AUTHOR=Lu Bin , Shen Longfei , Ma Ying , Qi Jia , Li Yulin , Wang Zhihao , Han Lu , Zhong Ming TITLE=Cardiovascular adverse events associated with cyclophosphamide, pegylated liposomal doxorubicin, vincristine, and prednisone with or without rituximab ((R)-CDOP) in non-Hodgkin’s lymphoma: A systematic review and meta-analysis JOURNAL=Frontiers in Pharmacology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2022.1060668 DOI=10.3389/fphar.2022.1060668 ISSN=1663-9812 ABSTRACT=

Background: The (R)-CDOP combination regimen, based on pegylated liposomal doxorubicin, is increasingly used for elderly patients with non-Hodgkin’s lymphoma. However, the cardiotoxicity and efficacy of the (R)-CDOP regimen compared with conventional anthracyclines have not been demonstrated in the general population. Therefore, this systematic review and meta-analysis evaluated the risk of cardiotoxicity and efficacy associated with the (R)-CDOP regimen in patients with non-Hodgkin’s lymphoma.

Methods: PubMed, Embase, Cochrane Library, CNKI, WanFang Database, and VIP were searched. The search covered the period from the start of the clinical use of (R)-CDOP to April 2022. We searched the literature for cardiovascular adverse events associated with (R)-CDOP in non-Hodgkin’s lymphoma. The data were analyzed using R 4.2.0 and Stata 12.0.

Results: From the included studies, the important findings were as follows: total cardiovascular event rate, 7.45% (95% confidence interval [CI] = 4.86%–10.44%); non-serious cardiovascular adverse event rate, 6.48% (95% CI = 3.70%–9.8%); serious cardiovascular adverse event rate, 0.67% (95% CI = 0.00%–2.12%); heart failure rate, 0.55% (95% CI = 0.00%–1.93%); rate of treatment discontinuation attributable to left ventricular dysfunction or heart failure, 0.02% (95% CI = 0.00%–0.57%); and cardiovascular death rate, 0.00% (95% CI = 0.00%–0.37%). Compared with the (R)-CHOP regimen, the (R)-CDOP regimen reduced the risk of cardiovascular events, including total cardiovascular adverse events (odds ratio [OR] = 0.161, 95% CI = 0.103–0.251, p < 0.001, and NNT = 3.7), non-serious cardiovascular adverse events (OR = 0.171, 95% CI = 0.093–0.314, p < 0.001, and NNT = 3.6), serious cardiovascular adverse events (OR = 0.252, 95% CI = 0.119–0.535, p < 0.001, and NNT = 6.8), and heart failure (OR = 0.294, 95% CI = 0.128–0.674, p = 0.004, and NNT = 9.5). To evaluate the survival benefits, we compared (R)-CDOP and (R)-CHOP regimens. We found that the (R)-CDOP regimen was no less efficacious, including complete remission (CR) (OR = 1.398, 95% CI = 0.997–1.960, and p = 0.052), partial response (PR) (OR = 1.631, 95% CI = 1.162–2.289, and p = 0.005), objective response rate (ORR) (OR = 2.236, 95% CI = 1.594–3.135, and p < 0.001), stable disease (SD) (OR = 0.526, 95% CI = 0.356–0.776, and p = 0.001), and progressive disease (PD) (OR = 0.537, 95% CI = 0.323–0.894, and p = 0.017).

Conclusion: Our findings suggested that the (R)-CDOP regimen had a lower risk of cardiovascular adverse events in non-Hodgkin’s lymphoma than the (R)-CHOP regimen, demonstrating its safety with regard to cardiotoxicity. In addition, this study found the (R)-CDOP regimen was no less efficacious than the (R)-CHOP regimen in the treatment of non-Hodgkin’s lymphoma. These findings need to be validated by higher-quality research because of the limited number and quality of included studies.