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To support further development of model-informed drug development approaches
leveraging circulating tumor DNA (ctDNA), we performed an exploratory analysis of
the relationships between treatment-induced changes to ctDNA levels, clinical
response and tumor size dynamics in patients with cancer treated with
checkpoint inhibitors and targeted therapies. This analysis highlights opportunities
for pharmacometrics approaches such as for optimizing sampling design strategies.
It also highlights challenges related to the nature of the data and associated variability
overall emphasizing the importance of mechanistic modeling studies of the
underlying biology of ctDNA processes such as shedding, release and clearance
and their relationships with tumor size dynamic and treatment effects.
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Introduction

Predicting long-term clinical benefit of anti-cancer drugs is notoriously difficult.
Nevertheless, such predictions can play a key role in reducing the attrition rate of anti-
cancer molecules in late phase clinical trials (Hutchinson and Kirk, 2011). Recently, circulating
tumor DNA (deoxyribonucleic acid) or ctDNA, which can be collected longitudinally, has been
shown to hold additional predictive power to imaging-based markers of response (Cescon et al.,
2020). Pharmacometric (PMX) approaches can take the advantage of longitudinal
measurements as demonstrated with tumor growth modeling approaches and, as such,
represent an opportunity for ctDNA to inform new molecular entity (NME) clinical trial
development with respect to identification of clinically most promising compounds, optimal
sampling design, combination partners, and precision dosing.

In this perspective, through the exploratory analysis of ctDNA data from nearly 500 cancer
patients treated with checkpoint inhibitors and targeted therapies, we dissect the relationships
between on-treatment ctDNA change over time from baseline and overall survival, clinical
response, and tumor size dynamics. We believe this effort is a required first step for the further
successful development of model-based approaches. The analysis also sheds light on
interconnected challenges related to the specific nature of the data, associated variability,
and complexity of underlying biology of ctDNA processes such as shedding, release, and
clearance (Avanzini et al., 2020) and their relationships with tumor size dynamics and
treatment effects (see Figure 1A).
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Problem statement

Traditionally, the rate of “best overall response” gives an indication
of patients’ early response to treatment based on repeatedly quantifying
the size of one or several cancer lesions by radiographic imaging. The
overall response rate (ORR) is the percentage of patients achieving a
complete or partial response through RECIST 1.1 at any time of the
treatment (Ruchalski et al., 2021). Observing a high ORR in early
clinical studies is encouraging and often ungates further studies and
investment. A lowORR, on the contrary, could amongst others, indicate
an absence of efficacy and can support the decision to stop development
of an experimental treatment. However, the correlation between ORR
and long-term clinical benefit is limited, in particular for cancer
immunotherapy which does not act directly by killing tumor cells
but rather stimulates an anti-tumor response (Gerwing et al., 2019;
Goulart et al., 2022). For tebentafusp, a T-cell bispecific cancer

immunotherapy approved recently for the treatment of metastatic
uveal melanoma, approval was based on the observed improvement of
overall survival in a randomized phase III trial. Early clinical trials had
shown many patients remaining on trial for a long time in stable
disease, however, with a radiological response rate (RR) of only 12%
(Carvajal et al., 2022). Such a low response rate could have led many
drug developers to stop the development of what is, in reality, an
efficacious medicine. This example indicates that while RR could be
associated with high specificity for identification of drugs that convey a
survival benefit, sensitivity might be low. As a consequence,
complementing RR information with data that can hold predictive
potential is key for decision-making in oncology development where
decisions to invest in large and costly confirmatory clinical trials
typically relies on the results of previously conducted clinical
studies (phase I - II) with a limited number of patients (Cannarile
et al., 2021).

