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Caffeine is the globally consumed psychoactive substance and the drug of

choice for the treatment of apnea of prematurity (AOP), but its therapeutic

effects are highly variable among preterm infants. Many of the molecular

underpinnings of the marked individual response have remained elusive yet.

Interestingly, the significant association between Clock gene polymorphisms

and the response to caffeine therapy offers an opportunity to advance our

understanding of potential mechanistic pathways. In this review, we delineate

the functions and mechanisms of human circadian rhythms. An up-to-date

advance of the formation and ontogeny of human circadian rhythms during the

perinatal period are concisely discussed. Specially, we summarize and discuss

the characteristics of circadian rhythms in preterm infants. Second, we discuss

the role of caffeine consumption on the circadian rhythms in animalmodels and

human, especially in neonates and preterm infants. Finally, we postulate how

circadian-based therapeutic initiatives could open new possibilities to promote

precision caffeine therapy for the AOP management in preterm infants.
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1 Introduction

Caffeine, one of the bioactive methylxanthines that exist in a variety of natural and

processed foods and beverages, is the most frequently consumed psychoactive substance

in the world (Gonzalez de Mejia and Ramirez-Mares, 2014; van Dam et al., 2020; Rodak

et al., 2021). Studies have confirmed that ingested caffeine has profound effects on the

function and health of various systems in the human body through the combination of

several molecular mechanisms including the antagonism of adenosine receptors,

inhibition of phosphodiesterase, and mobilization of intracellular calcium (Nehlig

et al., 1992; Cappelletti et al., 2015; Rodak et al., 2021; Yang et al., 2021). Among

these effects of caffeine, the most well-known are those on the central nervous system,
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such as the regulation of sleep-wake states, learning-memory

functions, cognitive-behavioral performances, attention-

alertness functions, and mood-consciousness states (Nehlig

et al., 1992; Snel and Lorist, 2011; Spaeth et al., 2014; Urry

and Landolt, 2015). Therefore, it is no surprise that many people

are accustomed to taking caffeinated beverages or foods to

combat sleep deprivation induced fatigue and circadian

rhythm sleep disorder caused by shift work or rapid

transmeridian travel (Landolt, 2015; Clark and Landolt, 2017;

Arendt, 2018), while some other people intentionally avoid

caffeine in their daily life so as not to interfere with regular

sleep habits (Snel and Lorist, 2011).

On the other hand, the therapeutic use of caffeine is very

common in clinical practice. Caffeine acts as a potent analgesic

adjuvant and is often added to a variety of over-the-counter and

prescription analgesics due to its anti-inflammatory and

vasoconstrictive effects (Cappelletti et al., 2015; van Dam

et al., 2020; Rodak et al., 2021). More strikingly, caffeine is

the drug of choice for the treatment of apnea of prematurity

(AOP) (Eichenwald et al., 2016; Kumar and Lipshultz, 2019;

Moschino et al., 2020; Long et al., 2021) and becomes one of the

most commonly prescribed medications in the neonatal intensive

care unit (NICU) (Hsieh et al., 2014; Krzyżaniak et al., 2016),

evidenced by its short-term and long-term efficacy and safety in

reducing apnea, facilitating extubation, preventing

bronchopulmonary dysplasia, ameliorating retinopathy of

prematurity, reducing patent ductus arteriosus, and improving

neurodevelopmental outcome that have been demonstrated in

the Caffeine for Apnea of Prematurity (CAP) trial (Schmidt et al.,

2006; Schmidt et al., 2007). Assuredly, compared with other

methylxanthines, caffeine has higher therapeutic index, longer

half-life, and better tolerability (Henderson-Smart and De Paoli,

2010; Henderson-Smart and Steer, 2010; Abdel-Hady et al.,

2015). Inspiringly, caffeine has been clinically applied in the

treatment of AOP for nearly 50 years, which has created a typical

successful story in pediatrics (Kreutzer and Bassler, 2014;

Dobson and Hunt, 2018; Williamson et al., 2021).

Recently, the association between caffeine and circadian

rhythms has attracted widespread attentions (Landolt, 2015).

Many intriguing phenomena occurred, and the underlying

mechanisms have been tentatively investigated by several

studies conducted in adults and animals (Spaeth et al., 2014),

but we still know very little about the truth. Fortunately, however,

our previous study revealed that the circadian rhythms in

premature infants might play a sophisticated role in

determining the efficacy of caffeine therapy (Guo et al., 2022).

Therefore, it will be very interesting to summarize the current

relevant studies to know about the progress of this research field.

To the best of our knowledge, there is no comprehensive

summary of the most recent advances in the circadian rhythms in

preterm infants and caffeine therapy. Thus, to fill this knowledge

gap, in this review, we begin by introducing the coexistence of

tough challenges and new insights in the current caffeine therapy

for AOP. Then, our novel findings (Guo et al., 2022) push us to

delineate the functions and mechanisms of human circadian

rhythms first for better understanding the deep theoretical logic

underlying those clinical phenotypes. As a key part of circadian

development, an up-to-date knowledge of the formation and

ontogeny of human circadian rhythms during the perinatal

period are also concisely discussed. Undoubtedly, what

attracts our attention the most is the research progress on the

effects of caffeine on human circadian rhythms, especially for

premature infants, and the progress on the sophisticated roles of

circadian rhythms in the response to caffeine therapy for those

babies with AOP. Therefore, based on the increasing evidence, a

new possibility opens up in this area of research in light of the

circadian rhythms.

2 Tough challenges and new findings
in current caffeine therapy for AOP

To be honest, the tough challenges are always there for the

current AOP therapy with caffeine. The optimal dose regimen,

timing and duration of therapy, necessity of therapeutic drug

monitoring, and variable clinical outcomes of caffeine in preterm

infants remain controversial (Gentle et al., 2018; Davis, 2020;

Saroha and Patel, 2020). Impressively, however, those problems

related to the clinical use of caffeine in preterm infants have been

widely concerned and discussed as the continuous deepening of

research, especially as the application of several innovative

research technologies, such as artificial intelligence, predictive

modeling, and machine learning (Koch et al., 2017; Shirwaikar,

2018; Faramarzi et al., 2021; Dai et al., 2022). Interestingly,

several novel findings in those studies provide valuable

references for determining the optimal initial dose, tailoring

the maintenance dose, enhancing clinical decision making,

and then for promoting the achievement of consensus on

those tough challenges (Abdel-Hady et al., 2015; Eichenwald,

2020; Moschino et al., 2020).

The clinical response bears the brunt. The most tough and

urgent problem is the significant interindividual variability in

response to caffeine therapy (He et al., 2021). It remains unclear

why some preterm infants have well-controlled outcomes while

others have not. To make matters worse, the frequent episodes of

apnea among those lacking efficacy cannot be well controlled by

solely increasing the dose of caffeine (Saroha and Patel, 2020).

Tentatively to explore the underlying factors that determine

the interindividual response to caffeine therapy, a single-center

and retrospective study was conducted by our team (He et al.,

2021; Guo et al., 2022). In line with previous study (Saroha and

Patel, 2020), the plasma concentration of caffeine could not

explain the variable efficacy for preterm infants yet (He et al.,

2021). Arguably, such highly variable response could not be

explained either by the genetic polymorphisms of various genes

encoding the metabolic enzymes and transporters (Guo et al.,

Frontiers in Pharmacology frontiersin.org02

Dai et al. 10.3389/fphar.2022.1053210

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1053210


2022). However, genetic polymorphisms involved in caffeine’s

target receptors, directly and indirectly, and quite unexpectedly,

in regulation of circadian rhythms were significantly associated

with the variable response to caffeine therapy (Guo et al., 2022).

Such novel finding bears good clinical significance and is

inspirational for future studies to delve into the biological

mechanisms.

3 The functions and mechanisms of
human circadian rhythms

Due to the rotation of Earth, almost all life forms on the

planet have evolved a biological timer to adapt to the daily

changes in the environment (Du Pre et al., 2014; Dong et al.,

2020; Jha et al., 2021). The endogenous biological clock is

commonly called as the circadian (from Latin, meaning

“about a day”) rhythms (Dong et al., 2020; Ruan et al., 2021).

It is proven that the inherent period of the human pacemaker

clock is close to 25 h in most people (Ohdo et al., 2019; Dong

et al., 2020). However, because of the entrainment by

environmental time signals, or so-called zeitgebers (from

German, meaning “time givers”) (Bicker et al., 2020; Ruan

et al., 2021), the inherited circadian pacemaker manifests itself

in a 24-h pattern (Ohdo et al., 2019; Dong et al., 2020).

