — — MCF-7 16 h — in vitro depress HIF-1a protein
accumulation and
decreases the rate of HIF-
1α translation

Shows cytotoxic effect on
breast cancer cells

Terzuoli et al.
(2010)

Aminoflavone 60 mg/kg/day — — Mouse
model
(MCF-7)

4 days — in vivo AF inhibits HIF-1α
expression

Inhibit cancer growth

(Continued on following page)
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dose-

TABLE 2 (Continued) HIF-1α inhibitors under investigation in BC.

Compound Dose HIF-1
activity
IC50

Cell
growth
inhibition
IC50

Model Duration
of
treatment

Routes
of
administration

Type
of
study

Mechanism Results References

7-Hydroxyneolamellarin A 0.6–50 μmol/L 23.0 ±
2.6 μmol/L

— MCF-7,4T1 4–36 h — in vitro inhibit HIF-1a protein
accumulation

Suppress the cellular
migration, invasion and
proliferation dose-
dependently

Li et al. (2021)

7-Hydroxyneolamellarin A 15 mg/kg/
2 days

— — Mouse
model
(4T1)

23 days — in vivo inhibit HIF-1a protein
accumulation

Inhibit HIF-1a and breast
tumor growth with
slightly body weight effect

Li et al. (2021)

DJ12 2.5–100 uM 3.6 uM 165–250 uM MDA-468,
ZR-75,
MD435

16 h — in vitro decrease HIF-1a
transactivation and DNA
binding

— Jones and
Harris, (2006)

Cardenolides — 21.8–64.9 nM 30.5–68.8 nM MCF-7 24 h — in vitro inhibited HIF-1
transcriptional activity
dose-dependently

cytotoxic effects on breast
cancer cells

Parhira et al.
(2016)

PX-478 — — — Mouse
model
(MCF-7)

— — in vivo suppresses HIF-1a levels antitumor activity Welsh et al.
(2004)

Methylalpinumisoflavone 0.01–10 uM 0.6 μM — T47D,
MDA-
MB-231

24–48 h — in vitro inhibits HIF-1 activation
by blocking the induction
of nuclear HIF-1α protein

Inhibit tumor
angiogenesis in vitro, cell
migration, and
chemotaxis

Liu et al. (2009)
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dependent manner, which was demonstrated by its inhibitory

potency on capillary-like tube formation (Liu et al., 2019). In

another study, cardenolides were isolated and purified from latex

and giant fir fruit of Calotropis gigantea, a medicinal plant. These

cardenolides inhibited HIF-1α transcriptional activity and

exhibited potent cytotoxicity with a dose-dependent manner

in MCF-7 cells, but minimal inhibitory effect on normal

human breast cells (Parhira et al., 2016).

5.3 Small molecule compounds targeting
HIF-1α related signaling pathway in BC

Using extracts from medicinal plants and chemically

synthesized derivatives have become the current trend in drug

development. Table 3 summarizes the small molecule

compounds targeting HIF-1-related signaling pathways in BC,

which mainly act on key genes regulated by HIF-1 including

those involved in glycolysis, angiogenesis and metastasis.

For instance, Honokiol (HNK), a natural compound,

inhibited the glycolysis of BC cells and indirectly blocked

tumor growth by targeting HIF-1α/GLUT1/PDK1/
HK2 pathway (Yi et al., 2022). In another report, the

researchers synthesized ionone alkaloid derivatives and

identified the compound ION-31a with anti-metastatic activity

of BC. Although ION-31a is a heat shock protein 90 (HSP90)

inhibitor, it significantly inhibits BC metastasis and angiogenesis

by HSP90/HIF-1α/VEGF/VEGFR2 signaling pathway (Ni et al.,

2021).

5.4 Drug delivery system targeting HIF-1α
in BC

Here we highlight the HIF related drug delivery systems,

including liposomes NPs, polymers NPs, metal-based NPs or

carbon-based NPs. A few experimental drug delivery systems

targeting HIF-1α are contained in Table 4.