FIGURE 1
(A) Illustration of the interconnected challenges inherent to the successful development of a model-based approach for leveraging longitudinal ctDNA
to support early clinical decision-making in oncology, namely, the access to highly longitudinal samples and the understanding of disease biology and
bioinformatic nature of the data. (B)Database description:Weber et al. (2021) clinical study published in 2021. The dataset was sharedwith the authors without
further obligations according to the policy of the Journal of Clinical Oncology Precision Oncology and according to the local patient-level sharing
privacy rules. The dataset is composed of 167 patients with non-small cell lung cancer. The ctDNA sample collection was performed between 2015 and 2018.
The Roche AVENIO assay was used for ctDNA measurements and reported as (average) mutant molecules per milliliter measured consistently at two time
points (baseline, i.e., cycle 1 1 and 28 days inmedian, SD = 10 days). For 15 patients, the ctDNA value at both baseline and on treatment was recorded 0,making
the calculation of change from baseline impossible. These patients were removed from the analysis. Patients suffered from stage IIIB (13.2%) or stage IV
(86.8%) NSCLC; all were treated with checkpoint inhibitors (nivolumab for more than 80%). The overall response rate was 26.3% (n = 44), and the mean
treatment duration was 13 cycles. Anonymized patient-level survival data were available. IMspire170: Roche sponsored study on patients with melanoma
(Gogas et al., 2021) Data consisted of 411 patients, of which 209 patients were treated with the checkpoint inhibitor atezolizumab with the tyrosine kinase
(MEK-) inhibitor cobimetinib and 202 patients with pembrolizumab. ctDNA measurements were reported as a ctDNA tumor fraction (cTF) based on
aneuploidy and variant allele fraction (VAF) and were available for 241 patients (122 in the group treated with atezolizumab and cobimetinib and 119 in the
group treated with pembrolizumab). Two time points were available: baseline (cycle 1 day 1) and cycle 2 day 1 (corresponding to 21 days for the
pembrolizumab cohort and 28 days for the atezolizumab/cobimetinib cohort). Tumor size (sum of longest diameters) was available longitudinally for
409 patients out of the 411 patients. Patient-level survival data were available. OAK: Roche sponsored the study on non-small cell lung cancer patients treated
with the checkpoint inhibitor atezolizumab or chemotherapy docetaxel (Rittmeyer et al., 2017). The study included 1,225 patients. ctDNA data were available
for a subset only (n = 94). Our analysis included only the data from the atezolizumab arm (n = 613 and 46 with ctDNA data). The data from the chemotherapy
armwere only used for developing the ctDNA time coursemodel with the treatment arm regarded as a covariate. The Roche AVENIO assay was performed for
ctDNAmeasurements and reported as mutant molecules per milliliter, and data at four time points were available: cycle 1 (baseline), cycle 2 (around 21 days),
cycle 3 (around 42 days), and cycle 4 (around 63 days). These data were used for longitudinal modeling using the Stein et al. model. OAK ctDNA data analysis
has been already published (Zou et al., 2021).
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The PMX community has been, for many years, contributing to
the question of how to improve early decision-making. It proposes to
leverage the time course of tumor size instead of relying on a
categorical score (RECIST 1.1) derived from the comparison of the
sum of the longest diameters (SLD) between baseline from up to five
measurable target lesions and one given time point (the one at which
the best response is observed) (Yates and Cheung, 2021). As such,
PMX approaches are ideally positioned to integrate informative data
collected longitudinally. In fact, efforts to complement the existing
state-of-the-art tumor size kinetic models with other relevant
biomarkers have been an important area of research for many
years (Netterberg et al., 2020).

Liquid biopsies enabling the measurement of ctDNA have
emerged as a promising technology to overcome some of the
limitations discussed previously (Zhang et al., 2020). When tumor
cells die from apoptosis or necrosis, their DNA is shed and released
into circulating blood (Heitzer et al., 2020). Technologies such as next-
generation sequencing (NGS) can detect somatic mutations and
quantify ctDNA in terms of variant allele frequency (VAF, ratio
between the number of mutated- and wild-type DNA copies) or
mutant tumor molecules per milliliter of plasma (MMPM) (Bos
et al., 2021). Numerous studies have now been published on the
potential of ctDNA for screening or for characterizing disease biology
(Cheng et al., 2016). Another application with a lot of potential with
respect to the opinions discussed previously is the use of ctDNA as a
measure of disease burden and with this, as a predictor of long-term
clinical benefit (Bratman et al., 2020). In the aforementioned example
of tebentafusp, ctDNA change from baseline within 9 weeks following
treatment start was associated with long-term clinical benefit. It was
also reported that the degree of ctDNA reduction correlated with
overall survival and that this association was largely independent from
the radiological response categorization (Shoushtari et al., 2021).