3.1 The functions of human circadian
rhythms

Circadian rhythms regulate various behavioral,

physiological, psychological, and endocrine functions in

humans (Froy, 2007; Ribas-Latre and Eckel-Mahan, 2016;

Allada and Bass, 2021; Kinouchi et al., 2021; Thosar and

Shea, 2021; Zhang and Jain, 2021). One can imagine that

circadian dysfunction would cause multiple negative impacts,

both short term and long term, which lead to the increased

susceptibility to many diseases, decreased quality of life, and

even reduced life expectancy (Froy and Miskin, 2007;

Jagannath et al., 2013; Roenneberg and Merrow, 2016;

Valenzuela et al., 2016; Logan and McClung, 2019; Xu and

Lu, 2019; Allada and Bass, 2021). Interestingly, the onsets and

symptoms of many diseases, such as stroke, asthma, and

depression, also display clear circadian characteristics

(Jagannath et al., 2013; Hsieh et al., 2018; Cederroth et al.,

2019; Dobrek, 2021; Ruan et al., 2021), which are called as the

circadian pathology signs (Cederroth et al., 2019). Speaking of

pharmacology, circadian rhythms affect the absorption,

distribution, metabolism, and excretion (ADME) or called

the pharmacokinetic processes as well as the efficacy and

adverse effects of many drugs, which is well known as the

chronopharmacology or chronotherapy (Dallmann et al.,

2016; Ohdo et al., 2019; Dong et al., 2020; Dobrek, 2021;

Nahmias and Androulakis, 2021). Given the importance of

circadian rhythms, three researchers who discovered the basic

of biological clock in studies of Drosophila were awarded the

Nobel Prize in 2017 (Dobrek, 2021; Ruan et al., 2021).

3.2 The mechanisms of human circadian
rhythms

Back in the 1990s, the discovery of several circadian clock

genes, such as Clock, Bmal1, Per, and Cry (Takahashi, 2004),

proved that almost all human cells express these genes and have

the capacity to generate circadian oscillations (Du Pre et al., 2014;

Takahashi, 2017), which thwarted the previous neuro-centric

view that the master clock is located only in the brain (Takahashi,

2017). As is generally believed and well understood, at the

systemic level, the human circadian system consists of the

inputs, circadian oscillators, and outputs (Figure 1)

(Takahashi, 2017; Cederroth et al., 2019; Huang et al., 2020;

Ruan et al., 2021), while at the cellular level, it consists of several

cell-autonomous molecular oscillators that composed of three

transcriptional-translational feedback loops that are widespread

throughout the body (Figure 2) (Du Pre et al., 2014; Takahashi,

2017; Logan andMcClung, 2019; Huang et al., 2020; Sumova and

Cecmanova, 2020; Ruan et al., 2021).

3.2.1 Physiological basis
The regulation and maintenance of human circadian

rhythms depend on the synergy of the input pathways, central

and peripheral clocks, and output pathways (Figure 1) (Huang

et al., 2020). The input pathway senses and transmits the

environmental rhythm signals to the central circadian clocks

(Ruan et al., 2021), which act as the biological rhythm pacemaker

to transmit the generated rhythm signals to the periphery

through the output pathway (Du Pre et al., 2014; Jha et al.,

2021), and then cooperate with the endogenous clock systems of

peripheral tissues and organs to regulate the gene expression,

cellular function, physiological activity, and metabolism of the

body (Huang et al., 2020).

Light, the major input signal in the suprachiasmatic nuclei

(SCN) of the circadian system, is perceived by the intrinsically

photosensitive retinal ganglion cells (ipRGCs) (Zele et al., 2011),

which express the photopigment melanopsin and are modulated

by the rods and cones in the retina (Van Cruchten et al., 2017).

Then, the ipRGCs generated and transmitted electric rhythm

signals to the central clock system that located in the SCN of the

hypothalamus through a neural pathway called the

retinohypothalamic tract (RHT) (Logan and McClung, 2019;

Dong et al., 2020; Jha et al., 2021).
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The SCN is comprised of neurons that express the

neuropeptide arginine vasopressin (AVP) and vasoactive

intestinal polypeptide (VIP), which are essential for the

circadian light transduction (Ono et al., 2021). The AVP and

VIP neurons in the SCN master pacemaker are also regulated by

the neurotransmitters released by the ipRGCs, such as excitatory

glutamate and pituitary adenylate cyclase-activating polypeptide

(PACAP) (Dong et al., 2020; Jha et al., 2021; Ruan et al., 2021).

Subsequently, the SCN transmits such perceived rhythm

information via neuronal and hormonal signals (Logan and

McClung, 2019), and coordinates other oscillators in extra-SCN

brain regions and peripheral tissues and organs, such as heart, lung,

liver, and kidney (Takahashi, 2017; Huang et al., 2020).

It is worth mentioning that in addition to be regulated by the

SCN master pacemaker, the peripheral clocks could also directly

and SCN-independently receive external stimuli, such as food

intake, exercise, temperature, and humidity (Figure 1) (Du Pre

et al., 2014; Xu and Lu, 2019; Huang et al., 2020).

3.2.2 Molecular mechanism
Three interlocked transcriptional feedback loops constitute

the complex molecular clock networks at the cellular level

(Figure 2) (Takahashi, 2017; Ruan et al., 2021). The core

loop regulates human circadian rhythms with a period of

approximately 24-h through a negative feedback mechanism

(Huang et al., 2020; Allada and Bass, 2021). The circadian

locomotor output cycles kaput (CLOCK) or neuronal PAS

domain-containing protein 2 (NPAS2) forms heterodimers

with the brain and muscle ARNT-like 1 (BMAL1) via

binding to the E-box elements to regulate the transcription

of clock-controlled genes (CCGs), including those encoding the

period (PER) and cryptochrome (CRY) proteins (Takahashi,

2017; Logan and McClung, 2019; Dong et al., 2020). PER and

CRY proteins accumulate in the cytoplasm in the morning

(Ruan et al., 2021), then heterodimerize and translocate into the

nucleus as negative regulators directly interact with CLOCK-

BMAL1 to suppress their transcriptional activity in the late

afternoon or evening (Takahashi, 2017; Xu and Lu, 2019). As

the suppression progresses, PER and CRY proteins are

gradually degraded via the ubiquitination through specific

E3 ligase complexes and via the proteasome (Takahashi,

2017). At the same time, the transcription activity of

CLOCK-BMAL1 is restored, and a new cycle will restart

over the next morning (Ruan et al., 2021).

Besides, another two families of nuclear receptors, REV-

ERBs and retinoic acid receptor-related orphan receptors

(RORs), are also the direct targets of CLOCK-BMAL1 that

stabilize the core loop, regulate the transcription in a distinct

phase, and thus form the secondary or called the stabilization

loop (Xu and Lu, 2019). The REV-ERBs inhibit the transcription

FIGURE 1
The physiological basis of human circadian rhythms. ipRGCs, intrinsically photosensitive retinal ganglion cells; RHT, retinohypothalamic tract;
SCN, suprachiasmatic nuclei.
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of BMAL1 by competitively binding to the ROR/REV-ERB

response elements (RORE) (Hsieh et al., 2018; Ruan et al.,

2021). Conversely, the RORs are the positive regulators that

bind to the RORE to promote the transcription of BMAL1

(Logan and McClung, 2019; Huang et al., 2020).

The third loop involves the proline- and acidic amino

acid-rich basic leucine zipper (PAR-bZIP) factors, such as the

D-box binding protein (DBP) and the repressor E4 promoter-

binding protein 4 (E4BP4), which competitively bind to the

D-box elements, and are driven by the core loop and

stabilization loop, respectively (Takahashi, 2017; Ruan

et al., 2021). DBP and E4BP4 contribute to circadian

robustness by synergistically regulating the expression of

RORs and PER proteins (Takahashi, 2017; Dong et al.,

2020; Ruan et al., 2021).

Collectively, these three interactive feedback loops regulate

the transcription and translation of CCGs by binding to the cis-

elements, including E-box, RORE, and D-box, in their gene

promoter and enhancer element regions (Dong et al., 2020;

Ruan et al., 2021). In addition to these three transcriptional-

translational feedback loops, several post-transcriptional and

post-translational mechanisms, such as phosphorylation,

acetylation, and ubiquitination of circadian proteins, also play

important roles in regulating the circadian rhythms (Figure 2)

(Takahashi, 2017; Xu and Lu, 2019; Huang et al., 2020).

4 The formation and development of
human circadian rhythms

The physiological and molecular mechanisms of human

circadian rhythms have been well described, but the formation

and development during ontogenesis remain poorly understood

(Astiz and Oster, 2020; Sumova and Cecmanova, 2020).

