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For decades, the amyloid cascade hypothesis has been the leading hypothesis in

studying Alzheimer’s disease (AD) pathology and drug development. However, a

growing body of evidence indicates that simply removing amyloid plaques may

not significantly affect AD progression. Alternatively, it has been proposed that

AD progression is driven by increased neuronal excitability. Consistent with this

alternative hypothesis, recent studies showed that pharmacologically limiting

ryanodine receptor 2 (RyR2) open time with the R-carvedilol enantiomer

prevented and reversed neuronal hyperactivity, memory impairment, and

neuron loss in AD mouse models without affecting the accumulation of ß-

amyloid (Aβ). These data indicate that R-carvedilol could be a potential new

therapy for AD.
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Introduction

As the most common form of dementia, Alzheimer’s disease (AD) is afflicting an

increasing number of people around the world. (Rocca et al., 1990; Hynd et al., 2004). In

addition to plaguing its patients, AD has also become a heavy burden on patients’ families

and society (Prigerson, 2003; Castro et al., 2010). Over the past three decades, scientists

across the world have made immense efforts to comprehend the pathogenesis of AD and

develop effective AD treatments (Corbett et al., 2012; Elmaleh et al., 2019; Clement et al.,

2020). The leading theory of AD pathogenesis is the amyloid cascade hypothesis. Based on

this hypothesis, most efforts have been devoted to the development of drugs targeting ß-

amyloid (Aβ) (Demattos et al., 2012; Kennedy et al., 2016; Sevigny et al., 2016).

Unfortunately, most Aβ-targeted AD clinical trials have failed to yield convincing

results (Mehta et al., 2017; Yiannopoulou et al., 2019; Knopman et al., 2021). These

disappointing outcomes indicate that our understanding of AD pathogenesis is far from

complete, and we urgently need new strategies for AD treatment.

Given the multifactorial nature of AD pathogenesis, multiple pathways besides Aβ
metabolism could be targeted for AD treatment. Indeed, recent studies have revealed

many new targets and strategies for treating AD. For example, a molecule named leuco-

methylthioninium bis(hydromethanesulphonate) (LMTM) that is thought to block the

aggregation of tau has been shown to possess some promising anti-AD properties in a

phase III clinical trial (Wilcock et al., 2018). Furthermore, recent studies suggested the ε
allele of apolipoprotein E (APOE) is another genetic risk factor of AD. By injecting the
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anti-human APOE antibody into the APOEε4+/+ mouse model,

Xiong et al. (2021), showed that this APOE immunotherapy

reduced cerebral Aβ plaques and amyloid angiopathy. Besides

focusing on certain molecular targets, more and more studies

showed that neuronal circuitries could also be a promising target

for treating AD. The gamma oscillations, which are important for

the storage and maintenance of memory, were impaired in both

AD patients and mouse models (Adaikkan and Tsai, 2020;

Andrade-Talavera et al., 2020). Andrade-Talavera and

colleagues found that small molecule compounds or the

molecular chaperone Bri2 BRICHOS reversed the impaired

gamma oscillations related to AD (Andrade-Talavera et al.,

2020; Andrade-Talavera et al., 2022). In addition, multiple

studies form Dr. Li-Hui Tsai’s group have shown that the

gamma entrainment using sensory stimuli (GENUS) could

reduce the Aβ level, improve learning and memory in

multiple AD mouse models (Iaccarino et al., 2016; Adaikkan

et al., 2019; Martorell et al., 2019).

In addition to these new trends in AD treatment, substantial

evidence indicates that soluble Aβ induces neuronal

hyperactivity, which in turn generates more soluble Aβ.
These two components form a vicious cycle (Kamenetz

et al., 2003; Cirrito et al., 2005; Busche et al., 2012;

Yamamoto et al., 2015; Keskin et al., 2017; Zott et al., 2019).

This Aβ-hyperactivity cycle is thought to promote Aβ
accumulation, increase neuronal excitability, induce circuit

dysfunction and exacerbate AD progression (Busche and

Konnerth, 2015; Stargardt et al., 2015; Busche and Konnerth,

2016; Zott et al., 2019). Given the failure of many Aβ-targeted
AD clinical trials, it seems that simply reducing Aβ expression

or removing Aβ plaques is not sufficient to break this vicious

cycle. Another way to break this loop is to overcome the

neuronal hyperactivity.

