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Predicting new therapeutic effects (drug repositioning) of existing drugs plays

an important role in drug development. However, traditional wet experimental

prediction methods are usually time-consuming and costly. The emergence of

more and more artificial intelligence-based drug repositioning methods in the

past 2 years has facilitated drug development. In this study we propose a drug

repositioningmethod, VGAEDR, based on a heterogeneous network ofmultiple

drug attributes and a variational graph autoencoder. First, a drug-disease

heterogeneous network is established based on three drug attributes,

disease semantic information, and known drug-disease associations. Second,

low-dimensional feature representations for heterogeneous networks are

learned through a variational graph autoencoder module and a multi-layer

convolutional module. Finally, the feature representation is fed to a fully

connected layer and a Softmax layer to predict new drug-disease

associations. Comparative experiments with other baseline methods on

three datasets demonstrate the excellent performance of VGAEDR. In the

case study, we predicted the top 10 possible anti-COVID-19 drugs on the

existing drug and disease data, and six of themwere verified by other literatures.
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1 Introduction

Since the outbreak of the new coronavirus pneumonia, the development of a new drug

to treat the new coronavirus has become particularly important. However, traditional

drug development is a high-cost, high-failure and slow process. It takes an average of

15 years from development to clinical use for an effective drug, and the economic cost is

8–1.5 billion dollars (Ashburn and Thor, 2004; Dickson and Gagnon, 2004; Adams and

Brantner, 2006). Drug repurposing has the advantages of low R&D cost and short

development time, so repurposing old drugs to treat common and rare diseases is

becoming more and more attractive (Pushpakom et al., 2019). Drug repositioning is a

strategy used to expand the applicability of older drugs (Padhy and Gupta, 2011). Those

drugs that have been put into use have passed various clinical trials, and their safety and

side effects have also been evaluated by relevant departments. Drug repositioning

technology can shorten the development cycle to 6.5 years and the average cost to
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3 million dollars (Nosengo, 2016). There is an urgent need to

propose some new computational methods for drug relocation to

facilitate drug development.

Traditional drug retargeting is based on biological activity,

which is a wet experimental strategy that requires manual

extensive analysis and testing of drugs in existing clinical

compound databases. In recent years, with the continuous

accumulation of high-throughput genomic and proteomic data

related to drugs, many computational drug relocation methods

have been generated, using some online public databases and

bioinformatics tools to predict drugs, targets and interactions

between diseases (Shim and Liu, 2014). At present, the existing

computational drug relocation methods are divided into four

categories, namely, methods based on machine learning,

methods based on deep learning, methods based on network

propagation, methods based on matrix decomposition and

matrix completion (Luo et al., 2021).

Machine learning methods have been widely used to

compute drug repositioning, usually treating drug-disease

association prediction as a binary classification problem,

treating drug and disease information as features. These

approaches follow the principle of similarity that similar drugs

are more likely to be associated with similar diseases. Gottlieb

et al. (2011) proposed a computational approach, PREDICT,

which constructs multiple drug-drug and disease-disease

similarity measures, follows the method in Perlman et al.

(2011) to construct categorical features, and then learns a

logistic regression classifier to predict new links between drugs

and disease. Pliakos and Vens (2020) predicted drug target

interactions through tree ensemble learning and output space

reconstruction. Napolitano et al. (2013) integrated information

from multiple drug-related features to train a kernel-based SVM

classifier. Moghadam et al. (2016) also established a support

vector machine model to identify new drug-disease associations

by employing nuclear fusion techniques and various features of

drugs and diseases. However, the above feature-based

classification methods rely heavily on the extraction of drug

and disease features and the selection of negative samples.

Therefore, more efficient and accurate algorithms have been

developed, and matrix factorization and matrix completion

techniques have been successfully applied to drug-disease

association prediction. Matrix factorization methods assume

that there are limited factors that determine drug, target, and

disease relationships, which can be efficiently obtained by matrix

factorization. Sajadi et al. (2022) predict drug-target interactions

by a denoising autoencoder matrix factorization method. Dai

et al. (2015) proposed a matrix factorization model to predict

novel drug-disease correlations by integrating drug, gene, and

disease information. Xuan et al. (2019a) developed a drug

similarity-based non-negative matrix factorization model

(DivePred) for predicting potential drug-disease associations.

Matrix completion approaches reveal new indications by

populating unknown elements in drug, target, and disease

association matrices. Bagherian et al. (2021) proposed a

coupled matrix-matrix completion approach to predict drug-

target interactions. Luo et al. (2018) proposed a drug retargeting

recommendation system (DRRS) for predicting drug-disease

associations by integrating drug and disease similarity

information. Compared with other methods, the above

methods do not require negative samples and can flexibly

integrate more prior information, but it is challenging to

apply them to large-scale data due to the high complexity of

matrix operations.

Deep learning is a subfield of machine learning that has been

successfully applied in computer vision, speech recognition,

bioinformatics, and many other fields, including prediction of

drug-disease associations. Zeng et al. (2019) developed a deep

learning method named deepDR. It takes full advantage of the

topological information of drug similarity networks. However,

deepDR does not consider disease-related information. Wang

et al. (2021) proposed a deep learning model called Deep Forest

multi-label classification for lncRNA disease association

prediction. Yu et al. (2021) proposed LAGCN, which used

graph convolutional networks to capture the feature

information of drugs and diseases, and introduced an

attention mechanism to combine the embeddings of different

convolutional layers. Sajadi et al. (2021) proposed a deep

unsupervised learning based drug-target interaction prediction

method (AutoDTI++). Existing deep learning techniques mainly

use the side information of drugs and diseases to build

heterogeneous networks, apply deep learning techniques to

heterogeneous networks to better learn the representation of

drugs and diseases, and ultimately improve the prediction

accuracy.