Moreover, most studies were performed in rodents and non-

human primates, which hinders our understanding of the

FIGURE 2
The molecular mechanism of human circadian rhythms. BMAL1, brain and muscle ARNT-like 1; CCGs, clock-controlled genes; CLOCK,
circadian locomotor output cycles kaput; CRY, cryptochrome; DBP, D-box binding protein; E4BP4, E4 promoter-binding protein 4; NPAS2,
neuronal PAS domain-containing protein 2; PER, period; RORE, ROR/REV-ERB response elements; RORs, retinoic acid receptor-related orphan
receptors.
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developmental circadian physiology for humans (Rivkees, 2003;

Sumova and Cecmanova, 2020). Nevertheless, the existing

evidence reveals that the formation and development of

circadian rhythms are the continuously morphological,

structural, and functional maturation processes of tissues and

organs with ontogenesis (Rivkees, 2003; Seron-Ferre et al., 2012).

4.1 The formation of circadian rhythms:
Does fetus have circadian rhythms?

As early as 1975, a rat study (Deguchi, 1975) found, for the

first time, that the mammalian fetal clock oscillators could be

detected already at or before birth and be entrained by the

mother. Subsequent studies have revealed that the fetus of rat,

hamster, sheep, baboon, and other mammalians exhibited the

circadian rhythms of metabolic activity (Reppert, 1992; Serón-

Ferré et al., 1993; Mirmiran and Lunshof, 1996; Seron-Ferre et al.,

2012) and the expressions of canonical clock genes (Seron-Ferre

et al., 2007; Du Pre et al., 2014; Sumova and Cecmanova, 2020).

In human fetus, circadian rhythms in several physiological

and endocrine functions, including heart rate (Lunshof et al.,

1998), breathing patterns (Patrick and Challis, 1980), limb

movements (Einspieler et al., 2021), sleep-wake states (Peirano

et al., 2003; Bennet et al., 2018), and hormone levels (Serón-Ferré

et al., 2001a) have been detected at different stages of pregnancy

(Seron-Ferre et al., 2007; Du Pre et al., 2014; Wong et al., 2022).

Impressively, Frigato et al. (2009), first observed the rhythmic

expression of clock genes such as Per2 in the HTR-8/SVneo cells

derived from human extravillous trophoblast. As part of a series

of important discoveries, Perez et al. (2015) went on to find the

rhythmic expression of various circadian genes, including Clock,

Bmal1, Per2, and Cry1 in human full-term placenta.

It is incredible that no obvious circadian rhythms were found

in the anencephalic fetus despite an intact maternal circadian

rhythms were detected through the 24-h period fetal heart rate

monitoring for anencephaly (Mirmiran and Lunshof, 1996),

which demonstrated that the fetal brain, especially in the

SCN, is required for the generation of fetal circadian rhythms

(Mirmiran and Lunshof, 1996). It is still unclear when the fetal

SCN clock first appeared morphologically, yet through the

in vitro autoradiography by 125I-labeled melatonin, the SCN is

apparent as discrete nuclei in the human fetus and already has

melatonin receptors at 18 weeks of gestational age (GA) (Reppert

et al., 1988). Besides, it has been demonstrated that the VIP and

AVP neurons were first observed at 31 weeks of GA in the

ventrolateral part of the fetal SCN (Swaab et al., 1990; Swaab

et al., 1994). Therefore, it is currently recognized that the

circadian rhythms in humans are formed and developed

during the perinatal period (Rivkees, 1997; Sumova and

Cecmanova, 2020), while the components of the circadian

system like the SCN are established and functional early in

human fetus (Serón-Ferré et al., 1993).

4.2 Prenatal circadian rhythms: Complex
interaction of maternal, placental, and
fetal circadian systems

Pregnancy presents an unusual circadian physiology pattern

in which the fetal circadian system is completely embodied

within that of the mother (Mark et al., 2017), and the two

systems are connected by the placenta and interact with each

other through this interface (Mark et al., 2017; Astiz and Oster,

2020; Bates and Herzog, 2020). Generally, placenta is responsible

for the bidirectional transference of nutrients, hormones,

metabolites, and gases (i.e., oxygen and carbon dioxide)

between the mother and fetus (Seron-Ferre et al., 2012;

Valenzuela et al., 2015; Astiz and Oster, 2020). Meanwhile,

the placenta conveys the maternal circadian timing cues, such

as physical activity, feeding behavior, temperature, heart rate,

blood pressure, and hormonal levels, to the fetus (Serón-Ferré

et al., 2001a; Seron-Ferre et al., 2012). In particular, multiple

hormones produced by the mother, including melatonin,

dopamine, glucocorticoids, estrogen, and progesterone, have

profound effects on the development and entrainment of the

fetal circadian rhythms (Mirmiran and Lunshof, 1996; Rivkees,

1997; Seron-Ferre et al., 2007; Mark et al., 2017). In addition,

hormones such as human chorionic gonadotropin (hCG),

secreted by the placenta, also exhibit obvious circadian

characteristics (Waddell et al., 2012; Mark et al., 2017; Bates

and Herzog, 2020). It will be very interesting to know how those

hormones affect the formation of the fetal circadian rhythms.

4.2.1 Melatonin
Melatonin, known as the hormone of night (Seron-Ferre

et al., 2007), can be secreted by various organs, including the

pineal gland, ovary, and placenta (Itoh et al., 1999; Lanoix et al.,

2008; Reiter et al., 2013; Reiter et al., 2014). However, melatonin

is not synthesized by the fetal pineal gland or other organs (Mark

et al., 2017), so the fetus must rely on the maternal melatonin for

photoperiodic information since the unaltered melatonin readily

crosses the placenta and distributes to the fetal tissues (Waddell

et al., 2012; Reiter et al., 2014; Valenzuela et al., 2015). During

normal human gestation, the nighttime peak melatonin level

decreases slightly between the first and second trimesters, but

begins to increase after 24 weeks, then increases to significantly

high levels after 32 weeks, thereafter reaches its peak at the end of

pregnancy, and finally returns to the pre-pregnancy level on the

day after parturition (Nakamura et al., 2001; Mark et al., 2017).

Late in human pregnancy, uterine contractions become intensest

during the night as melatonin levels are at their highest

(Nakamura et al., 2001), and the peak melatonin at the end of

pregnancy is thought to promote uterine contractions that

necessary for delivery (McCarthy et al., 2019).

Studies have demonstrated that the onset of human term

delivery is more commonly between the late night and the early

morning (Glattre and Bjerkedal, 1983; Cooperstock et al., 1987).
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Similar circadian characteristics of delivery were also observed in

preterm labors after 28 weeks of GA (Lindow et al., 2000; Iams

et al., 2002), but not in those before 28 weeks (Vatish et al., 2010),

which might be explained by the immaturity of fetal circadian

system or other pathological factors that bypass the physiological

circadian process of labor (Vatish et al., 2010). Interestingly,

studies revealed that the elevated nocturnal levels of melatonin

synergized with oxytocin to trigger and maintain the uterine

contractions during labor and that melatonin sensitized the

human uterine to oxytocin (Reiter et al., 2014; Carlomagno

et al., 2018; Chuffa et al., 2019). Consistently, women who

engage in shift work during pregnancy have an increased

incidence of spontaneous miscarriages, preterm deliveries, and

low birth weight infants (Zhu et al., 2004; Croteau et al., 2006).

Disruptions of the melatonin rhythms due to the shift work

might be responsible for these adverse pregnancy outcomes

(Reiter et al., 2014). In addition, as a free radical scavenger

and an antioxidant, melatonin plays an important role in

protecting the fetus and placenta from oxidative stress to

promote the embryonic development and to treat the

preeclampsia, intrauterine growth restriction, and the

undernourished pregnancy (Reiter et al., 2014; Valenzuela

et al., 2015; Rodrigues Helmo et al., 2018; Chuffa et al., 2019).

4.2.2 Dopamine
As the antiphase and functionally antagonistic of melatonin,

dopamine has been proposed as a “light-phase” entrainment

signal of the circadian systems (Iuvone and Gan, 1995; Astiz and

Oster, 2020). Plasma dopamine levels in humans peak around the

waking time (about 08:00) and drop to a nadir in the middle of

sleep (about 03:00) (Sowers and Vlachakis, 1984). Increased

dopamine concentrations were detected in women’s amniotic

fluid between the second and third trimesters, and were

significantly higher than those in maternal and fetal plasma

(Peleg et al., 1986), because dopamine could freely cross

through the placenta into the fetal circulatory system

(Watanabe et al., 1990). Furthermore, D1-dopamine receptors

could be detected in the fetal SCN as early as 22 weeks of GA

(Rivkees and Lachowicz, 1997). However, it remains unknown

when and how the maternal dopamine entrains the circadian

rhythms in fetus during the pregnancy (Bates and Herzog, 2020).

4.2.3 Glucocorticoids
Cortisol, the glucocorticoid stress hormone, is regulated by

the circadian of the hypothalamic-pituitary-adrenal (HPA) axis

(Mark et al., 2017; Oster et al., 2017; McCarthy et al., 2019).