Carvedilol is a nonselective ß-adrenergic receptor

blocker, widely used for the treatment of congestive heart

failure (Feuerstein and Ruffolo, 1995; Frishman, 1998; Dulin

and Abraham, 2004). A previous study suggested that ß-

blockers such as carvedilol may have anti-inflammatory

effects on the AD brain, while it may also improve

cognitive function in AD patients by improving cerebral

perfusion (Rosenberg et al., 2008). However, since its

potent ß-blocking activity that can cause bradycardia and

hypotension, the benefits of carvedilol have been shown to be

dose-limited (Bristow et al., 1996; Zhang et al., 2015). The

clinically used carvedilol is a racemic mixture of ß-blocking

S-carvedilol and non-β-blocking R-carvedilol (Bristow et al.,

1996; Frishman, 1998; Zhou et al., 2011; Zhang et al., 2015).

Recently, it has been shown that R-carvedilol alone

prevented and rescued neuronal hyperactivity, memory

impairment, and neuron loss without affecting the

accumulation of ß-amyloid (Aβ) in mouse models of

familial AD (FAD) in vivo and in vitro (Yao et al., 2020;

Liu et al., 2021; Sun et al., 2021). This mini-review will

discuss the potential application of R-Carvedilol as a new

therapeutic strategy to treat AD.

Carvedilol and R-carvedilol

Carvedilol is currently used in the form of racemic mixture,

containing an equal amount of R-carvedilol (an α-blocker) and

S-carvedilol (an α- and β-blocker). In vitro studies have shown

that S-carvedilol has approximately 100-fold greater affinity for

adrenergic ß-receptors than R-carvedilol. Meanwhile,

R-carvedilol and S-carvedilol inhibit adrenergic α-receptors to

the same extent (Nichols et al., 1989; Bartsch et al., 1990).

Consistent with these studies, a randomized, double-blind,

placebo-controlled study performed by Stoschitzky et al.

(2001), indicated that only S-carvedilol causes ß-blockade.

These findings suggest that the strong ß-blockade caused by

S-carvedilol may underlie carvedilol’s adverse effects of

bradycardia and hypotension.

Besides blocking the adrenergic receptors, carvedilol has

been shown to effectively suppress spontaneous calcium

release, also known as store-overload-induced calcium

release (SOICR). Single channel recordings revealed that

carvedilol can directly shorten the open time of the

ryanodine receptor 2 (RyR2) Ca2+ release channel (Zhou

et al., 2011). Like the racemic carvedilol, the non-β-
blocking R-carvedilol can also directly reduce the open

duration of RyR2 and suppress stress-induced ventricular

tachyarrhythmia (VT) in mice harboring a RyR2 mutation

(RyR2-R4496C+/-) associated with catecholaminergic

polymorphic ventricular tachycardia (CPVT). Importantly,

RyR2-R4496C+/- mice that received R-carvedilol treatment

did not show a significant change in heart rate or blood

pressure (Zhou et al., 2011; Zhang et al., 2015).

Carvedilol has protective effects on
neurons

In addition to its benefits in the heart, carvedilol has also been

shown to have neuroprotection property. Studies with cultured

neurons suggest that carvedilol protects neuron from cell death

induced by cerebral ischemia or stroke (Lysko et al., 1992;

Yamagata et al., 2004). Using rat brain homogenate, Yue

et al., have shown that compared to other commonly used ß-

blockers, carvedilol is a far more potent antioxidant. The

antioxidant effect of carvedilol mainly resides in the carbazole

moiety, and the substitution of a hydroxyl group at certain

positions on the phenyl ring of either carbazole or the ortho-

substituted phenoxylethylamine part of carvedilol resulted in an

increase in antioxidant activity (Yue et al., 1992). Thus,

carvedilol’s actions on scavenging free radicals and inhibiting

lipid peroxidation are believed to be the mechanism underlying
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neuroprotection. More importantly, Wang et al. (2011), reported

that chronic oral administration of carvedilol in 2 independent

AD mouse models, TgCRND8 transgenic mice and Tg2576 AD

transgenic mice, remarkably reduced the expression of

oligomeric Aβ and reversed cognitive decline (Arrieta-Cruz

et al., 2010). Further studies suggested that carvedilol has the

potential to bind to Aβ, thus preventing Aβ aggregation and

formation of Aβ oligomeric fibrils (Wang et al., 2011). Therefore,

in addition to treating congestive heart failure, carvedilol may

potentially be used for treating AD or other neurological diseases.