Network-based methods have become a widely used strategy

in the field of computational drug relocation. The accuracy of

drug repositioning is improved by capturing information similar

to drug and disease characteristics in different kinds of biological

networks. Luo et al. (2016) applied random walks on drug-

disease dichotomous networks and drug-target-disease

heterogeneous networks to predict novel drug-disease

associations, respectively. Chen et al. (2012) predict drug-

target interactions by random walk on heterogeneous

networks. Wang et al. (2014) designed a three-layer

heterogeneous network-based prediction method (TLHGBI) to

infer potential links between drugs and diseases. Zeng et al.

(2020) proposed a network-based arbitrary order proximity

embedded deep forest method to predict drug-target

interactions. Martinez et al. (2015) proposed DrugNet, a

network-based prioritization method that integrates disease,

drug, and target information to perform drug-disease and

disease-drug prioritization simultaneously. The above methods

introduce heterogeneous networks to represent the integration of

different types of biological networks, and the similarities

between different biological networks provides a new idea for

predicting unobserved correlations between drugs and diseases.
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However, network-based methods focus on building

heterogeneous networks while ignoring the biological

knowledge of drugs and diseases. Future models that consider

aspects should further improve drug-disease-association

prediction.

In this article, we propose a heterogeneous network and

variational graph autoencoder-based approach, VGAEDR, for

predicting novel drug-disease associations. Considering the

biological knowledge of drugs and diseases, we constructed

three drug similarity networks and one disease similarity

network based on three drug attribute information and

disease semantic information, respectively, and then integrated

the known drug-disease associations to construct drug- Disease

Heterogeneous Networks. The VGAEDR model is divided into

two parts. The first part is the Variational Graph Autoencoder

(VGAE) module, which takes a heterogeneous network as input

and learns and extracts its low-dimensional embedding

representation. The second part is a multi-layer convolution

module for further learning the embedding representation

extracted by the VGAE module. Finally, the association

prediction of the drug-disease pair is obtained through the

fully connected layer and the softmax layer. We demonstrate

through ablation experiments that three drug attribute

similarities are helpful for model performance prediction.

Comparative experiments with other methods on three

datasets also show that our model has excellent performance.

Case studies were also conducted to predict possible drugs

against COVID-19.

The main contributions of this work are summarized as the

following three points: 1) We propose VGAEDR, a deep learning

method based on heterogeneous networks, which can effectively

predict drug and disease associations. 2) VGAEDR integrates two

models. Firstly, it uses a variational graph autoencoder to extract

the feature representations of drugs and diseases from the drug-

disease heterogeneous network, and then further learns the

embedding representations of potential drugs and diseases

through a convolutional neural network. 3) VGAEDR can

quickly and accurately find candidate drugs against COVID-19.

2 Materials

2.1 Dataset

In order to take into account the biological association

network and drug-disease-related biological knowledge at the

same time, the data set in our study contains drug-disease

association information and four attribute information. The

four attribute information is the chemical substructure of the

drug, drug target proteins and the gene annotation information

for drugs, and disease semantic information of structural

domains for diseases. The Comparative Toxicogenomics

Database (CTD) contains many known drug-disease

associations, and we screened 37,424 drug-disease

associations (version 2022.7.31) from the CTD with marked

therapeutic relationships, which corresponded to 6856 drugs

and 2484 diseases. In order to predict the relationship between

drugs and diseases in a more targeted manner, we extracted

drugs that have therapeutic effects on more than 10 diseases

and diseases affected by more than 10 drugs, and finally

obtained 855 drugs, 727 diseases and 29,274 associations.

Our study also collected two widely used benchmark

datasets, the first one obtained by Zhang et al. (2018) from

the CTD database, which contained 18416 known drug-disease

associations between 269 drugs and 598 diseases. The second

dataset is the gold standard dataset used in Liang et al. (2017),

which contains 3051 known drug-disease associations between

763 drugs and 681 diseases. Our method utilizes both drug and

disease similarity information, and the chemical substructures

of the drug are established by obtaining the chemical

fingerprints of the drug from the PubChem database (Kim

et al., 2016). The domains of drug target proteins were obtained

from the InterPro database (Mitchell et al., 2015). Gene

annotation information for drug target proteins was

obtained from the UniPort database (Renaux and UniProt,

2018). According to Wang et al. (2010), we compute the

semantic similarity of diseases by constructing a directed

acyclic graph (DAG) of diseases. Disease terms for

constructing DAGs were obtained from the United States

National Library of Medicine (ULM). The known drug-

disease association is used as a positive sample set, and the

unrelated drugs and diseases in the positive sample set are

randomly paired to construct a negative sample set, and the

number of negative samples is equal to the number of positive

samples to avoid imbalance problems. Simple statistics about

these two datasets are shown in Table 1.