During gestation, cortisol levels in maternal plasma peak in the

early morning (from 07:30 to 08:30) and drop to a nadir at night

(from 18:30 to 01:30) (Patrick et al., 1980). The maternal plasma

cortisol levels increase progressively between 11 and 22 weeks of

GA and then stay high until the initiation of delivery (Patrick

et al., 1980; Carr et al., 1981). Such elevated maternal cortisol is

critical for fetal tissue development, especially the maturation of

the brain and lung (Matthews et al., 2004), and helpful for

dampening the maternal stress signals to protect the fetus

(McCarthy et al., 2019). Conversely, excessive cortisol level is

detrimental for the fetal development that delaying the fetal and

placental growth and increasing the risk of behavioral and mental

disorders later in life (Busada and Cidlowski, 2017; Van den

Bergh et al., 2020).

The placental glucocorticoid barrier regulates the

glucocorticoids’ passage from the mother to the fetus via the

enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2)

that converts the biologically active glucocorticoids (i.e., cortisol

and corticosterone) to their inactive forms (i.e., cortisone and 11-

dehydrocorticosterone) (Edwards et al., 1996; Burton and

Waddell, 1999). In humans, the glucocorticoids passage from

the maternal to fetal circulation is gradually reduced due to the

increasing placental 11β-HSD2 expression with advancing

gestation (Burton and Waddell, 1999; McTernan et al., 2001).

Impressively, glucocorticoid receptors have been identified in the

fetal circulation, and maternal glucocorticoids could entrain fetal

circadian rhythms through binding to these receptors (Bates and

Herzog, 2020). Moreover, studies have found that the

suppression of maternal adrenal function with glucocorticoid

treatment resulted in a temporary disappearance of the fetal heart

rate, breathing, and limb movement rhythms (Verdurmen et al.,

2013). Interestingly, these inhibitory effects were dependent on

the GA when the glucocorticoid therapy was started and

disappeared with the restoration of the maternal HPX axis

(Mulder et al., 2004), indicating the fetal rhythms depended

on the maternal adrenal functions (Koenen et al., 2005).

4.2.4 Sex hormones
The effects of sex hormones on the entrainments of fetal

circadian rhythms are still under investigation. Estrogen and

progesterone are two sex hormones that are essential for the

successful pregnancy (Mark et al., 2017). During the first

3 months of pregnancy, estrogen and progesterone are

synthesized and secreted by the ovary. After that, the placenta

replaces the corpus luteum to secrete these two hormones, and

estrogen is also produced by the uterus (McCarthy et al., 2019).

The levels of estrogen and progesterone increase steadily over the

human gestation due to an increased secretion from the ovary

and placenta (Mark et al., 2017). During gestation, estrogen levels

in maternal plasma peak in the morning and become lowest at

midnight (Patrick et al., 1979; Challis et al., 1980), whereas a

significant antiphase oscillation of the estrogen occur in the

progesterone levels (Junkermann et al., 1982; Magiakou et al.,

1996), which might be regulated by the circadian of placental

glucocorticoids (Serón-Ferré et al., 1993).

Estrogen promotes the synthesis of progesterone (Babischkin

et al., 1997), which regulates maternal immunity to facilitate

implantation (Hardy et al., 2006), maintains uterine quiescence

during pregnancy (Peters et al., 2017), and causes myometrial

contractions to trigger labor at the end of pregnancy (Brown
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et al., 2004). Interestingly, these two hormones were found to

inhibit the expression of 11β-HSD2 in human placental extracts,

which possibly increased the transport of glucocorticoids from

the mother to the fetus (Sun et al., 1998), thereby indirectly

influencing the fetal circadian rhythms.

Collectively, much less is known about other rhythmic

signals such as leptin, placental lactogen, prolactin, or hCG

that generated by the mother or placenta on the development

and entrainment of fetal circadian rhythms (Astiz and Oster,

2020; Bates and Herzog, 2020). Because the interactions among

maternal, placental, and fetal circadian systems are critical to the

establishment, maintenance, and success of pregnancy, and the

interactions also affect the growth, development, and even

postpartum life of the fetus (Mark et al., 2017; Bates and

Herzog, 2020), further studies are still needed to elucidate the

complex interactions among the three circadian systems and to

bridge the above knowledge gaps.

4.3 Postnatal circadian rhythms:
Progressive maturation along with
ontogenesis

After birth, neonates immediately begin to establish their

own physical and physiological independence while losing the

protect of the maternal-placental barrier (Joseph et al., 2015;

Wong et al., 2022). From now on, the ontogenesis of the newborn

begins to be greatly affected by the external environment (Brooks

and Canal, 2013; Hazelhoff et al., 2021). Increasing evidence

indicates that human postnatal circadian rhythms gradually

mature along with the ontogenesis (Rivkees and Hao, 2000;

Rivkees, 2007; Bueno and Menna-Barreto, 2016), in which the

external environment, especially the light, plays an important

role in the development and maturation (Mirmiran and Ariagno,

2000; Nishihara et al., 2002; Challet, 2007). Particularly, it should

be pointed out that, in early infancy, the maternal entrainment

factors and maternal-fetal interactions retained during

pregnancy are more important than the external environment

(Löhr and Siegmund, 1999; Rivkees, 2001; Nishihara et al., 2002;

Sumova et al., 2012).

4.3.1 Maternal effects
The first thing to be discussed is the role of hormones. During

the first few weeks of life, circadian rhythms in human neonates

occur as the retentions of the maternal influence in utero, but the

endogenous rhythms appear only later (Rivkees, 1997; Rivkees

and Hao, 2000; Brooks and Canal, 2013). For example, an

antiphase oscillation of maternal cortisol circadian rhythms

(i.e., the peak of cortisol levels occurred between 12:00 and

16:00) was found in the umbilical artery but not the umbilical

vein of the term fetus (Serón-Ferré et al., 2001b), which reflects

the activation of the intrinsic fetal HPA axis in response to the

falling maternal transport of glucocorticoids during the nadir of

the maternal rhythms (Mark et al., 2017). Moreover, the neonatal

salivary cortisol levels were higher at night than in the morning

within the first 8 weeks of postnatal age (PNA) (Iwata et al., 2013;

Kinoshita et al., 2016), which were in consonance with the fetal

cortisol rhythms (Serón-Ferré et al., 2001b), reflecting the

preservation of fetal adrenal rhythms.

Neonates begin to exhibit the circadian salivary cortisol

rhythms analogous to that of adults (i.e., higher cortisol levels

in the morning than at night) until 2–3 months of PNA (Price

et al., 1983; Spangler, 1991; Mantagos et al., 1998; Joseph et al.,

2015). However, an adult-type salivary cortisol circadian of term

infants appears to be established actually at 1 month and remains

stable throughout the first year of life (Ivars et al., 2015). All in all,

these studies prove that the fetal cortisol circadian rhythms are

preserved in the first few weeks of life, until the adult-type

circadian rhythms are established.

The rhythm of melatonin is another example. (Muñoz-

Hoyos et al., 1992; Muñoz-Hoyos et al., 1998) found that the

adult-type circadian melatonin rhythms occurred in both the

umbilical artery and vein for neonates at birth, which depended

on the maternal melatonin crossing the placenta, as melatonin

levels in the umbilical artery are positively correlated to those in

the maternal serum and a similar correlation between the

maternal and neonatal melatonin levels in the first voided

urine after delivery (Kivelä et al., 1990). Besides, although the

increasing amounts of melatonin and its metabolite 6-

sulfatoxymelatonin were detected in the urine of the term

neonates during the first week of life (Kivelä et al., 1990;

Muñoz-Hoyos et al., 1993), the stable circadian melatonin

rhythms were not developed until approximately 9–12 weeks

of PNA (Attanasio et al., 1986; Kennaway et al., 1992; Kennaway

et al., 1996; Joseph et al., 2015).

The second thing to be discussed is the maternal care,

primarily maternal feeding, but it is still the roles of

hormones in nature (Löhr and Siegmund, 1999; Nishihara

et al., 2002; Park et al., 2020). Various hormones in breast

milk, such as glucocorticoids and melatonin, can be absorbed

and transferred into the neonatal circulation through the

gastrointestinal tract (Arslanoglu et al., 2012; Wong et al.,

2022). Interestingly, the cortisol and cortisone concentrations

in breast milk follow the circadian of maternal HPA axis activity

(van der Voorn et al., 2016; Italianer et al., 2020). Moreover, the

cortisone rhythm in human breast milk at 1 month postpartum

was associated with the nighttime sleep states of newborns at the

age of 3 months (Toorop et al., 2020). Similarly, studies have also

demonstrated the presence of pronounced circadian melatonin

rhythms in the maternal breast milk (Illnerová et al., 1993; Katzer

et al., 2016), which might contribute to the synchronization of

postnatal circadian rhythms for neonates and their mothers.