5.4.1 Liposomal NPs
Liposome NPs (LNPs), a kind of spherical vesicles with a size

of several hundred nanometers, can encapsulate drug molecules

with vesicles from phospholipid bilayer membranes. Liposomes

have several additional advantages as nanocarriers for drug

delivery applications. Liposomes protect the loaded drug from

degradation, reduce the rate of drug release and the toxicity of

drugs due to non-target distribution (Allen and Cleland, 1980;

Senior and Gregoriadis, 1982; Bobo et al., 2016). LNPs are also

potential delivery carriers for hydrophilic agents by

encapsulating them in the inner core.

Acriflavine (ACF) is a kind of drug that inhibits Hypoxia-

inducible factor (HIF) pathway and exerts cytotoxicity. One

study demonstrated that compared with free drug, liposome

encapsulated ACF showed similar cytotoxicity in 4T1 cells

and decreased HIF activity in vitro. Compared with free ACF,

liposome encapsulated ACF (ACF dose of 5 mg/kg) showed

higher anti-tumor efficacy in an orthotopic model of murine

breast cancer (4T1 cells) in vivo (Montigaud et al., 2018).

R8 polypeptide, a small molecule cell-penetrating peptide, can

carry macromolecular substances into cells and increase active

targeting of drugs (Kang et al., 2017), R8GD modified

daunorubicin liposomes plus R8GD modified emodin

liposomes had small and uniform particle size and high drug

encapsulation rate, which allowed the chemotherapeutic drug to

selectively accumulate at tumor site. VM channels and metastasis

are effectively inhibited compared with free drug in MDA-MB-

435 cell, which may be related to down-regulation of metastasis

related proteins, including HIF-1 α (Fu et al., 2020). In another

report, researchers developed a new targeted liposome

mitochondrial tropical material D-a-tocopheryl polyethylene

glycol 1000 succinate-triphenylphosphine conjugate

(TPGS1000-TPP) to encapsulate sunitinib and vinorelbine

respectively. Targeted drug liposomes are accumulated in the

mitochondria of invasive breast cancer cells or VM channel

forming cancer cells. It can induce acute cytotoxic injury and

apoptosis and down-regulated VM channel forming indicators

(MMP-9, EphA2, VE cadherin, FAK and HIF-1 α) (Shi et al.,

2015). Ying Li et al. found that a cationic liposome technology can

rapidly release mesenchymal-epithelial transition to enhance the

cytotoxicity of doxorubicin by reduce hypoxia stress in vivo and

inhibit HIF-1α expression in vitro (Li Y et al., 2019). LNPs has been

identified as an effective delivery model for peptide and siRNA-

based BC gene therapy. Encapsulation of these peptides and siRNAs

with LNPs prevents their degradation in the vasculature

environment and allows targeted delivery by using target ligands.

Emine Ş Alva et al. showed that chitosan coated liposome targeted

HIF-1α siRNA andVEGF siRNA can improve the efficiency of gene

silencing. The siRNA-based therapy of chitosan coated liposomes

may have potential in cancer treatment (Hortobagyi et al., 2001;

Salva et al., 2015). Ju et al. (2014) also reported liposomes modified

with PTD (HIV-1) peptide, which contains epirubicin and

celecoxib, to target vasculogenic mimicry channels in invasive

breast cancer. In the study of Khan et al. (2019), phospholipids,

as a component of liposomes, are also an easily synthesized,

biocompatible and biodegradable carrier. They used

phospholipids as shells to encapsulate doxorubicin and

synthesize doxorubicin loaded oxygen nanobubbles (Dox/ONB),

compared with free drugs. Dox/ONB significantly inhibited HIF-1α
activity and increased ROS production to enhance the antitumor

effect of doxorubicin under hypoxia in breast cancer cells.

Therefore, LNPs are very popular as nano-carriers of

biodegradable drugs. These drugs can be encapsulated and

protected until they reach the target cells, which is particularly

important for peptides and siRNAs. In addition, in order to

achieve better biocompatibility, LNP is usually coated with

polymer, which increases the liposome size, and the drug
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TABLE 3 HIF-1 related signaling pathway inhibitors in BC.