2.2 Construction of the heterogeneous
network

In this section, we construct a drug similarity network, a

disease similarity network and a drug-disease association

network from the drug feature information, disease

semantic information, and drug-disease association

TABLE 1 The statistics of three datasets.

Datasets Drugs Diseases Known
associations

CTD 855 727 29274

Dataset 1 Yu et al. (2021) 269 598 18416

Dataset 2 Sajadi et al.
(2021)

763 681 3051

Frontiers in Pharmacology frontiersin.org03

Lei et al. 10.3389/fphar.2022.1056605

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1056605


information in the above datasets, respectively. There are

three kinds of drug feature information, so three drug

similarity networks are constructed, which reflect the

similarity of two drugs from different perspectives. Then

drug-disease heterogeneous network is constructed based

on the drug similarities of different classes.

2.2.1 Drug-disease association network
We build a drug-disease relationship matrix Mrd ∈ RNr×Nd

(Figure1A) from the known drug-disease associations in the

database, which records Nr drugs and Nd diseases connection

situation. The rows of the matrix represent drugs and the

columns represent diseases. If drug ri is associated with

disease dj, then (Mrd)i,j � 1, otherwise (Mrd)i,j � 0.

2.2.2 Drug Similarity Network
Considering the influence of biological knowledge of drugs

on the prediction of drug-disease relationship, we introduce three

different drug feature information, and multiple features can

describe drug similarity from multiple different perspectives.

Usually, the more chemical substructures two drugs have, the

more similar their effects are. Similarly, when two drugs are

present with more target proteins gene ontology annotation of

domains or target proteins, which are often more similar (Ding

et al., 2014). In previous studies (Xuan et al., 2019b), the Jaccard

index and cosine similarity were commonly used to measure

drug similarity. LAGCN (Yu et al., 2021) used these two methods

separately to calculate drug similarity and found that the results

of Jaccard index were slightly better than cosine similarity.

Therefore, we use the Jaccard index to calculate the chemical

substructure similarity of drugs, represented by a matrix Mche
r .

Similarly, the domain similarity and functional annotation

similarity of drugs are represented by matrices Mdom
r and

Manno
r , respectively (Figure1B). In order to combine the

information of different types of drug features, according to

research (Liang et al., 2017), we project the three drug similarity

FIGURE 1
(A)matrix representation of drug-disease associations, (B)matrix representation of three drug similarities, (C) matrix representation of disease
similarities, (D) construction of drug–disease heterogeneous network.
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matrices into a common latent subspace to get the final drug

similarity matrix expressed as follows:

Mr �
Mche

r � Mche
r( )

i,j

Mdom
r � Mdom

r( )
i,j

Manno
r � Manno

r( )i.j

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ∈ RNr×Nr (1)

where (Mr)i,j represents the similarity value between drug ri and

drug rj, and higher similarity values indicate higher functional

similarity. Nr represents the number of drugs.

2.2.3 Disease similarity network
There are also similarities between diseases, and calculating

disease similarity is crucial to building disease networks.

According to previous studies (Wang et al., 2010), diseases

can usually be represented by a directed acyclic graph (DAG),

where nodes represent diseases and edges represent relationships

between nodes. Each disease has associated disease terms in the

DAG, and when two diseases have more of the same disease

terms, they are often more similar. Here the graph of disease d is

represented as DAGd � (d, Vd, Ed), where Vd is the set of all

ancestor nodes of d, including node d itself, and Ed is the set of

corresponding links. Define the contribution of disease s in

DAGd to the semantics of disease d as follows:

Dd d( ) � 1
Dd s( ) � max ΔpDd s′( ) s′ ∈ children of s} if s ≠ d

∣∣∣∣{{
(2)

where Δ is the semantic contribution factor of the edge

connecting disease d and its sub-disease d’, which ranges

from 0 to 1, and is usually set to 0.5. Then the semantic

value of disease d is defined as DV(d) � ∑s∈Vd
Dd(s).The

semantic similarity of the two diseases was measured by

considering their relative positions in the MeSH database

(http://www.ncbi.nlm.nih.gov/) DAG. This disease

similarity was also used in our study and represented by

matrix Md ∈ RNd×Nd (Figure1C). Then the semantic

similarity of diseases is defined as follows:

Md( )i,j �
∑s ∈ Vdi ∩ Vdj Ddi s( ) +Ddj s( )( )

DV di( ) +DV dj( ) (3)

where (Md)i,j represents the similarity value between disease di
and disease dj, and Nd represents the number of diseases.

To enable our model to learn more and deeper drug-disease-

related information, we construct heterogeneous networks

through drug-disease similarity networks and drug-disease

association networks. The three drug similarity networks

reflect the similarity between two drugs from different

perspectives, so we construct a drug-disease heterogeneous

network based on the similarity of three drugs (Figure 1D).

Each network contains two types of nodes (drug nodes, disease

nodes) and three types of edges (drug-drug, disease-disease, and

drug-disease). The nodes in the drug similarity network and the

disease similarity network are connected, but there is no edge

between the two networks. We add corresponding edges between

these two networks based on known drug-disease associations.

Specifically, if (Mrd)i,j � 1, then add an edge between drug ri and

disease dj. The adjacency matrix of the constructed

heterogeneous network is expressed as follows:

Mh � Mr Mrd

Mrd
T Md

[ ] ∈ R Nr+Nd( )× Nr+Nd( ) (4)

where Mrd
T is the transpose of Mrd.