One more thing needs to be pointed out is that, in addition to

the maternal influence on the neonatal circadian rhythms, the

maternal circadian rhythms are in turn affected by the

development of the neonatal circadian rhythms (Nishihara
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and Horiuchi, 1998; Nishihara et al., 2000; Nishihara et al., 2002).

For example, the ultradian rhythms (i.e., rhythms with period

lengths much less than 24 h) (Rivkees, 1997) of rest-activity states

were already detected as early as the third week of life for term

infants, and the amplitude of this rhythm gradually increased

from the 6th to 12th week, then formed circadian rhythms with a

24-h monophasic pattern (Nishihara et al., 2002). During this

period, as neonates develop their own circadian rest-activity

rhythms, the mothers’ rhythms would inevitably be affected

by their interrupted sleep at night to take care of their babies

(Nishihara and Horiuchi, 1998; Nishihara et al., 2000).

4.3.2 Environmental effects
In the late postnatal period, environmental time cues replace

the maternal effects and begin to play a critical role in the

development of neonatal circadian rhythms (Rivkees, 1997;

Rivkees, 2004; Brooks and Canal, 2013). Light is the most

dominant zeitgeber (Löhr and Siegmund, 1999; Challet, 2007;

Wong et al., 2022), so the importance of light cannot be

overemphasized. The light entrainments are functionally

affected by the maturity of the eyes, RHT, and SCN (Brooks

and Canal, 2013; Hazelhoff et al., 2021).

For term infants, the structural development of the eyes

occurs as early as in utero, with the first structure of the eyes

beginning to form at 17 days of GA (Van Cruchten et al., 2017),

while the development of pupil starts approximately at 17 weeks

of GA (Hazelhoff et al., 2021), and thereafter the pupillary light

reflex already present at 34 weeks of GA (Robinson and Fielder,

1990). As the sole photoreceptive area in humans (Brooks and

Canal, 2013), major classes of photoreceptors in the retina

including the ipRGCs, rods, cones, and melanopsin all emerge

and develop in the first trimester (Van Cruchten et al., 2017;

Hazelhoff et al., 2021).

Covering the eyes of term neonates during the phototherapy

for neonatal hyperbilirubinemia would result in significantly

increased plasma melatonin levels during the first 72 h of life,

indicating the sensitivity of the neonatal pineal glands to the

changes of environmental illumination and the functional

maturation of the neonatal eyes in transmitting the ambient

light cues (Jaldo-Alba et al., 1993). However, it remains unclear

when human ipRGCs transmit the light cues to the SCN, but the

melanopsin-dependent ipRGCs in mice could provide light

signals to the SCN already on the day of birth (Sekaran et al.,

2005), and even earlier in late gestation before birth (Rao et al.,

2013).

Honestly, only several studies reported the developmental

process of human RHT and SCN. RHT has been identified in

neonates at 36 weeks of GA (Rivkees, 2004; Rivkees, 2007). On

the other hand, it has been found that the SCN of baboons born at

term was already responsive to light and could be entrained by

the low-intensity (200 lux) lighting (Rivkees et al., 1997).

Interestingly, the SCN in preterm baboons functionally

responded to light from a stage that was equivalent to

24 weeks of GA for human infants (Hao and Rivkees, 1999).

Theoretically, the ambient light signals might be projected from

the ipRGCs on retina to the SCN via the RHT at least after birth

for term neonates (Hazelhoff et al., 2021). Further maturations of

the human SCN continues after birth (Rivkees, 2004; Rivkees,

2007).

The numbers of AVP neurons and total neurons in the SCN

of term neonates at birth are only 13% and 20% of those in adults,

respectively (Swaab et al., 1990). After birth, these nerve cells

increase rapidly to a peak at 1–2 years of age, then decrease

gradually to the adult levels (Swaab, 1995). However, the

development of VIP neurons in the SCN is slower and does

not reach the adult levels until about 3 years of age (Swaab et al.,

1994). Interestingly, there is a clear sex difference (i.e., 2-fold

higher in males than that in females) in the number of VIP

neurons after 10 years of age (Swaab et al., 1994), which

suggested a possibility that the SCN involves not only in the

timing of circadian rhythms, but also in the temporal

organization of sexually dimorphic reproductive functions

(Swaab, 1995; Hofman, 1997).

The impact of light on the clock gene expression is also a

research progress worthy of special attention. The light affects the

expression of clock genes, such as Per1, Per2, and Cry1, in the

SCN of rodents at different developmental stages after birth

(Kováciková et al., 2005; Ciarleglio et al., 2011). Moreover, it is

the cycled light rather than the constant light that promotes the

development of their biological clocks (Abraham et al., 2006;

Ohta et al., 2006; Bode et al., 2011). Impressively, human

neonates, especially the preterm neonates who exposed to

cycled light would have better weight gains (Mann et al.,

1986; Brandon et al., 2002; Vasquez-Ruiz et al., 2014; Brandon

et al., 2017), less crying and fussing behaviors (Guyer et al., 2012),

less hospital stay (Vasquez-Ruiz et al., 2014; Brandon et al.,

2017), earlier rest-activity rhythms (Rivkees, 2004; Rivkees et al.,

2004), longer nighttime sleep duration (Guyer et al., 2015), and

even more robust salivary melatonin rhythms (Vasquez-Ruiz

et al., 2014) compared to those exposed to continuous light or

darkness. Systematic reviews also witnessed the beneficial effects

of cycled light over continuous bright light or darkness for

preterm neonates (Morag and Ohlsson, 2016; Liao et al.,

2018). Therefore, as early as the 1990s, the guidelines for

perinatal care that proposed by the American College of

Obstetricians and Gynecologists and American Academy of

Pediatrics were recommended to introduce a regular day-night

cycled light into the NICU and neonatal nursery (Mirmiran et al.,

2003a; Guyer et al., 2015).

Besides the light cues, studies have pointed out that the

environmental noise disrupted the neurodevelopment of

newborns and thus affected the development of their circadian

rhythms (Wachman and Lahav, 2011; Kuhn et al., 2013).

However, music therapy did improve the heart rate, breathing,

and sleep of newborns (Arnon et al., 2006; Loewy et al., 2013),

which might exert a positive impact on the well-being and quality
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TABLE 1 Studies about the sleep-wake rhythms in preterm infants.

Studies Subjects Methods of evaluation Main findings

Guyon et al. (2022) 12 preterm infants (GA: 35.1 ± 2.1 weeks)
vs. 21 term infants (GA: 39.8 ± 0.8 weeks)

Polysomnography • Preterm vs. term infants: TST↓, AS↓, QS↑, arousal in
AS↓, arousal in QS↑

• With advancing PMA for preterm infants: TST and
SE during day sleep↓, TST and SE during night sleep↑,
AS↓, QS↑, arousal in AS↑, arousal in QS↓

Koch et al. (2021) 65 preterm infants (GA: 30.8 ± 2.1 weeks) Video recordings • Preterm infants spend about 43% of the time in AS,
38% in awake, and 19% in QS during the first 5 days of
life

• Sleep cycle durations of preterm infants range from
16 to 23 min with the average of 19 min

Georgoulas et al. (2021) 175 preterm and term infants (GA:
28–40 weeks)

Direct behavioral observations; EEG • Preterm vs. term infants: AS↑, IS↑, QS↓, awake↓
• With advancing PMA for preterm infants: AS↓, IS↓,

QS↑, awake↑
Park et al. (2020) 94 preterm infants (GA: 26.2 ± 1.4 weeks) Digitized waveforms • With advancing PMA for preterm infants: AS↓, QS↑,

waking states↑
• Delayed feeding progression leads to delayed sleep-

wake state development

Cailleau et al. (2020) 10 preterm infants (GA: 27–37 weeks) vs.
5 term infants (GA: 39–40 weeks)

Video recordings • Preterm vs. term infants: QS↓
• With advancing PMA for preterm infants: QS↑

Lan et al. (2019) 30 preterm infants (GA: 31.17 ± 2.6 weeks) Actigraphy • Sleep-wake patterns of preterm infants are associated
with the gender, illness severity, PMA, and body
weight

• Preterm infants’ TST and percentage of sleep time are
longer at night than during the day

• With advancing PMA for preterm infants: TST↓, SE↓,
percentage of sleep time↓, frequency of sleep and
wake bouts↑

Cremer et al. (2016) 38 preterm infants (GA: 29.0 ± 2.6 weeks) Video recordings • Preterm infants with higher GA have longer awake
times

• Preterm boys have shorter awake times than girls

Bueno and
Menna-Barreto, (2016)

19 preterm infants (GA: 28–36 weeks) Actigraphy; Sleep and feeding diaries by
the nurse