Circulating tumor DNA and overall
survival

To better understand the potential of model-based approaches to
explore ctDNA data, we built a dataset composed of 454 patients from
three published clinical studies (Rittmeyer et al., 2017; Gogas et al., 2021;
Weber et al., 2021). Two studies focused on non-small cell lung cancer
(n = 213 patients in total: 167 in one study and 46 in another) and one
on melanoma (n = 241). The studies involved different types of
treatment: immunotherapy with a checkpoint inhibitor (CPI:
atezolizumab, nivolumab, pembrolizumab, durvalumab, and
ipilimumab) alone (n = 332, pooling data from three studies) or in
combination with targeted therapy (atezolizumab + cobimetinib) (n =
122, from one study). Indication, treatment, and sampling design of
ctDNA and technology for its quantification were different between the
studies. A summary of the analyzed dataset is illustrated in Figure 1B.

Based on the data from Weber et al. (2021), which were shared
with us without further obligations according to the policy of the
Journal of Clinical Oncology Precision Oncology, we show in
Figure 2A Kaplan–Meier curves of patients’ overall survival as a
function of early change in ctDNA. We selected the commonly
used 50% ctDNA reduction from baseline as the cut-off (Nabet
et al., 2020; Weber et al., 2021; Zou et al., 2021). The two curves
separate, and the patients who achieve a 50% ctDNA reduction have a
larger probability to live longer than those who do not. We calculated

hazard ratios using varying cut-offs of ctDNA change from baseline
and showed that a higher degree of ctDNA decrease is associated with
a lower hazard ratio (i.e., longer survival), similar to what has been
reported for tebentafusp (Figure 2A, inset).

To further evaluate the impact of ctDNA dynamics on the long-
term clinical outcome (e.g., overall survival), we used the same dataset
to perform a simulation study using RECIST 1.1 response criteria as a
comparator. For RECIST, we defined response as complete response
(CR) or partial response (PR). For ctDNA, we kept the commonly used
threshold of 50% drop at week 4 from baseline. We generated overall
survival data using exponential distribution parameterized with the
observed hazard rates and performed simulations with a virtual
population of 10,000 patients, varying the percentage of responders
in the population from 10 to 90%, plotted corresponding
Kaplan–Meier curves, and derived median survival time as a
function of percentage of response for both ctDNA and RECIST
1.1 (Figure 2B). Finally, we selected a landmark of 6 months and
calculated survival at this time point. We found that with 10% of
responders in terms of ctDNA, 62% of patients would be alive at
6 months (56%when response is defined by RECIST 1.1), while 90% of
responders would translate into a survival for 81% of patients at the
landmark (89% with RECIST 1.1). From these data, we evaluate that
10% more ctDNA responders would translate into 1–2 months of
survival benefit. It is interesting to note that the increase in the median
survival time as a function of the percentage of responders is greater
with RECIST 1.1 than it is for ctDNA (Figure 2B, inset).

To evaluate if ctDNA holds predictivity independent of RECIST 1.1,
we performed amultivariate Cox proportional hazardmodel regression.
Hazard ratios (HRs) were estimated to be 0.12 and 0.6 for RECIST
1.1 and ctDNA, respectively. The lower HR obtained for RECIST 1.1 is
consistent with what is observed in the inset of Figure 2B. In this model,
no dependency could be detected supporting the hypothesis of the
independent predictive value of ctDNA. In addition to that, the
difference in the time of assessment of RECIST 1.1 and ctDNA
could contribute to the difference in the parameter estimates. Best
overall response (BOR) by RECIST 1.1 can be taken at any time with
first tumor size assessment typically occurring at week 6, while ctDNA
data were taken at week 4 in this dataset. Overall, these findings are in
line with the high sensitivity/low specificity of RECIST 1.1-based criteria
as discussed previously.