2.3 Method

In this section we build a drug-disease relationship prediction

model VGAEDR based on Variational Graph Autoencoders

(VGAE) and CNN. The input of the model is a drug-disease

heterogeneous network, which learns the network information of

drug-disease through a graph variational autoencoder ensemble

and generates latent low-dimensional feature matrix. The feature

matrix is then fed into a multi-layer convolutional module to

obtain the final drug-disease feature representation. Finally, the

association probability of the drug-disease pair is obtained

through the fully connected layer and the softmax layer. The

structure of the VGAEDR model is shown in Figure 2.

2.3.1 Graph representation learning based on
VGAE

Variational Graph Autoencoder (VGAE) is an unsupervised

learning framework for graph data structures based on

Variational Autoencoder (VAE). The model contains two

networks, an inference network and a generative network,

which can also be interpreted as an encoder and a decoder.

The encoding layer uses graph convolution to encode the known

graph to learn a distribution of node vector representations,

sample the node vector representations from the distribution,

and then reconstruct the graph using an inner-product decoder.

In order to learn the network information formed bymultiple

connections between drug and disease nodes, we take the

adjacency matrix Mh and feature matrix X of the drug-disease

heterogeneous network as the input of VGAE. The VGAE

encoder part is a two-layer graph convolutional network

(GCN), the first GCN layer learns the low-dimensional feature

vectors of nodes from the network, and the second GCN layer

generates the distribution of node feature representations. Mh

only contains the neighbor information of the drug or disease

node, while ignoring the information of the node itself.

Therefore, we add its own connection to each drug and

disease node, let A � Mh + I, I is the identity matrix,

I ∈ R((Nr+Nd)×(Nr+Nd)). Next, define the initial feature matrix

for the drug and disease nodes as:
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X 0( ) � 0 Mrd

MT
rd 0

[ ] ∈ R Nr+Nd( )× Nr+Nd( ) (5)

Then, the low-dimensional feature representation of drug

disease nodes can be obtained through the first GCN layer:

X 1( ) � ReLU D−1
2AD−1

2X 0( )W0( ) (6)

where W0 ∈ R(Nr+Nd)×d0 is the weight matrix of the first GCN

layer, and d0 is the dimension of the embedding. The second

GCN layer learns the mean μ and variance σ represented by the

low-dimensional vector corresponding to each node through the

mean-variance calculation module:

μ � ReLU D−1
2AD−1

2X 1( )W1( ) (7)
log σ � ReLU D−1

2AD−1
2X 1( )W2( ) (8)

where μ and σ share the weight matrix W0 of the first GCN

layer, W1 ∈ R(Nr+Nd)×d1 and W2 ∈ R(Nr+Nd)×d2 are the weight

matrices of μ and σ, respectively, d1 and d2 are their

corresponding embedding dimensions. Then, the feature

matrix representation X(2) ∈ R(Nr+Nd)×(d1+d2) is obtained by

sampling in N(μ, σ2). X(2) can be divided into upper and

lower parts, namely the drug node feature part (upper half)

and the disease node feature part (lower half), as shown in

Figure 2. X(2)
i is the ith row of the matrix X(2), representing

the feature vector of the ith node. Then the feature vectors of

the drug node ri and the disease node di are expressed as

follows:

ri � X 2( )
i

∣∣∣∣i ∈ 1, n[ ]{ } (9)
di � X 2( )

i

∣∣∣∣i ∈ n + 1, m[ ]{ } (10)

where n � Nr, m � Nr +Nd.

The decoder reconstructs the adjacency matrix by computing

the inner product between the latent variables generated by the

encoder:

Â � σ X 2( )TX 2( )( ) (11)

The decoder is defined as follows:

p Aij � 1 X 2( )
i , X 2( )

j

∣∣∣∣∣( ) � σ X 2( )T
i X 2( )

j( ) (12)

where σ(·) is the sigmoid activation function and T represents the

transpose.

Optimization: In order to minimize the difference between

the generated graph and the original graph, the loss function of

the VGAE module includes the distance metric between the

generated graph and the original graph, and the nodes represent

the divergence of the vector distribution and the normal

distribution. Furthermore, we optimize the loss function of

VGAE with the Adam function. The loss function is defined

as follows:

FIGURE 2
The workflow of VGAEDR model.
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Lvgae � Eq X 2( ) X,A|( ) log p A X 2( )∣∣∣∣( )[ ]
−KL q X 2( ) X,A|( )����p X 2( )( )[ ] (13)

where Eq(X(2) |X,A)[log p(A |X(2))] is the cross-entropy function,
KL[q(·)‖p(·)] is the KL divergence between p(·) and q(·).

2.3.2 CNN-based feature dimension reduction
We apply VGAE to a drug-disease heterogeneous network to

learn feature representations for drug and disease nodes. Next, a

convolutional neural network (CNN) is used to mine deeper

feature representations of drug-disease nodes. The feature

representation learning of drug node r1 and disease node d1 is

shown in Figure 2.