• Preterm infants exhibit the feeding-related 3-h period
ultradian activity-rest rhythms after birth

• Daily pattern circadian rhythms were observed for
most preterm infants since 35 weeks of PMA

Guyer et al. (2015) 34 preterm infants (GA: 30.0 ± 1.8 weeks)
vs. 21 term infants (GA: 39.7 ± 1.3 weeks)

Actigraphy; Parental sleep diaries • Preterm vs. term infants: TST↑, LSP↑, nighttime
sleep↑, nighttime activity↓

• With advancing PMA for preterm infants: TST↓,
LSP↑, nighttime sleep↑, daytime sleep↓, activity at
daytime↑, activity at nighttime↑

Dorn et al. (2014) 60 preterm infants (GA: 30.0 ± 10.8 weeks) Actigraphy • Preterm infants primarily exhibit the 4-h period
ultradian activity rhythms, with the most time in the
low activity patterns

• With advancing PMA for preterm infants: SE↑,
activity frequencies↓, low activity patterns↑, middle
and high activity patterns↓

Palmu et al. (2013) 12 preterm infants (GA: 24.7–30.3 weeks) Polysomnography • Only few premature infants exhibit about 20–50 min
period ultradian sleep-wake rhythms due to the
unstable respiratory states

• Preterm infants have frequent transitions of sleep
stages, spend most of time in AS, and the proportion
is correlated with PMA

Lee et al. (2010) 35 preterm infants (GA: 24.9–31.9 weeks) aEEG recordings • The sleep-wake cycling is more prominent in preterm
infants with higher PNA at 34–36 weeks PMA

• The appearance of sleep-wake cycling is significantly
associated with PNA

Soubasi et al. (2009) 96 preterm infants (GA: 30.18 ± 2 weeks) aEEG recordings

(Continued on following page)
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TABLE 1 (Continued) Studies about the sleep-wake rhythms in preterm infants.

Studies Subjects Methods of evaluation Main findings

• Preterm infants exhibit definite sleep-wake cycles with
advanced GA

• The evolution of sleep-wake cycling is correlated with
positive significant interaction of PMA and GA

Foreman et al. (2008) 97 preterm infants (GA: 32.72 ±
2.28 weeks)

Video recordings • With advancing PMA for preterm infants: AS↓, QS↑,
drowsy↑, awake↑, defined states↑, diffuse states↓

• Male vs. female preterm infants: AS↓, drowsy↑,
awake↑, defined states↓, diffuse states↑

Sisman et al. (2005) 31 preterm infants (GA: 25–32 weeks) aEEG recordings • The frequency of mature sleep-wake cycling in
preterm infants increased with PMA independent
of GA

Scher et al. (2005) 33 preterm infants (GA: 23–29 weeks) EEG-sleep recordings • Most preterm infants exhibit about 37–100 min
period ultradian sleep state rhythms at
25–30 weeks PMA

Hoppenbrouwers et al.
(2005)

195 preterm infants (GA: 30.5 ± 3.3 weeks)
vs. 88 term infants (GA: 39.4 ± 1.0 weeks)

Polysomnography • Preterm vs. term infants: AS↑, QS↓, SE↓
• With advancing PMA for preterm infants: AS↓,

QS↑, SE↑
• Preterm infants’ sleep-wake architecture is associated

with ventilatory support, gestational age, and
maternal smoking, but without sex or steroid
administration

Holditch-Davis et al.
(2004)

134 preterm infants (GA: 28.8 ± 2.6 weeks) Direct behavioral observations • With advancing PMA for preterm infants: AS↓, QS↑,
quiet and active waking states↑, large body
movements↓

• Sleep-wake transitions in preterm infants increased
until 40 weeks PMA and changed to decrease after
43 weeks PMA

Mirmiran et al. (2003b) 40 preterm infants (GA: 30.2 ± 1.5 weeks) Video recordings • With advancing PMA for preterm infants: AS↓, QS↑
Korte et al. (2001) 10 preterm infants (GA: 34–36 weeks) vs.

10 term infants (GA: 37–42 weeks)
Actigraphy; Standardized diaries • Preterm vs. term infants: ultradian activity-rest

rhythms↑, circadian activity-rest rhythms↓, no
difference in TST

• With advancing PMA for preterm infants: nighttime
sleep↑, daytime sleep↓

Bach et al. (2000) 38 preterm infants (GA: 34 ± 2 weeks) EEG; Eye movement recordings • Cool exposure leads to: TST↓, longest sleep period↓,
wakefulness↑, AS↑, QS↓

• Male vs. female preterm infants: TST↓, longest sleep
period↓, wakefulness↑, AS↑, QS↓

Antonini et al. (2000) 9 preterm infants (GA: 31.3–34.6 weeks) Sleep diagrams by the mother • With advancing PNA for preterm infants: daytime
sleep↓, nighttime sleep↑, TST unchanged, nighttime
sleep > daytime sleep after 8 weeks PNA

Shimada et al. (1999) 44 preterm infants (GA: 31.0 ± 3.4 weeks)
vs. 40 term infants (GA: 39.6 ± 1.3 weeks)

Sleep diagrams by the mother; Parental
sleep questionnaires; Video recordings

• 75% of these preterm infants have an ultradian or
irregular sleep-wake rhythms unrelated to feeding for
3–4 weeks after discharge from the hospital

• Circadian sleep-wake rhythms in preterm infants
were entrained at the mean age of approximately
45 weeks PMA, similar as term infants

Ingersoll and Thoman,
(1999)

95 preterm infants (GA: 28.5 ± 2.2 weeks) Video recordings • With advancing PMA for preterm infants: QS↑, AS↓,
wakefulness↓, bout lengths of QS↑, bout lengths of AS
and wakefulness do not change

Sahni et al. (1995) 35 preterm infants (GA: 31.0 ± 2.0 weeks) Direct behavioral observations; EEG • Preterm infants spend about 75% of their sleep time in
AS and 19% in QS between 30 and 39 weeks PMA

• With advancing PMA for preterm infants: AS↓, QS↑
Glotzbach et al. (1995) 17 preterm infants (GA: 31.1 ± 1.2 weeks) Actigraphy • Preterm infants exhibit feeding-related ultradian

sleep-wake rhythms at about 35 weeks PMA

Borghese et al. (1995) 49 preterm infants (GA: 28.6 ± 2.6 weeks) Motility monitoring system • Most preterm infants exhibit both ultradian and
diurnal sleep-wake rhythms at 36 weeks PMA

(Continued on following page)
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of life for neonates, especially for preterm infants in the NICU

(Yue et al., 2021). Other environmental factors, such as ambient

temperature (Tourneux et al., 2008), comforting touch (Smith

et al., 2014), remodeling mattress (Deiriggi, 1990; Visscher et al.,

2015), and nursing measures (Collins et al., 2015; Lan et al., 2018)

were also found to affect the neonatal rhythms of several

physiological parameters, but their roles on the development

of circadian rhythms in neonates have not been extensively

studied yet (Liao et al., 2018; Gogou et al., 2019).

5 The characteristics of circadian
rhythms in preterm infants

Preterm birth is defined as a live birth that occurs before

37 completed weeks of GA (Walani, 2020), which causes the fetus

to detach prematurely from the natural protective environment

of the uterus (Vohr, 2013; Hazelhoff et al., 2021) and puts an

early end of fetal development in the uterus, especially for the

brain and lung, which are critical to the neonates’ survival after

birth (Saigal and Doyle, 2008). Preterm infants have an increased

risk of short-term and long-term morbidities (Deng et al., 2021),

like the neurological and respiratory conditions (Vogel et al.,

2018). Unfortunately, those babies continue to contribute

disproportionately to neonatal mortality and even the

childhood morbidity, which puts a heavy burden on health

resources (Saigal and Doyle, 2008; Vohr, 2013).

Impressively, circadian rhythms in premature infants

primarily occur as ultradian or irregular rhythms (Mirmiran

et al., 2003a; Rivkees, 2007; Koch et al., 2021). It is hypothesized

that the rhythms in preterm neonates appeared to be closely

related to their GA (Begum et al., 2006; Darnall et al., 2006), due

to the development of the fetal brain is related to the stages of

pregnancy (Andescavage et al., 2017). On the other hand, the

continuous active brain maturation occurs after birth (Matthews

et al., 2018), so their endogenously-driven rhythms also change

TABLE 1 (Continued) Studies about the sleep-wake rhythms in preterm infants.