Circulating tumor DNA and clinical
response

We further looked into potential relationships between ctDNA
change and overall response with waterfall plots of ctDNA change
colored by BOR (Figure 2C). Given the presence of large variation in
the data, it is common to represent ctDNA change from baseline in
terms of (base 10) logarithmic change. We see a clustering of best
responses (lighter colors) within the negative ctDNA change from
baseline, i.e., reduction. The rate of RECIST 1.1 responders (complete
or partial response) was 35% (28/79) in patients with ctDNA decrease
from baseline. Among the 73 patients with ctDNA increase, less
patients were RECIST 1.1 responders (22%; 16/73). This clustering
was observed consistently in the two other datasets. For patients
treated with OAK (atezolizumab arm), 37% (7/19) of patients with
ctDNA decrease were RECIST 1.1 responders, compared to only 11%
(2/18) for patients with ctDNA increase. In IMspire170 (both arms

Frontiers in Pharmacology frontiersin.org03

Ribba et al. 10.3389/fphar.2022.1058220

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1058220


together), 53% (125/238) of the patients experienced a decrease in
ctDNA. Among them, 52% (65/125) had a complete or partial
response compared to 32% (36/113) of patients who had ctDNA
increased or unchanged.

Also, similar to tebentafusp and other reported data, ctDNA
provides more granularity than overall response assessed through
RECIST 1.1 because in patients from the same response categories
(stable disease), a cut-off of ctDNA change can still separate patients in
terms of survival benefit (inset of Figure 2C).

Circulating tumor DNA and tumor size
change

The previous analysis was further extended by looking into
potential relationships between ctDNA change and quantitative

tumor size change (rather than the RECIST 1.1 response category)
in the studies where longitudinal tumor size data were available to us
(i.e., OAK and IMspire170). We calculated the maximal change in the
sum of the longest diameters each patient experienced across the whole
timewindow of tumor size data collection. This value can be negative (in
case of tumor size shrinkage) or positive (in case of tumor size increase).
We show in Figure 2D the result of the analysis for IMspire170
(atezolizumab + cobimetinib (red) and pembrolizumab (blue)) and
OAK atezolizumab datasets (green points). There was a relationship
between the magnitude of ctDNA decrease (x-axis) taken at a fixed time
point and the maximum tumor size change. The stronger the early
ctDNA drop, the more the tumor shrinkage observed.

To try to elucidate the relationships between ctDNA data and tumor
size, we jointly looked at the SLD and ctDNA time courses in the OAK
dataset for which we had several time point measurements of ctDNA.
Consistently at all cycles, we found that the majority of patients with

FIGURE 2
(A) From the Weber et al. dataset. Kaplan–Meier estimates of overall survival stratified by ctDNA change on treatment versus baseline: decrease >50%
(blue line) versus all other patients (purple line). Confidence intervals are shownwith thin lines. A: Data fromWeber et al., NSCLC patients treated with CPI. The
inset graphic shows the evolution of OS HR when reducing the ctDNA decrease cut-off (from left to right). The chosen cut-off values (20, 50, and 90% ctDNA
reduction) represent approximately the observed quartiles of ctDNA reductions. More reduction is associated with better HR. (B) Kaplan–Meier (KM)
curves are simulated using the exponential distribution parameterized according to the observed hazard rates of responders in terms of ctDNA drop from the
Weber et al. dataset. Each colored line is a KM curve for a given percentage of responders from 10 to 90%. The inset shows the evolution of themedian survival
time (time at which half of the population is still alive) as a function of the percentage of responders for both ctDNA (red) and RECIST 1.1 (blue). (C) From the
Weber et al. dataset. Waterfall plots of ctDNA colored by best overall response following RECIST 1.1 categorization. Complete response (green), partial
response (cyan), stable disease (blue), and progressive disease (red) are shown. The inset shows Kaplan–Meier curves using ctDNA decrease less (purple) or
more (blue) than 50% (like in panel (A)) in the patients within the same RECIST 1.1 category “stable disease.” (D) Median tumor change (y-axis) in patient
subgroups defined by the ctDNA decrease cut-off (x-axis) for atezolizumab + cobimetinib (red) and pembrolizumab (blue) for patients with melanoma in
IMspire170 and atezolizumab for patients with NSCLC in OAK (green). The length of the error bars corresponds to ± 1 SD. (E)OAK data: Tumor size (left) and
ctDNA (right) change from baseline over time. (F) Left/top: Model-based predictions of ctDNA time course in patients with NSCLC treated with atezolizumab
(OAK study) using the Stein et al. model, omitting the baseline term and using individual parameter estimates. Left/bottom: Scatter plot of predicted
exponential decay for ctDNA versus same parameter for tumor size (dots) (see equation 1). The line is a least square regression. Right: Individual fits for the
joined ctDNA–SLD model proposed in equation (2). The model can fit data when ctDNA and SLD time courses are positively correlated (top) or negatively
correlated (bottom). We here report individual fits as illustration only. The model can fit different types of profiles although parameters of the model were not
estimated with sufficient precision to use this model for any predictive purpose.
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ctDNA decrease have an early (week 6) tumor size decrease: 50% [(11/
22) at cycle 2 (week 3), 63% (12/19) at cycle 3 (week 6), and 65% (11/17)
at cycle 4 (week 9)]. The majority of patients with ctDNA increase have
an early tumor size increase [62% (13/21), 65% (11/17), and 64% (9/14)
at cycles 2, 3, and 4, respectively], altogether suggesting a link between
early ctDNA and tumor size change.