Component Dose IC50 Model Duration
of
treatment

Routes
of
treatment

Type
of
study

Mechanism Results References

Honokiol 0–40 uM — MCF-7,
MDA-
MB-231

3–24 h — in vitro downregulated
HIF-1α protein
expression

Inhibited cell
proliferation
and
clonogenicity,
as well as
induced
apoptosis of
cancer cells

Yi et al. (2022)

25 mg/kg/day — Mouse
model
(MCF-7)

4 weeks ip in vivo decrease HIF-1α
protein level

Suppressed
tumor growth
and HIF-1α-
mediated
glycolysis

Sinomenine 0.75 mM — stem-like
side
population
(SP) cells
gained from
MDA-
MB-231

24 h — in vitro downregulating
HIF-1α

Inhibit the
migration and
vasculogenic
mimicry, and
hold back
epithelial-
mesenchymal
transition
process

Song et al.
(2022)

Polydatin (PD)
combined with
2-deoxy-
D-glucose
(2-DG)

PD 100 μmol/
L, 2-DG
5 mmol/L
(4T1) or
10 mmol/L
(MCF-7)

PD:
66.56uM(4T1)/
103.1 uM (<CF-7),
2-DG:
5.53 mM(4T1)/
8.67 mM (MCF-
7). (24 h)

MCF-7
and 4T1

0–72 h — in vitro inhibit HIF-
1alpha/HK2 to
suppress
glycolytic
metabolism

Induced cell
apoptosis and
inhibited
cancer cells
proliferation,
migration and
invasion

Zhang et al.
(2019)

Polydatin (PD)
combined with
2-deoxy-
D-glucose
(2-DG)

PD
(100 mg/kg
every other
day), 2-DG
(100 mg/kg ip
every
other day)

— Mouse
model
(4T1)

3 weeks ip in vivo anti-proliferative
and anti-
angiogenic
activity,
promoted
apoptosis

Inhibit cancer
growth in vivo

Zhang et al.
(2019)

bishonokiol A 2.5–10 uM — MCF-7,
MDA-
MB-231

24–48 h — in vitro hold back HIF-
1a expression
and its protein
synthesis

Inhibit cancer
cell invasion
and migration

Li H. M et al.
(2019)

100 mg/kg/
3 days

— Mouse
model
(MDA-
MB-231)

16 days ip in vivo — Antitumor
activity and
low toxicity

Alkaloid
derivative
ION-31a

0–75 uM — MDA-
MB231,
4T1

24 h–48 h — in vitro downregulate
HIF-1α/VEGF
signaling
pathway

Inhibit cell
migration,
invasion,
adhesion, and
VEGF
secretion

Ni et al.
(2021)

Alkaloid
derivative
ION-31a

25–100 mg/kg — Mouse
model
(4T1)

26 days ig in vivo — Depress tumor
growth and
metastasis with
slightly
bodyweight
change

HS-1793 0–50 uM MCF-7: 26.3 ± 3.2;
MDA-MB-231:
48.2 ± 4.2 uM

MCF-7 and
MDA-
MB-231

24 h — in vitro downregulate
HIF-1a protein
level and its
target gene
VEGF
expression

inhibit cancer
cells
proliferation,
and decrease
the
angiogenesis

Kim et al.
(2017)

(Continued on following page)
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TABLE 3 (Continued) HIF-1 related signaling pathway inhibitors in BC.

Component Dose IC50 Model Duration
of
treatment

Routes
of
treatment

Type
of
study

Mechanism Results References

0–20 mg/kg/
twice a week

— Mouse
model
(MDA-
MB-231)

4 weeks ip in vivo downregulate
HIF-1a protein
level

Inhibit tumor
growth, and
suppress
microvessel
formation

Salinomycin 0–30 uM — MCF-7,
T47D,
MDA-MB-
231, MDA-
MB-
468, 4T1

12–24 h — in vitro decreased the
HIF-1α
transcription
factor DNA
binding activity

Inhibit cell
proliferation,
invasion, and
migration

Dewangan
et al. (2019)

5–10 mg/kg/
3 days a week

— Mouse
model
(4T1)

3 weeks ip in vivo inhibited
hypoxia-induced
HIF-1α/VEGF
signaling axis

inhibits breast
cancer growth
and tumor
angiogenesis

HS-146 — — MCF-7 — — in vitro depress hypoxia-
induced HIF-1α/
VEGF signaling
axis