Studies Subjects Methods of evaluation Main findings

• From 36 weeks to 6 months PMA: QS↑,
wakefulness↑, AS↓, frequency and degree of within-
sleep cyclicity↑

Ardura et al. (1995) 60 preterm infants (GA: 33.4 ± 2.4 weeks)
vs. 63 term infants (GA: 39.5 ± 1.3 weeks)

Direct behavioral observations • Preterm vs. term infants: TST↑, daytime sleep↑,
nighttime sleep↑

• With advancing PMA for preterm infants: TST↓,
daytime sleep↓, nighttime sleep does not change

Hayes et al. (1993) 13 preterm infants (GA: 26–36 weeks) Actigraphy • Preterm infants exhibit 80 min and 30 min periods
ultradian activity state rhythms

• With advancing PMA for preterm infants: ultradian
periodicities↓, activity bout durations↑

Curzi-Dascalova et al.
(1993)

24 preterm infants (GA: 26.3–34.1 weeks) Polysomnography • Preterm infants spend most of their sleep time in AS
rather QS after 27 weeks PMA

• With advancing PMA for preterm infants: AS↓,
QS↓, IS↑

Mirmiran and Kok,
(1991)

12 preterm infants (GA: 25–32 weeks) Actigraphy • Only one of these preterm infants exhibit the 24-h
period circadian rest-activity rhythms at
29 weeks PMA

McMillen et al. (1991) 19 preterm infants (GA: 27–35 weeks) vs.
22 term infants (GA: 38–42 weeks)

Sleep-wake activity diaries • PNA at the circadian sleep-wake rhythms entrained
are inversely correlated with GA for preterm infants,
with 50% of preterm infants begin to exhibit circadian
rhythms at 47 weeks PMA

• Preterm vs. term infants: earlier PMA at circadian
rhythms entrained

Mirmiran et al. (1990) 11 preterm infants (GA: 26–32 weeks) Actigraphy • Preterm infants exhibit ultradian rest-activity
rhythms rather than circadian rhythms at
28–35 weeks PMA

Curzi-Dascalova et al.
(1988)

18 preterm infants (GA: 34.2 ± 0.5 weeks)
vs. 20 term infants (GA: 38.8 ± 0.2 weeks)

Polysomnography • With advancing PMA for preterm infants: mean sleep
cycle duration↑, AS↑, QS↑, IS↓

Anders and Keener,
(1985)

24 preterm infants (GA: 27–35 weeks) vs.
40 term infants (GA: >37 weeks)

Video recordings • Preterm vs. term infants: TST↑, LSP↑, AS↑, QS↓
• With advancing PMA for preterm infants: TST↑,

LSP↑, AS↓, QS↑, wakefulness↑

Abbreviations: aEEG, amplitude-integrated electroencephalography; AS, active sleep; EEG, electroencephalography; GA, gestational age; IS, indeterminate sleep; LSP, longest sustained

sleep period; PMA, postmenstrual age; PNA, postnatal age; QS, quiet sleep; SE, sleep efficiency; TST, total sleep time.
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TABLE 2 Studies about the cardiorespiratory rhythms in preterm infants.

Studies Subjects Methods of evaluation Main findings

Koch et al. (2021) 65 preterm infants (GA: 30.8 ± 2.1 weeks) Surface EMG • The base HR are negatively correlated with GA during
the first 5 days of life

• Average oscillating period length of HR rhythms:
159 min

• Average amplitude of HR rhythms: 5.9 bpm

Hasenstab-Kenney et al.
(2020)

40 preterm infants (GA: 27.0 ± 3.1 weeks) Respiratory inductance
plethysmography; Nasal
thermistor; ECG

• Pharyngeal irritation leads to: HR↓, duration of cardiac
rhythms responses↑, respiratory rhythms changes↑

Hasenstab et al. (2019) 48 preterm infants (GA: 27.7 ± 0.5 weeks) Respiratory inductance
plethysmography; Nasal
thermistor; ECG

• Pharyngeal stimulation leads to HR decreased in 32%
preterm infants and remained stable in 61%

• HR decrease is related to extreme prematurity and
resulted in increased respiratory rhythms disturbance

Bauer et al. (2009) 22 preterm infants (GA: 30.3 ± 1.7 weeks) Indirect calorimetry • Oxygen consumptions are significantly associated with
the HR

• Circadian rhythms of oxygen consumptions with two
peaks in the afternoon and early morning are detected in
most preterm infants early after birth

Gewolb and Vice,
(2006)

20 preterm infants (GA: 29.4 ± 2.1 weeks)
vs. 16 term infants (GA: 39.2 ± 1.1 weeks)

Pharyngeal pressure transducer;
Thoracoabdominal strain gauge

• With advancing PMA for preterm infants: percentage of
apneic swallows↓, variation of breath interval↓,
integration of swallow and respiratory rhythms↑

• Stabilization of suck and suck-swallow rhythms occurs at
about 36 weeks PMA, and coordination of respiration
and swallow rhythms occurs later

Begum et al. (2006) 124 preterm infants (GA: 23–36 weeks) vs.
63 term infants (GA: 37–42 weeks)

ECG; Pulse oximetry • Circadian cycles are observed among 23.8% neonates in
HR, 20% in PR, 27.8% in RR, and 16% in SpO2 in first
3 days of life

• Percentages of circadian PR cycles are negatively
correlated with GA, but amplitudes are positively
correlated with GA and PMA

Gewolb et al. (2001) 20 preterm infants (GA: 29.4 ± 2.1 weeks) Pharyngeal pressure transducer; Nasal
thermistor; Cardiac monitor

• Swallow rhythms are stable after 32 weeks PMA,
percentage of swallows in runs increased with
increasing PMA

• Stability of suck rhythms and sucks in runs are positively
correlated with PMA

Dimitriou et al. (1999) 22 preterm infants (GA: 23–28 weeks) Indwelling arterial cannula transducer • Significant circadian and ultradian rhythms of BP are
shown on day 2 but not day 7 after birth

Glotzbach et al. (1995) 17 preterm infants (GA: 31.1 ± 1.2 weeks) ECG • Preterm infants exhibit feeding-related ultradian HR
rhythms at about 35 weeks PMA

D’Souza et al. (1992) 9 preterm infants (GA: 26–29 weeks) Skin electrodes monitor • Three preterm infants exhibit circadian HR rhythms at
33–42 weeks PMA

Tenreiro et al. (1991) 20 preterm infants (GA: 24–29 weeks) Surface electrode monitor • Circadian and ultradian HR rhythms are appeared and
disappeared erratically for the period of 6–17 weeks after
birth

• Circadian and ultradian rhythmicity of HR increases
with regular light-dark and feeding patterns

Mirmiran and Kok,
(1991)

12 preterm infants (GA: 25–32 weeks) Neonatal intensive care monitor • Five of these preterm infants exhibit the 24-h period
circadian HR rhythms at 29–33 weeks PMA

Updike et al. (1985) 6 preterm infants (GA: 34–37 weeks) Noninvasive electrodes monitor • Three preterm infants exhibit circadian respiratory
pause frequency rhythms with peak occurring between
23:00 to 05:00 during 10–20 days after birth

• Two preterm infants exhibit circadian transcutaneous
oxygen level rhythms with trough occurring between 00:
30 to 04:30 during 10–20 days after birth

Abbreviations: BP, blood pressure; bpm, beats per minute; ECG, electrocardiography; EMG, electromyography; GA, gestational age; HR, heart rate; PMA, postmenstrual age; PR, pulse rate;

RR, respiratory rate; SpO2, pulse oximeter oxygen saturation.
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with the postmenstrual age (PMA) (Mirmiran et al., 2003a;

Darnall et al., 2006). However, due to the remarkable

heterogeneity in terms of methodological designs, the

characteristics of the circadian rhythms in preterm infants

have not been consistently described, and some studies have

even found conflicting results (Mirmiran et al., 2003a). For

comprehensively and precisely understanding the circadian

rhythms in preterm infants, relevant advances are summarized

in Tables 1–4 and discussed as follows:

5.1 Sleep-wake rhythms

It is well established that the sleep is essential for normal

brain development and health throughout the whole life (Peirano

et al., 2003; Gogou et al., 2019). Premature newborns spend more

than 70% of their first several weeks sleeping after birth (Ardura

et al., 1995; Wong et al., 2022), thereby maintaining the proper

sleep homeostasis is even more important for their neurological

development and functional maturation (Bennet et al., 2018;

Uchitel et al., 2021). The direct behavioral observations, parental

sleep questionnaires, video recordings, polysomnography,

actigraphy, and electroencephalography (EEG) (Table 1) have

been developed to investigate the sleep-wake states of neonates

(Mirmiran et al., 2003a; Collins et al., 2015; Gogou et al., 2019).