Interestingly, RyR2, a target of carvedilol, is abundantly

expressed in both the heart and the brain (Furuichi et al.,

1994; Giannini et al., 1995; Murayama and Ogawa, 1996; Bers,

2002). In particular, RyR2 is abundantly expressed in the

hippocampus and cortex, which are the regions most

vulnerable to damage caused by AD (Yao et al., 2020; Hiess

et al., 2022). Increasing evidence suggests that the expression and

function of RyR2 are upregulated in animal models of familial

AD (FAD) and in human AD patients (Kelliher et al., 1999;

Smith et al., 2005; Bruno et al., 2012; Oules et al., 2012;

Chakroborty and Stutzmann, 2014; Lacampagne et al., 2017;

SanMartin et al., 2017; Stutzmann, 2021). Since R-carvedilol can

significantly reduce the open duration of RyR2 and does not have

the ß-blocking effect, it represents a promising treatment for AD

without the adverse effects often associated with racemic

carvedilol, such as bradycardia and hypotension.

R-carvedilol treatment reverses the
increased RyR2 activity in CA1 pyramidal
neurons of 5xFAD+/- mice

Increasing evidence has shown that RyR2-mediated

calcium release can regulate membrane excitability of

various cells, such as cardiomyocytes, smooth muscles, and

neurons (Nelson et al., 1995; Alkon et al., 1998; Bogdanov

et al., 2001; Mandikian et al., 2014). Besides causing problems

in the heart, enhanced RyR2 function is also involved in AD

pathogenesis (Kelliher et al., 1999; Smith et al., 2005; Bruno

et al., 2012; Oules et al., 2012; Chakroborty and Stutzmann,

2014; Lacampagne et al., 2017; SanMartin et al., 2017).

Consistent with these findings, two-photon calcium

imaging of mouse hippocampal slices revealed significantly

greater caffeine-induced calcium release in CA1 pyramidal

neurons of 5xFAD+/- mouse compared with age-matched

wild-type (WT) littermates. Notably, compared to DMSO-

treated control group, pre-treatment with R-carvedilol for

one-month, markedly reduced caffeine-induced calcium

release in CA1 pyramidal neurons from acute 5xFAD+/-

mice brain slices (Yao et al., 2020). Therefore, R-carvedilol

is able to prevent AD-induced abnormal activation of RyR2-

mediated calcium release.

R-carvedilol prevents and reverses
neuronal hyperactivity in 5xFAD+/- mice, in
vivo and ex vivo

Previous studies with different AD mouse models have

shown that hyperactivity of hippocampal CA1 pyramidal

neurons is associated with AD pathogenesis (Brown et al.,

2011; Kerrigan et al., 2014; Siskova et al., 2014; Scala et al.,

2015). By performing in vivo two-photon imaging in mice

expressing the Thy-1 promoter-driven GCaMP6f calcium

sensor in glutamatergic neurons driven (Chen et al., 2012),

Yao et al. (2020), detected increased neuronal activity in

glutamatergic pyramidal neurons in the hippocampal

CA1 region in anesthetized 5xFAD+/- mice. Consistent with

these previous observations (Busche et al., 2008; Busche et al.,

2012; Busche and Konnerth, 2015, Busche and Konnerth, 2016;

Zott et al., 2019), CA1 glutamatergic pyramidal neurons of

5xFAD+/- mice exhibited a significantly increased proportion

of hyperactive neurons and the mean frequency of

spontaneous calcium transients, and also a considerably

decreased proportion of normal neurons, compared with WT

littermates, (Yao et al., 2020). Interestingly, recent studies with

mouse brain slices treated with recombinant Aβ1–42 or with brain
slices from the novel AppNL−G-F mouse model showed that the

gamma oscillation was significantly impaired (Balleza-Tapia

et al., 2018; Andrade-Talavera et al., 2021; Arroyo-Garcia

et al., 2021). Taken these studies together, it is possible that

under the AD condition, the firing rates of excitatory neurons

and inhibitory interneurons were altered differently. In other

words, the excitatory/inhibitory balance was disrupted. Also, the

change of the excitatory/inhibitory balance is dynamic, which

means during the development of AD, the overall brain activity

could be hyperactive at early stages and hypoactive at late stages

(Targa Dias Anastacio et al., 2022).