Inhibit cancer
cell
proliferation,
migration and
invasion in a
dose-
dependent
manner

Kim et al.
(2020)

Baicalein 0–25 uM — T-47D, BT-
474 and
ZR-75–1

24–72 h — in vitro inhibit HIF-
1α–mediated
aerobic
glycolysis and
mitochondrial
dysfunction

— Chen et al.
(2021)

30 mg/kg/
3 days

— Mouse
model
(MCF-7TR)

30 days in vivo inhibit HIF-
1α–mediated
aerobic
glycolysis and
mitochondrial
dysfunction

Baicalein
increases the
inhibitory
effects of TAM
on the growth
of MCF-
7TR cells in
vivo

Chiral ionone
alkaloid
derivatives

0–30 uM 0.035 μM ± 0.004 MDA-
MB-231

0–24 h — in vitro inhibit HIF-1α/
VEGF/VEGFR2/
Akt pathway

Depress cancer
cell migration,
adhesion,
migration and
invasion

Liu J. J et al.
(2021)

Cardamonin — 24.458–52.885 uM MDA-
MB-231

24–72 h — in vitro inhibit HIF-1a
expression on
mRNA and
protein level

Inhibit cancer
cell viability
and promotes
apoptosis

Jin et al.
(2019)

3 mg/kg/day — Mouse
model
(MDA-
MB-231)

4 weeks ip in vivo suppress HIF-
1α/PDHK1 axis
by inhibit the
mTOR/p70S6K
pathway

Inhibit tumor
growth

AT-533 0–75 uM — MDA-MB-
231, MCF-7

12–72 h — in vitro downregulate
HIF-1α/VEGF
signaling
pathway

Inhibit breast
cancer cells
viability

Zhang et al.
(2020)

10 mg/kg/
2 days

— Mouse
model
(MDA-
MB-231)

12 days ip in vivo block the HIF-
1α/VEGF/
VEGFR-2-
mediated
signaling
pathway

Inhibit growth
of breast cancer
xenografts in
vivo

(Continued on following page)
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release process may be affected by opening the phospholipid

bilayer.

5.4.2 Metal-based NPs
Metal nanomaterials, also known as metal oxide

nanomaterials, contain the core of magnetic and optical

properties and the shell of the machine surface coating, which

can make drugs gather in the local part of the body under the

action of external magnetic field. Superparamagnetic iron oxide

NP(SPION-NP) is a kind of magnetic nanomaterials.

Researchers used SPION-NPs coated with thiolated chitosan

(ChT) and trimethyl chitosan (TMC) and functionalized with

hyaluronate (H) and TAT peptide for delivery of siRNA

molecules against STAT3 and HIF-1α to cancer cells both in

vivo and in vitro. The results indicated that tumor cell

transfection with siRNA-encapsulated NPs robustly inhibited

proliferation and migration and induced apoptosis in breast

cancer cells (Budi et al., 2021). Similarly, researchers utilized

superparamagnetic iron oxide-based NPs (SPIONs) combined

with chitosan lactate (CL) and folic acid (FA) nanoparticles

(NPs) loaded with TIGIT-siRNA and HIF-1α-siRNA for

suppressing TIGIT and HIF-1α in tumor cells in another

study. Results showed that cancer cells treated with TIGIT

and HIF-1α siRNA-loaded SPIONs-CL-FA NPs strongly

suppressed the TIGIT and HIF-1α expression and cancer

angiogenesis (Fathi et al., 2021). At present, there are only a

few studies on metal nanocarriers targeting HIF-1α in breast

cancer and SPION has certain toxicity. More optimized metal

nanocarriers may be developed in the future.

5.4.3 Polymer-based NPs
Polymer-based NPs (PNPs) have been extensively studied

as drug delivery vehicles. PNPs are usually prepared by

combining a copolymer with another polymer matrix.