Optimal sampling strategy and the
challenge of variability

Circulating tumor DNA data collection and quantification come at
a significant cost (burden for patients, for study operations, and
financially). Therefore, designing methods for optimal sampling of
ctDNA is important.

We used an empirical approach where we modeled the ctDNA
time course using a bi-exponential model classically used to capture
tumor size dynamics, also called the Stein model (Stein et al., 2011):

y � y0 · exp −ks · t( ) + exp kg · t( ) − 1( ),

where ks is the decay parameter, kg is the regrowth parameter, and y0
is the initial value which was not estimated but fixed to the observed
baseline value.

All ctDNA data were expressed in terms of (average) mutant
molecule per ml (MMPM) and log(base 10)-transformed. Monolix
(version 2021 R1, Lixoft SAS, a Simulation Plus company) was used
to estimate the two parameters of the structural model and parameter(s)
of a constant error model within a population framework, allowing to
estimate variability in these parameters in the population. All population
parameters were estimated with a low or moderate standard error [RSE]:
30.1% and 27.4% for the growth and decay rate fixed effect, respectively;
25% and 20% for the inter-individual variability random effects; and less
than 5% for the residual error model parameter.

With this model, we reproduced the predicted time course of
ctDNA in patients treated with atezolizumab (Figure 2F, top left). For
patients with a decrease in ctDNA, we identified the time at which the
ctDNA time course achieved its nadir following the idea that this
would be the theoretical time at which the ctDNA measures hold the
highest information. The result of this analysis shows that 21 days or
cycle 2 might be too early for informative ctDNAmeasurements as the
majority of the simulated patients had their ctDNA nadir beyond cycle
4, i.e., 9 weeks.

However, large inter-individual variability parameters were
estimated, specifically for both decay and growth rates with an
estimate close to 100% (assessed through the standard deviation of
the random effects). These parameters were estimated with reasonable
precision, which overall indicates the high degree of inter- and intra-
individual variability (see Appendix for further details).

It is important to highlight that the nature of the data themselves,
being a summarized statistics based on a number of alleles which most
likely change from one time point to the other (not the same allele will
contribute to the final data readout), may have a large contribution to
the observed time course variability. Given the identified variability,
the collection of longitudinal sampling of ctDNA along the course of
the disease is needed to generate hypotheses on the optimal sampling
strategy. This also appears important given that optimal strategies
should not be “one size fits all”—as different drugs and mechanisms of
action could be associated with different optimal sampling times.

Joint modeling of ctDNA and tumor size
time course and the challenge of
biological complexity

When we applied the model by Stein et al. (Stein et al., 2011) to the
SLD time course, which was independent of the ctDNA data, we found
that the resulting parameter governing the decay slightly correlated
with the same parameter for ctDNA (Figure 2F bottom left) (r = 0.45),
supporting the hypothesis of the presence of a mechanical link
between ctDNA and tumor size.