Yao et al. (2020), also tested whether R-carvedilol treatment

can prevent or reverse the hyperactivity of CA1 neurons in the

5xFAD+/- mice. 5xFAD+/- mice 2–3 months old (i.e., before the

onset of AD symptoms) and 3–4 months old (i.e., after the onset

of AD symptoms) (Oakley et al., 2006) were pre-treated with

R-carvedilol or DMSO for one month. Compared to the DMSO

pre-treated mice at both ages, the CA1 pyramidal neurons in

5xFAD+/- mice receiving R-carvedilol treatment showed a

significant decrease in the proportion of hyperactive neurons

with an apparent reduction of the mean frequency of

spontaneous calcium transients. These observations suggested

that R-carvedilol pre-treatment not only prevented but also

reversed neuronal hyperactivity of 5xFAD+/- hippocampal

CA1 neurons in vivo (Yao et al., 2020). Similar results were

also found from ex vivo recordings with 5xFAD+/- hippocampal

slices (Sun et al., 2021). Thus, both in vivo and ex vivo recordings

showed that R-carvedilol treatment before the onset of AD

pathologies can prevent neuronal hyperactivity, while
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R-carvedilol treatment after the onset of AD pathologies can

rescue neuronal hyperactivity in 5xFAD CA1 neurons.

R-carvedilol prevents and rescues
memory loss in Alzheimer’s diseasemouse
models

As a disease characterized primarily by cognitive

impairment, a fundamental readout for any intervention is the

measure of learning and memory. To test whether R-carvedilol

treatment can protect animals from AD-related learning and

memory deficits, Yao et al., performed the Morris water maze

(MWM) test and novel object recognition (NOR) test, together

with measurement of hippocampal CA3-CA1 long-term

potentiation (LTP). Similar to the results of calcium imaging,

pretreatment with R-carvedilol in 2–3 months old 5xFAD+/- mice

(before AD symptoms) prevented memory loss and reversed LTP

deficit, while in 3–4 months old 5xFAD+/- mice (after AD

symptoms), pretreatment with R-carvedilol also reversed these

deficits. The drug was also tested on 6–7 and 10–12-month-old

5xFAD+/- mice to further assess whether R-carvedilol

pretreatment remains effective in advanced AD stages. Results

from behavioral tests and LTP recordings also suggested that

pretreatment with R-carvedilol could still reverse memory

deficits even in 6–7 months and 10–12 months old 5xFAD+/-

mice (i.e., late AD). (Yao et al., 2020).

As mentioned above, previous studies suggested that the

racemic carvedilol may reduce the expression of oligomeric Aβ
and prevent plaque formation and cognitive decline in multiple

mouse models of AD (Arrieta-Cruz et al., 2010; Wang et al.,

2011). However, Yao et al. (2020), showed that racemic carvedilol

did not prevent cognitive decline in 3–4 months old 5xFAD+/-

mice (Yao et al., 2020). This new finding may help us to explain

the failure of a recent AD clinical trial with the racemic mixture

of carvedilol (https://www.clinicaltrials.gov/ct2/show/study/

NCT01354444). The exact reason for the ineffectiveness of the

carvedilol racemic mixture in inhibiting AD progression is

unknown. One possibility is that the strong ß-blocking effect

of S-carvedilol in the racemic mixtures, especially at high doses,

may adversely affect neuronal activity and cognitive function,

thus counteracting the beneficial effects of R-carvedilol.

Furthermore, the beneficial effect of R-carvedilol on learning

and memory is dose-dependent. R-carvedilol at a dose of 3.

2 mg/kg/day or 1.6 mg/kg/day, but not 0.8 mg/kg/day, rescued

cognitive decline in 5xFAD mice.

In the study of Yao et al. (2020), they employed the 5xFAD

mouse as the animal model of AD. Based on the original study of

5xFAD mice, this model contains 5 human FAD mutations.

Thus, in addition to reproducing the prominent symptoms found

in AD patients, it significantly shortens the latency to onset of

AD-related pathological features (Oakley et al., 2006),

significantly reducing the time period of experimental studies.

However, this fast onset of AD pathology in 5xFAD mice is very

different from that in human AD (Lee and Han, 2013; Jankowsky

and Zheng, 2017). To determine whether R-carvedilol can also

prevent and rescue cognitive decline in a mouse model whose AD

progression is relatively slower than the 5xFAD mouse, Liu et al.

(2021), employed the well-known 3xTGADmouse model, which

is also widely used in AD studies, but the onset of AD symptoms

is relatively late (Oddo et al., 2003; Jankowsky and Zheng, 2017).