Polymer-based NPs can be synthesized from native

polymers, such as hyaluronic acid, chitosan (Agnihotri

et al., 2004; Choi et al., 2010), as well as synthetic polymers

such as polyglycolic acid (PGA), poly (lactate-coethylene

glycol) (PLGA). Polylactic acid (PLA), polyllactide-coethyl

ester (PLGA) and chitosan are the most typical biodegradable

and biocompatible polymers. Anticancer drugs can be

incorporated into the surface of PNP by surface adsorption,

chemical coupling or encapsulation. Curcumin is a NF-κβ
inhibitor. A study reported that researchers fabricated

biodegradable poly (lactic-co-glycolic acid) PLGA

nanoparticles (NP) loaded with curcumin (cur-PLGA-NP).

These nanoparticles effectively facilitated the targeting of

curcumin by delivering to the tumor site in the form of

nanoparticles in the hypoxic micro-environment.

Compared with free curcumin, the nano-formulation group

has increased solubility and anti-tumor activity, which can

effectively improve the tumor hypoxic microenvironment and

block the occurrence and development of tumors by

suppressing HIF-1α (Khan et al., 2018). Botulinic acid (3β-

TABLE 3 (Continued) HIF-1 related signaling pathway inhibitors in BC.

Component Dose IC50 Model Duration
of
treatment

Routes
of
treatment

Type
of
study

Mechanism Results References

Rhaponticin 0–100 uM — MDA-
MB231

48 h — in vitro decreased HIF-
1α accumulation
and HIF-1α
nuclear
expression

suppress
cancer cells
colony
formation,
migration,
invasion and
angiogenesis

Kim and Ma,
(2018)

TABLE 4 Drug delivery systems for targeting HIF-1α.

Carrier and feature Pharmaceutical ingredients Cell line References

HPDA BEZ235 4T1 Liu et al. (2022)

PLGA-NP Curcumin MDA-MB231 Khan et al. (2018)

FA-BSA-MnO2 DOX/siRNA MCF-7 Du et al. (2019)

PVCL-PVA-PEG Betulinic acid MDA-MB-231 Qi et al. (2021)

SPION-TMC-ChT-TAT-H NPs siRNA 4T1 Budi et al. (2021)

ONB Dox MDA-MB-231 Khan et al. (2019)

Carbon nanoparticles docetaxel Walker256 Liu W et al. (2021)

Liposomal echinomycin MCF-7/SUM-159/MDA-MB-231 Bailey et al. (2020)

RBCm Sal/ICG 4T1 Pan et al. (2022)
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Hydroxy-20 (29)-lupaene-28-oic acid, BA) is a kind of

pentacyclic triterpenoids with various biological activities

such as antitumor, antiviral, anti-inflammatory and

antioxidant. Due to poor solubility and low bioavailability,

it cannot be used to effectively treat BC. In order to improve

the antitumor activity of BA, researchers prepared polyvinyl

caprolactam-polyvinyl acetate-polyethylene glycol (PVCL-

PVA-PEG) grafts Copolymer (Soluplus) encapsulated BA

micelles, which inhibit the angiogenesis of BC cells by

suppressing the HIF-1/VEGF/FAK signaling pathway (Qi

et al., 2021). Similarly, Betulinic acid (3β-Hydroxy-20 (29)-

lupaene-28-oic acid, BA) has excellent anti-cancer activity but

low bioavailability for poor solubility. A polyvinyl

caprolactam–polyvinyl acetate–polyethylene glycol

(PVCL–PVA–PEG) graft copolymer (Soluplus)

encapsulated BA micelle (Soluplus-BA) was fabricated and

results showed that Soluplus-BA micelles increased the

inhibitory effect of BA on the angiogenesis by regulating

the HIF-1/VEGF-FAK signaling pathway in breast cancer

MDA-MB-231 cells (Qi et al., 2021). Recently a

photodynamic therapy based on conjugated PNPs for BC

has been reported (Liu et al., 2022). Ying Zhang et al.