To follow up, we tested a simple joint model of ctDNA and SLD
time course encoding the correlation between the two decay
phenomena:

SLD t( ) � SLD0 · exp −ksT · t( ) + exp kgT · t( ) − 1( ),

ctDNA t( ) � ctDNA0 · exp −ζ · ksT · t( ) + exp kg · t( ) − 1( ),

where SLD denotes the sum of the longest diameter and SLD0 its
baseline value. kgT is the SLD growth parameter and ksT is the
decay rate which we found again in the equation for ctDNA. The
parameter ζ links the time course dynamics of SLD and ctDNA
data. For data fitting, the population parameters were all fixed to
values obtained when fitting ctDNA and SLD data independently
(see Appendix for further details). Only the parameter ζ and its
variability were estimated. Consistent with the hypothesis of the
mechanical link between the two observations, its population
value was 1.94 (RSE of 37%) and variability was 0.86 (RSE
of 35%).

This model could reproduce patients’ ctDNA and SLD data
through its flexibility to capture both expected (Figure 2F, right
side top and middle row) and unexpected profiles (bottom row),
i.e., ctDNA increase and SLD decrease, or the contrary. We believe
that the ability of such a model to reproduce patient-level data is an
additional support to the hypothesis of a link between ctDNA and
SLD time course in the case of the checkpoint inhibitor and should
be viewed as an incentive for the development of further modeling
attempts.

However, proper joint modeling of ctDNA and SLD time
course will require an understanding of ctDNA shedding by
tumor cells, ctDNA release into blood, and clearance. These
processes could potentially differ from one indication to
another and from one therapeutic modality to another. Some
mechanistic modeling efforts have been already undertaken. For
example, Avanzini et al. (2020) modeled the mechanisms of
ctDNA shedding and release into circulation; they assumed that
ctDNA is shed by dying tumor cells with a certain shedding
probability and that the half-life of ctDNA in circulation is
around 30 min.

Conclusion

In many recent studies, ctDNA has shown potential to be used as a
powerful biomarker for long-term clinical benefit of patients receiving
anti-cancer treatment. ctDNA has obvious advantages over other
techniques such as imaging; it is less invasive and time-consuming
and can theoretically provide a high quality estimate of the total tumor
burden, while imaging-based techniques focus on a limited number of
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identified target lesions. Moreover, it could become less costly as
technology evolves.

From this perspective, we have compiled a large dataset of patients
(~500 patients) with varying tumor indications (non-small-cell lung
carcinoma (NSCLC) and melanoma), treatments (CPI ± targeted
therapy) and ctDNA panels (AVENIO and FMI), and sampling
times (longitudinal and static).

Our objective was neither to provide a holistic introduction to
ctDNA and associated technology nor to showcase a sophisticated
ctDNA data modeling framework. Clearly, much work remains to
be conducted to improve such models and what we reported should
serve as an introduction to this problem. Rather, through statistical
and empirical modeling of this dataset, we wish to contribute to
familiarize the PMX community with the opportunity that ctDNA
modeling can represent the early clinical development of anti-
cancer therapeutic agents and raise awareness of potential
challenges.

The presented analysis also sheds some light on the challenges to
be expected when it comes to using ctDNA data for decision-making.
First, we need to consider the nature of the data and their associated
variability: coming from bioinformatic readout, modelers will need
to closely work with bioinformaticians to effectively model the data.
Then, the accessibility to longitudinal data should be taken into
account notwithstanding the cost of these measurements.
Longitudinal assessments should offer the opportunity of a better
understanding given the potentially high level of variability in the
data. This should lead to more precise mathematical formulation of
the underlying biological processes which contributes to increase the
quality of modeling readouts, reduces variability, and in turn
contributes to optimal sampling strategies given an underlying
hypothesis between ctDNA shedding/release, treatment action,
and tumor dynamics.

In conclusion, our analysis, in agreement with published
literature, makes ctDNA an ideal candidate—based on its
predictive potential—for integration within a pharmacometric
framework to complement the current state-of-the-art tumor
growth kinetic models.

By focusing efforts on promoting collection of longitudinal data,
understanding of underlying biology and the nature of the data and
their variability, there is hope for the development of successful
modeling frameworks jointly describing ctDNA, tumor size, and
long-term clinical benefit, which overall can significantly contribute
to answering key questions around early identification of most
promising compounds and precision dosing.
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