3xTG+/- mice (12–15 months old) were treated with R-carvedilol

or DMSO for one month and behavioral tests and LTP

measurements were conducted. Similar to the studies with

5xFAD mice, Liu et al. (2021) showed that in the training

session of the MWM test, compared to the 3xTG+/- mice

pretreated with DMSO, 3xTG+/- mice with R-carvedilol pre-

treatment spent significantly less time to find the target

platform. While in the probe trials, 3xTG+/- mice that received

R-carvedilol pre-treatment spent significantly more time in the

area where the platform used to be. Interestingly, mice received

R-carvedilol pre-treatment also showed increased speed of

swimming compared to the DMSO control group. Similarly,

results from the NOR test suggested R-carvedilol pre-treatment

increased the discrimination index and the walking velocity in

the 3xTG+/- mice. LTP recordings also suggested that

R-carvedilol pre-treatment significantly improved the neuronal

circuit function in 3xTG+/- mice (Liu et al., 2021). In light of these

observations, it would also be of interest to assess whether

R-carvedilol could prevent cognitive decline in other AD

mouse models, such as the AppNL−G-F mouse model, the

AppNL/NL and AppNL−F/NL−F mouse models, and the APOEε4+/+
mouse model (Saito et al., 2014; Andrade-Talavera and

Rodriguez-Moreno, 2021; Arroyo-Garcia et al., 2021; Xiong

et al., 2021).

R-carvedilol protects against neuronal cell
death but does not affect Aβ accumulation
in Alzheimer’s disease mouse models

Neuronal cell death is one of the clinicopathological features

observed from human AD patients (Shimohama, 2000; Niikura

et al., 2006; Goel et al., 2022), but neuron loss in AD transgenic

mouse models is controversial (Wirths and Bayer, 2010; Wirths

and Zampar, 2020). Consistent with previous reports (Oakley

et al., 2006; Jawhar et al., 2012), Yao et al. (2020) showed that in

the subiculum region of the hippocampus, the number of

pyramidal neurons was significantly reduced in both aged

5xFAD+/- and 3xTG+/- brain slices (Liu et al., 2021). Notably,

R-carvedilol pretreated 5xFAD+/- and 3xTG+/- mice showed a

significantly higher density of neurons in the subiculum area

compared to the DMSO-pretreated mice. These results suggested

that, like carvedilol, R-carvedilol may also have the ability to

protect neurons from neuronal cell death. Besides neuronal

hyperactivity, learning and memory impairment, and neuronal
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cell death, accumulation of aggregated Aβ in the brain is believed

to be one of the major hallmarks of AD (Bharadwaj et al., 2009;

Murphy and LeVine, 2010; Chen et al., 2017). R-carvedilol

treatment seems to be able to rescue major deficits in AD

mouse models. Can it also reduce Aβ accumulation?

Surprisingly, immunohistochemical staining and

immunoblotting analyses of brain samples from 5xFAD+/-

mice or 3xTG+/- mice indicated that R-carvedilol pre-

treatment did not affect Aβ accumulation (Yao et al., 2020;

Liu et al., 2021). Therefore, shortening RyR2 open time with

R-carvedilol may represent a novel strategy for treating AD

without targeting Aβ.

Conclusion

Carvedilol has been used for treating cardiovascular diseases for

decades. New indications for carvedilol are emerging. In addition to

its beneficial effects on the heart, carvedilol has been shown to have

potential for combatting cancer, neurological disorders, and other

diseases (Lysko et al., 1992; Yamagata et al., 2004; Arrieta-Cruz et al.,

2010; Wang et al., 2011; Huang et al., 2017; Chen et al., 2020; Liang

et al., 2021; Abdullah Shamim et al., 2022). The list of new

applications of carvedilol is expected to increase with better

understanding of the mechanisms of action of carvedilol and its

enantiomer, R-carvedilol. Recent studies have shown that

pharmacologically shortening the open time of RyR2 with

R-carvedilol prevented and reversed neuronal hyperactivity,

memory impairment, and neuronal cell death in different AD

mouse models without affecting the accumulation of Aβ (Yao

et al., 2020; Liu et al., 2021; Sun et al., 2021). The exact

mechanism(s) of these beneficial effects of R-carvedilol has not

been determined, but it is likely complex and multifactorial.

Nevertheless, increasing evidence suggests that in addition to

targeting Aβ, R-carvedilol enantiomer brings us a novel

hyperactivity-directed anti-AD therapeutic that warrants further

preclinical studies and clinical trials.
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