(2022) synthesized photochemical-responsive nanoparticle

by incorporating DOX, curcumin (CUR), and

perfluorooctyl bromide (PFOB) into poly (lactic-co-glycolic

acid) (PLGA) via double emulsification (DOX-CUR-PFOB-

PLGA). The synthesized composite nanoparticles with good

ultrasound imaging induced MCF-7 cells apoptosis by

downregulating AKT/HIF-1α signaling pathway. A drug

delivery nanoplatform equipped with dual PI3K/mTOR

inhibitor Dactolisib (NVP-BEZ235, BEZ235) and CAIX

inhibitor 4-(2-aminoethyl) benzene sulfonamide (ABS) was

designed to form HPDA-ABS/PEG-BEZ235/Ce6 (H-APBC)

nanoparticles. The study showed that the H-APBC could

produce ROS upon light irradiation and release of

BEZ235 from H-APBC in acid microenvironment could

mitigate PI3K/mTOR signal and resist HIF-1α-dependent
tumor hypoxia adaptation (Liu et al., 2022). Photodynamic

therapy (PDT) has become an emerging area of modern

medicine. Studies have shown that the synergistic effect of

PDT could enhance the effectiveness and reduce the

limitations of the original treatment modality (Chen L

et al., 2019; Xie et al., 2020).

5.4.4. Carbon-based NPs
Carbon nanotubes (CNTS) have a cylindrical shape with a

long, hollow structure and a wall formed of graphene sheets.

Carbon nanotubes have the advantages of thermal

conductivity, optical and electrical properties. In addition,

as nanocorbs. CNTS can act as excellent optical absorbers in

near-infrared (NIR) light due to their tunable surfaces and

unique thermal properties. Researchers designed a novel

targeted multifunctional nanoplatform, which refers to

docetaxel (DOC) and perfluorohexane (PFH) loaded onto

carbon nanoparticles (CNs), and combined them with anti-

HIF-1α antibody-modified PLGA nanoparticles (HPDC NPs)

to achieve dual US/PA imaging-guided and laser-triggered in

situ DOC release. HPDC NPs efficiently deliver CNs and DOC

into lymph nodes to achieve their targeting behavior and the

nanoparticles can be destroyed under NIR-I laser irradiation

and subsequently release DOC molecules. This study not only

provides targeted chemotherapy-hyperthermia synergistic

therapy by laser-triggered, highly efficient in situ

chemotherapeutic nano systems, but also represent a nano-

delivery route that avoids additional damage from drug entry

into the bloodstream (Liu W et al., 2021). Compared with

metal-based NPs, carbon based NPs can be considered as a

more promising DDS for cancer treatment and diagnosis.

However, the preparation of carbon nanotubes is complex

and there is a challenge in poor solubility and biodegradability

of CNT (Mehra et al., 2008).

6 Conclusions and future
perspectives

The recent in-depth refinement and diversify of treatments

modalities for BC have led to significant control of tumors as well

as improved patient prognosis. However, these treatments are

considered as only temporary control of metastasis and primary

tumors, and most patients often face recurrence and metastasis

after treatment. HIF-1 may promote the development of BC

through a series of downstream pathways, and its overexpression

is related to tumor progression and BCmortality. For this reason,

HIF-1 may be a potential therapeutic target in BC. However,

HIF-1 inhibitors are very rare in clinic. Although more and more

HIF inhibitors have been found, they are still inadequate as for

drug selectivity and specificity. In addition, HIF has complex

interactions among multiple pathways, which makes the clinical

application of HIF inhibitors more challenging. Therefore, at this

stage, we believe that it is a prerequisite to develop specific HIF-1

inhibitors and further clarify the regulatory pathway of HIF. In

addition, the upstream governor of HIF-1 is also an attractive

strategy, and a deeper understanding of the regulatory

mechanism of the upstream regulator of HIF-1 will help us to

start new therapeutic interventions. On the other hand,

improving targeting specificity, overcoming solubility and

reducing drug toxicity have attracted widespread attention on

the drug delivery system based on nano-carriers, while only a few

drugs based on nano-carriers are used in preclinical research

stage. The toxicity of nano-carriers to the body and the

metabolism of drugs loaded on nano-carriers is a complex

topic. It may be necessary to find non-toxic nanoscale carriers

and to test the metabolic changes of nanomaterials in vivomodel.

With the progress of nano-biotechnology and the development

of cancer treatment, we believe that the difficulty of nano-carrier
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in clinical treatment of BC will be broken through, and more

drugs based on nano-materials will benefit BC patients. Overall,

targeting hypoxia is a very promising way for cancer therapy but

its real fulfillment requires time and great efforts.
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