The convolution module contains three convolution layers and

pooling layers, and the number of filters increases layer by layer. The

number of filters in the second layer of convolution is twice that of the

first layer, and the number of filters in the third layer of convolution is

three times that of the first layer. The length andwidth of the filters are

l and w, respectively, and the number of filters in the first layer of

convolution is nconv. We pad zeros around the drug-disease node

feature matrixX(2) to learn the boundary information ofX(2), which
is then used as the input of the convolution module. The filter

Fconv ∈ Rl×w×nconv scans X(2) to obtain a set of feature maps M.

We denote the area when we move the filter from the upper left

corner ofX(2) to the ith row and jth column asX(2)
conv(i, j), thenMk is

the feature map of X(2) obtained after the kth filter scan. X(2)
conv(i, j)

and Mk are defined as follows:

X 2( )
conv i, j( ) � X 2( ) i: i + l, j: j + w( ) ∈ Rl×w (14)
Mk i, j( ) � σ WkpX

2( )
conv i, j( ) + bk( ) (15)

whereWk and bk are the weight matrix and bias vector of the kth

filter, respectively, and σ is the nonlinear activation function

Relu. To extract more important features and alleviate

overfitting, we apply max pooling to Mk. In the pooling layer,

the length and width of the window are pl and pw, respectively.

The pooling result isMpool, k, then the elements of its ith row and

jth column are defined as follows:

Mpool,k i, j( ) � max Mk i: i + pl, j: j + pw( )( ) (16)

Similarly,Mpool, k gets the latent representationU of drug and

disease nodes after going through the second and third

convolutional layers and max pooling layers, and then flattens

it into a vector Y. Y takes as input to a fully connected layer,

which is similar to a traditional neural network, where all

neurons are connected to each other and the output is the

result of the weighted sum of all outputs given by previously

connected neurons. We used 1024 nodes in the first two fully

connected layers, each followed by a dropout layer with rate 0.1.

The third layer consists of 512 nodes. Finally, a softmax layer is

applied to Y to obtain the association probability Ẑ of the drug-

disease pair.

Ẑ � softmax WY + b( ) (17)

where W and b are the weight matrix and bias vector,

respectively. As a binary classification task, we use a cross-

entropy loss function to evaluate the error between the true

association and the predicted outcome. The loss function is as

follows:

Lcnn � − ZlogẐ + 1 − Z( )log 1 − Ẑ( )[ ] (18)

where Z is the true label value.

3 Experiments

3.1 Experiment settings and evaluation
metrics

We use 5-fold cross-validation to evaluate the predictive

performance of our model and other models. All known drug-

disease associations were considered positive samples and

randomly divided into five equal parts. Since the number of

negative samples in our dataset was significantly more than the

number of positive samples and they all randomly sampled

negative samples when compared with other methods, in

order to unify the standard, we randomly selected some

unobserved drug-disease associations equal to the number of

positive samples as negative samples and randomly divided them

into five equal parts. Positive samples and negative samples are

taken together as a sample set. Next, we take four samples from

the positive samples and negative samples respectively as the

cross-validation set, and the remaining one sample in each of the

two sample sets is used as the independent test set, thus ensuring

that there is no overlap between the cross-validation set and the

independent test set. We use a cross-validation set for model pre-

training and parameter analysis in our experiments, and an

independent test set for performance comparison with other

baseline methods. 5 times of training and testing are performed,

and the test results of these 5 times are averaged.

Wemainly use seven evaluationmetrics: area under the receiver

operating characteristic (ROC) curve (AUC), area under the

precision-recall curve (AUPR), F1_SCORE, accuracy, specificity,

precision, and recall. The AUC value can reflect the probability that

the positive samples predicted by the model are ahead of the

negative samples, and when the distribution of positive and

negative samples changes, its value can remain basically

unchanged. Therefore, this evaluation index can reduce the

interference caused by different test sets. A more objective

measure of the performance of the model itself (Ling et al.,

2003). The two indicators of precision and recall are usually

used to evaluate the analysis effect of the binary classification

model. F1_SCORE is defined as the harmonic mean of precision

and recall. Our model predicts the association probability for each

drug-disease pair in an independent test set, and if the association

probability is above a given threshold, the sample is predicted to be a
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positive sample, otherwise it is a negative sample. The ROC curves

are drawn based on TPR and FPR at different thresholds, and the

true positive rate (TPR) and false positive rate (FPR) at the

corresponding thresholds are as follows:

TPR � TP

TP + FN
(19)

FPR � FP

TN + FP
(20)

where TP(TN) is the number of samples correctly identified as

positive samples (negative samples) and FP(FN) is the number of

false positive samples (negative samples).

The number of positive samples in our dataset is much smaller

than the number of negative samples, and there is a problem of

imbalanced data categories. However, AUC is often less informative

than AUPR when evaluating some data imbalance problems (Saito

and Rehmsmeier, 2015). Therefore, we also use AUPR as an

important evaluation metric, and the PR curve is drawn based

on precision and recall. Precision and recall are defined as follows:

Precision � TP

TP + FP
(21)

Recall � TP

TP + FN
(22)

3.2 Parameter sensitivity analysis

In this section we analyze the hyperparameter sensitivity

of VGAEDR. Since VGAEDR is trained and tested in batches

on the data, the choice of batch size may have different

effects on the performance of the model. Under normal

circumstances, if the batch size is too small, it will take a

long time, and the gradient will oscillate seriously, which is

not conducive to convergence; if the batch size is too large,

the gradient direction of different batches will not change,

and it is easy to fall into a local minimum. We tested the

effect of different batch sizes on the model performance on

the CTD dataset, and the experimental results are shown in

Figure 3. The model achieves the best performance when the

batch size is 128. It is worth noting that the embedding

FIGURE 3
Effect of batch size.

FIGURE 4
The effect of embedding dimension.
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dimension D of the first GCN layer in the encoder of VGAE

can contribute to the improvement of the model

performance, we test on the CTD dataset, where D is (32,

64, 128, and 256), as shown in Figure 4, and finally we choose

128 as the best embedding dimension.

3.3 Ablation experiments

Three different drug attribute data were used in our study,

namely the chemical substructure of the drug, the domain of the

drug target protein, and the gene annotation of the drug target

protein. To validate the contribution of these three drug attribute

data to our predictive model, we performed ablation

experiments. The chemical substructure of the drug, the

domain of the drug target protein, and the gene annotation

data of the drug target protein are represented by Che, Dom, and

Anno, respectively. As shown in Figure 5, firstly, the optimal

results are achieved when training the model with Che, Dom, and

Anno data simultaneously. Second, the AUC and AUPR of the

model trained with Che and Dom were 0.0325 and 0.0341 lower

than the model trained with all data. The models trained on Che

and Anno have a drop of 0.0118 and 0.031 in AUC and AUPR,

respectively, compared to the final model. Finally, the model

achieved the lowest AUC and AUPR without Che. Obviously, the

use of medicinal chemical substructure data has the greatest

impact on model training, and the use of drug target protein

domains and gene annotations has similar effects on model

performance. A possible reason for this is that drugs generally

have more defined chemical substructures, and they have fewer

experimentally confirmed targets (Xuan et al., 2021). Ablation

experiments show that training the model with data related to

drug attributes is helpful for the predictive performance of the

model.

3.4 Comparison of graph representation
methods

Besides VGAE, there are other graph representation

learning methods that can also learn network representations

of biomolecules in bioinformatics networks, such as GCN (Kipf

and Welling, 2016) and GAT (Velikovi, 2018). To investigate

their performance differences with VGAE, we integrate them

with the convolutional neural network part of the VGAEDR

model to obtain two variant models GCN_DR and GAT_DR.

The three models are trained and tested on Dataset1, and the

experimental results are shown in Figure 6. VGAEDR achieves

the state-of-the-art performance, which indicates that VGAE is

more suitable for learning network representations of drug-

diseases. GCN_DR may be due to the fact that GCN is too

smooth and the performance is mediocre. The poor

performance of GAT_DR may be caused by the fact that

GAT does not fully utilize the edge information in the drug-

disease network.

3.5 Comparison with other methods

To validate the performance of the VGAEDR model, we

compare with five state-of-the-art drug-disease association

prediction methods on three datasets, such as DeepDR (Zeng

et al., 2019), SCMFDD (Zhang et al., 2018), LRSSL (Liang et al.,

2017), BNNR (Yang et al., 2019) and GRGMF (Zhang et al.,

2020). These methods are mainly divided into two categories:

methods based on heterogeneous networks and methods based

on matrix factorization. To make the comparison results more

convincing, we train and test all methods on the same dataset,

while each comparison method uses the best parameter settings

from the corresponding literature. Below we briefly describe the

five comparison methods:

1) DeepDR Zeng et al. (2019) integrates drug-disease

associations and multiple drug similarity networks into a

heterogeneous network to predict novel drug-disease

associations through multimodal deep autoencoders and

collective variational autoencoders.

2) SCMFDD Zhang et al. (2018) projects drug-disease

associations into two low-rank spaces, revealing latent

features of drugs and diseases, and then introduces

drug-feature-based similarity and disease semantic

similarity as constraints on drugs and diseases in the

low-rank space.

3) LRSSL Liang et al. (2017) fuses medicinal chemical

information, drug target domain information and target

annotation information to predict novel drug-disease

associations based on Laplacian regularized sparse

subspace learning.

FIGURE 5
Results of the ablation studies.
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4) BNNR Yang et al. (2019) integrates drug-drug, drug-disease,

and disease-disease networks into a drug-disease

heterogeneous network, and then uses the bounded kernel

norm regularization (BNNR) method to complete the drug-

disease under low-rank hypothesis matrix.

5) GRGMF Zhang et al. (2020) formulated a generalized matrix

factorization model that considers the neighborhood

information of each node when learning the latent

representation of each node, and can learn the

neighborhood information of each node adaptively.

FIGURE 6
(A) The ROC curves of different graph representation learning, (B) The PR curves of different graph representation learning.

TABLE 2 Performance of comparison methods on CTD.

AUC AUPR F1_SCORE Accuracy Specificity Precision Recall

VGAEDR 0.8484 0.8423 0.7982 0.7962 0.8805 0.7777 0.8198

DeepDR 0.8286 0.8243 0.7533 0.7542 0.839 0.7262 0.7825

SCMFDD 0.8173 0.8105 0.7412 0.7458 0.8051 0.6916 0.7984

LRSSL 0.8186 0.8225 0.7701 0.7693 0.8146 0.7763 0.764

BNNR 0.8154 0.8067 0.7361 0.7336 0.8133 0.6905 0.7881

GRGMF 0.8037 0.8018 0.7526 0.7531 0.7966 0.7335 0.7727

TABLE 3 Performance of comparison methods on Dataset1.

AUC AUPR F1_SCORE Accuracy Specificity Precision Recall

VGAEDR 0.8497 0.8395 0.7963 0.8013 0.8789 0.7764 0.8172

DeepDR 0.8304 0.8289 0.7521 0.756 0.8452 0.7178 0.7898

SCMFDD 0.8161 0.809 0.7394 0.7331 0.8006 0.6979 0.7862

LRSSL 0.8132 0.8261 0.7652 0.7619 0.8274 0.7394 0.7929

BNNR 0.8139 0.8042 0.7348 0.7308 0.7859 0.7009 0.775

GRGMF 0.8042 0.8029 0.7532 0.753 0.7939 0.7186 0.7913
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As shown in Table 2, VGAEDR achieves the best

performance on all metrics in the CTD dataset compared

with the other five methods. To verify the robustness of

VGAEDR, we also conduct experiments on Dataset1 and

Dataset2. Table 3 shows the performance comparison

results of VGAEDR and the other five methods on

Dataset1. The AUC value of VGAEDR is the highest of

0.8497, which is 1.93% higher than the second-ranked

DeepDR and 3.36% higher than the third-ranked SCMFDD.

DeepDR can only integrate drug-related feature information

due to the structure of collective variational autoencoder

model. However, without disease feature information, the

prediction performance of the model is often affected.

SCMFDD only uses a single drug feature information to

build the prediction model, when we have multiple drug

features, we can calculate the similarity of different drug

features. Combining different information generally

improves performance, which may be the reason why

VGAEDR performs better than SCMFDD. BNNR also only

considers a single drug (disease) similarity, and performs

matrix completion on heterogeneous networks, which leads

to poor performance of the model on datasets with large

amounts of data to a certain extent. LRSSL has an obvious

drawback that the regularization of disease similarity may fail

when the number of diseases is too small, thus affecting the

prediction performance. GRGMF ranks relatively low in

performance, which may be due to the fact that it does not

mine deeper representations of the drug-disease network and

the fact that matrix factorization models usually perform

moderately well when dealing with sparse matrices. In other

evaluation indicators, VGAEDR also achieved the best results.

The improved performance of VGAEDR is mainly attributed

to its deep learning capabilities, as well as its ability to

comprehensively learn and mine drug-disease

heterogeneous networks. Table 4 shows the performance

comparison results of VGAEDR and the other five methods

on Dataset2. Except recall, VGAEDR outperforms these five

comparison methods in all other evaluation metrics. However,

compared with the results on Dataset1, the AUC of VGAEDR

is reduced by 0.91%, the AUPR is reduced by 0.93%, the F1_

SCORE is reduced by 1.2%, and other indicators are also

reduced. We reasoned that this might be because the

known drug-disease associations on Dataset2 were far less

than those on Dataset1.

To validate our inferences, specifically, that the number

of known drug-disease associations is an important factor in

predicting potential drug-disease associations, which may

significantly affect the performance of the method. We took

Dataset1 as a sample, and randomly selected 70%, 80%, and

90% of them, which is equivalent to obtaining four datasets

with different numbers. We compare the performance of

VGAEDR and five other methods on these four datasets, as

shown in Figures 7, 8, as the number of known drug-disease

associations increases, the AUC and AUPR of all methods

basically becomes higher, where VGAEDR achieves the best

performance. This suggests that more drug-disease

associations lead to better predictive performance of the

model.

3.6 Case studies

Coronavirus disease 2019 (COVID-19), which has spread

globally and has a significant impact on the global economy

and health, is caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2). Although the medical

diagnosis of COVID-19 is rapid and effective, no effective

treatment currently exists. Therefore, potential therapeutic

drugs should be screened. Drug repositioning is considered a

strategy that can speed up the treatment process. We

predicted the top 10 possible anti-covid-19 drugs, as

shown in Table 5, and 6 of them can be found in the

relevant literature. Since the three datasets we used do not

contain data on COVID-19 and antiviral drugs, we used the

HDVD database mentioned in Zhang et al. (2022).

According to Li et al. (2021), glycyrrhizic acid (GA) is

TABLE 4 Performance of comparison method on Dataset2.

AUC AUPR F1_SCORE Accuracy Specificity Precision Recall

VGAEDR 0.8406 0.8302 0.7843 0.7812 0.856 0.7733 0.7956

DeepDR 0.8143 0.8156 0.7436 0.7457 0.8318 0.6921 0.8173

SCMFDD 0.8065 0.8074 0.7255 0.723 0.7993 0.6655 0.7974

LRSSL 0.8053 0.817 0.7475 0.7486 0.813 0.7079 0.7918

BNNR 0.8129 0.8049 0.7312 0.7378 0.7762 0.6878 0.7805

GRGMF 0.7938 0.7835 0.7468 0.7495 0.8004 0.7108 0.7866
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clinically an anti-inflammatory drug against inflammatory

stress caused by pneumonia, and the combination of

glycyrrhizic acid and vitamin C can serve as a potential

treatment for COVID-19 Treatment options. Zhao et al.

(2021) mentioned in their study that GA has antiviral

effects on different viruses, including SARS-related

coronaviruses. According to its characteristics, GA is

considered as a promising novel drug candidate against

SARS-CoV-2 by testing alone or in combination with

other drugs. Favipiravir is an established treatment for

influenza and is being more explored for its role in

treating COVID-19. It is the first oral antiviral drug

approved for mild to moderate COVID-19. Studies that

have been done in China, Japan, and Russia suggest that

favipiravir is a promising treatment for this disease (Joshi

et al., 2021). In a study Manabe et al. (2021), favipiravir

induced viral clearance within 7 days and contributed to

clinical improvement within 14 days. The results suggest

FIGURE 7
AUC of methods based on different fractions of known associations.

FIGURE 8
AUPR of methods based on different fractions of known associations.
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TABLE 5 Top 10 possible anti-COVID-19 drugs predicted by the VGAEDR.

Rank Accession number Drug name 2D structure Evidence (PMID)

1 DB13751 Glycyrrhizic Acid 32662814, Li et al. (2021) 33930273, Zhao et al. (2021)

2 DB12466 Favipiravir 33130203, Joshi et al. (2021) 34044777, Manabe et al. (2021)

3 DB11676 Bcx4430 32711596, Arouche et al. (2020)

4 DB01015 Sulfamethoxazole NA

5 DB05102 Rupintrivir NA

6 DB00300 Tenofovir Disoproxil 32394344, Harter et al. (2021)

7 DB13609 Umifenovir 33317461, Nojomi et al. (2020)

8 DB00290 Bleomycin NA

(Continued on following page)
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that favipiravir has a high potential to treat COVID-19,

especially in patients with mild to moderate disease.

Vaccination is also a way to protect against viruses, and

Burnett (Burnett et al., 2017) studied the global impact of

rotavirus vaccination on childhood hospitalization and

diarrheal mortality. Arouche et al. (2020) studied the

molecular docking of Bcx4430 and five other potential

pharmacologically active inhibitor compounds that can be

used clinically against the COVID-19 virus,

Bcx4430 interacts with the main COVID-19 protease and

the COVID-19 N3 protease inhibitor complex. In molecular

docking studies, tenofovir was recently shown to bind to

SARS-CoV-2 RNA polymerase (RdRp) with a binding energy

comparable to that of natural nucleotides and to a similar

extent to that of remdesivir. Therefore, tenofovir has recently

been suggested as a potential treatment for COVID-19

(Harter et al., 2020). Umifenovir can prevent viral contact

and penetration of host cells by avoiding fusion of viral lipid

capsids to cell membranes, and can inhibit COVID-19

infection by interfering with SARS-COV-2 release from

intracellular vesicles (Nojomi et al., 2020). Therefore,

umifenovir is considered as one of the antiviral drugs that

can effectively treat COVID-19 patients. Tacrolimus may be

effective in the treatment of post-COVID-19 acute

interstitial lung disease, but does not

prevent the progression of pulmonary fibrosis (Ohgushi

et al., 2022).

Therefore, the case study demonstrates that VGAEDR can

identify novel drug-disease associations and effectively predict

drugs that may fight COVID-19.

4 Conclusion

In this article, we propose a drug repositioning method,

VGAEDR, based on variational graph autoencoders and

heterogeneous networks. First, a drug-disease heterogeneous

network is constructed based on three different drug feature

similarities, disease semantic similarities, and known drug-disease

associations. Then, a Variational Graph Autoencoder (VGAE)

module for learning heterogeneous networks is established. The

heterogeneous network is used as the input of the VGAE module,

and then it learns its latent low-dimensional feature representation

and generates the reconstructed network. Finally, a multi-layer

convolutional neural network module is built to further learn its

low-dimensional feature representation. We input the feature

representations finally learned by the two modules into fully

connected layers and softmax layers to predict drug-disease

associations. Ablation experiments show that using multiple drug

feature data can improve the predictive performance of the model.

The comparison results with other five methods on the three datasets

demonstrate the excellent performance of our model. VGAEDR also

achieves the best results in datasets containing different numbers of

drug-disease associations, while demonstrating that the greater the

number of known drug-disease associations, the better the predictive

performance of the model. We conducted case studies on existing

drug and disease data, and predicted the top 10 possible anti-COVID-

19 drugs, six of which were verified by other literatures. It was

demonstrated that VGAEDR is a reliable drug repositioning method.

In the future work, since we only use the disease semantic

similarity as the disease feature in this paper, we will consider

more disease similarity information in the subsequent work, such

as disease phenotype similarity and disease Gaussian kernel similarity,

to integrate this disease feature information for better drug

repositioning. We are also ready to collect and collate more drug-

disease association data frommore databases and literature to train the

model and thus improve its predictive ability. In addition, we only

have reliable positive samples (known drug-disease associations),

negative samples are selected by random sampling, and more

algorithms for selecting negative samples will be considered in

future work. At present, we can only obtain information from

relevant literature and reports to verify new drug-disease

TABLE 5 (Continued) Top 10 possible anti-COVID-19 drugs predicted by the VGAEDR.

Rank Accession number Drug name 2D structure Evidence (PMID)

9 DB00864 Tacrolimus 34866097, Ohgushi et al. (2022)

10 DB01029 Irbesartan NA
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associations. In the future, if there is an opportunity, we hope to

cooperate with researchers in the field of biochemistry to verify the

candidate drugs for a disease we predict through a series of wet

experimental methods.
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