Based on the behavioral, cardiopulmonary, and EEG patterns

(Darnall et al., 2006; Dereymaeker et al., 2017), the sleep states of

preterm infants are generally classified as: active sleep (AS), the

precursor of adult rapid eye movement (REM) sleep; quiet sleep

(QS), the precursor of adult non-REM sleep; and indeterminate

sleep (IS), the transition between AS and QS patterns (Mirmiran

et al., 2003a; Liao et al., 2018). More specifically, the AS could

promote the synapse formation, neuronal differentiation and

migration, and the development of brain functional connectivity

networks (Kurth et al., 2017; Gogou et al., 2019), whilst the QS

promote the myelination, replenishment of energy reserves, and

TABLE 3 Studies about the body temperature rhythms in preterm infants.

Studies Subjects Methods of evaluation Main findings

Koch et al. (2021) 65 preterm infants (GA:
30.8 ± 2.1 weeks)

Zero heat flux method via the
skin electrode

• Average oscillating period length of ultradian BT rhythms within the first
5 days of life: 290 min

• Average amplitude of BT rhythms: 0.147°C

Bueno and
Menna-Barreto, (2016)

19 preterm infants (GA:
28–36 weeks)

Wrist skin thermistor record • Dominant circadian WT rhythms are present in preterm infants since the
first 2 weeks of life

Mirmiran et al. (2003b) 40 preterm infants (GA:
30.2 ± 1.5 weeks)

Rectal digital ambulatory
record

• Preterm infants mainly exhibit 2–4 h period ultradian BT rhythms at
36 weeks PMA

• Preterm infants exhibit 12 and 24 h period circadian BT rhythms at
1–3 months after birth

• The amplitude of BT rhythms is correlated with PMA and light-dark
patterns

Thomas, (2001) 26 preterm infants (GA:
30.9 ± 2.1 weeks)

Skin transducer monitor • 21 preterm infants exhibit circadian BT rhythms at mean of 33 weeks PMA

• The amplitude of BT rhythms is correlated with PMA for not sick infants,
but not for sick infants

Thomas and Burr, (2002) 34 preterm infants (GA:
26–33 weeks)

Abdominal skin thermistor
record

• Preterm infants have circadian ST rhythms at 44–46 weeks PMA

• The acrophase of circadian ST rhythms is related to parental co-sleeping
and hospital stay length

Glotzbach et al. (1995) 17 preterm infants (GA:
31.1 ± 1.2 weeks)

Rectal and abdominal skin
thermistor record

• Preterm infants exhibit feeding-related ultradian RT and ST rhythms at
about 35 weeks PMA

• Amplitudes of RT rhythms of preterm infants at 35–37 weeks PMA are
much higher compared with 32–34 weeks PMA

D’Souza et al. (1992) 9 preterm infants (GA:
26–29 weeks)

Skin electrodes monitor • Four of these preterm infants exhibit light-related circadian ST rhythms at
34–42 weeks PMA

Tenreiro et al. (1991) 20 preterm infants (GA:
24–29 weeks)

Surface electrode monitor • Circadian and ultradian ST rhythms are appeared and disappeared
erratically during 6–17 weeks after birth

• Circadian and ultradian rhythmicity of ST increases with regular light-dark
and feeding patterns

Mirmiran and Kok, (1991) 12 preterm infants (GA:
25–32 weeks)

Skin transducer monitor • Seven of these preterm infants exhibit circadian BT rhythms with different
periods and out of time synchronization at 29–34 weeks PMA

Mirmiran et al. (1990) 11 preterm infants (GA:
26–32 weeks)

Rectal sensor monitor • Five preterm infants exhibit circadian RT rhythms with high values at night
and low values during the day at 28–34 weeks PMA

Updike et al. (1985) 6 preterm infants (GA:
34–37 weeks)

Skin thermistor record • Five preterm infants exhibit circadian ST rhythms with trough occurring
between 23:00 to 04:30 during 10–20 days after birth

Abbreviations: BT, body temperature; GA, gestational age; PMA, postmenstrual age; RT, rectal temperature; ST, skin temperature; WT, wrist temperature.
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cognitive development in premature infants (Liao et al., 2018;

Gogou et al., 2019).

As summarized in Table 1, Curzi-Dascalova et al. (1993),

found the AS and QS states can be discerned in preterm infants as

early as 27 weeks of GA. The results varied due to the different

GA of the enrolled cases, but most studies revealed that preterm

infants experienced more total sleep time and AS, while less QS

than term ones (Anders and Keener, 1985; Ardura et al., 1995;

Sahni et al., 1995; Hoppenbrouwers et al., 2005; Guyer et al.,

2015; Georgoulas et al., 2021), which might reflect the accelerated

neurological maturation of preterm infants (Mirmiran et al.,

2003a; Bennet et al., 2018). Besides, preterm infants had fewer

total arousals and, more specifically, fewer arousals in the AS

(Guyon et al., 2022), which seemed to cause a higher risk of

sudden infant death syndrome (Mirmiran et al., 2003a; Bennet

et al., 2018).

With developmental maturity, preterm infants have more

sleep during nighttime but less during daytime (Antonini et al.,

TABLE 4 Studies about the hormonal rhythms in preterm infants.

Studies Subjects Methods of evaluation Main findings

Biran et al.
(2019)

209 preterm and term infants (GA:
24.0–41.9 weeks)

Plasma melatonin and urine 6-
sulfatoxymelatonin levels by RIA

• No obvious rhythms of plasma melatonin and urine 6-
sulfatoxymelatonin excretion were found in these neonates
during first 55 days of life

Ivars et al. (2017) 51 preterm infants (GA: 23.3–31.9 weeks) vs.
130 term infants (GA: 37–42 weeks)

Salivary cortisol levels by RIA • Salivary cortisol circadian rhythms in preterm infants are
established by 1 month CA and persisted throughout the first
year

• The establishment of salivary cortisol circadian rhythms is
correlated with GA and delayed by topical corticosteroid
medication

Dorn et al.
(2014)

60 preterm infants (GA: 33.0 ± 10.8 weeks) Salivary cortisol levels by ELISA • No circadian or ultradian rhythms of salivary cortisol are
found in preterm infants during the first 3 weeks of life except
one at 34.3 weeks PMA

• Salivary cortisol levels in day 1 are higher than day 7 and
14 after birth, nighttime cortisol levels are higher than
daytime

Kidd et al. (2005) 11 preterm infants (GA: 26–29 weeks) Salivary cortisol levels by RIA • No circadian salivary cortisol rhythms are found during the
first 4 weeks of life

• Five infants exhibit unsustainable adult-type rhythms after
39 weeks PMA

• Salivary cortisol levels are negatively correlated with PNA

Antonini et al.
(2000)

9 preterm infants (GA: 31.3–34.6 weeks) Salivary cortisol levels by RIA • Salivary cortisol circadian rhythms in preterm infants are
emerged and persisted at approximately 8–12 weeks after
birth

Jett et al. (1997) 14 preterm infants (GA: 25.6 ± 1.3 weeks) Plasma cortisol levels by RIA • No circadian rhythm of plasma cortisol is found in preterm
infants during the first 4 days of life

Mantagos et al.
(1996)

23 preterm infants (GA: 33–36 weeks) Plasma melatonin levels by RIA • No circadian rhythm of plasma melatonin is found in preterm
infants under cyclic or constant light conditions during the
first 4 days of life

Commentz et al.
(1996)

64 preterm and term male infants (GA:
26–42 weeks)

Urine melatonin and 6-
hydroxymelatonin sulfate levels
by RIA

• No circadian rhythm of urine melatonin and 6-
hydroxymelatonin sulfate excretion are found in these infants
during the first 7 days of life

• Urine melatonin and 6-hydroxymelatonin sulfate excretion in
these infants are negatively correlated with GA

Economou et al.
(1993)

60 preterm and term infants (GA: 33.5 ±
1.5 weeks)

Serum cortisol levels by IFA • A free running serum cortisol rhythm is found in healthy
preterm and term infants during the first 4 weeks of life

• Sick preterm and term infants exhibit higher serum cortisol
levels at 20:00, while healthy infants exhibit lower levels at
20:00

Kennaway et al.
(1992)

14 preterm infants (GA: 29–35 weeks) vs.
17 term infants (GA > 37 weeks)

Urine 6-sulfatoxymelatonin levels
by RIA

• Appearance of rhythmic urine 6-sulfatoxymelaton in preterm
infants are delayed by 9 weeks than term infants and
2–3 weeks after correcting for GA

• Urine 6-sulfatoxymelaton excretion in preterm infants is
gradually increased during the first 52 weeks after birth but
lower than term infants

Abbreviations: CA, corrected age; ELISA, enzyme linked immune sorbent assay; GA, gestational age; IFA, immunofluorescence assay; PMA, postmenstrual age; PNA, postnatal age; RIA,

radioimmunoassay.
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2000; Korte et al., 2001; Guyer et al., 2015; Lan et al., 2019; Guyon

et al., 2022). Meanwhile, as the PMA increased, the AS

proportion comes out of a decreasing trend, but it is not true

for the QS, IS, wakefulness, and activity, which all experience an

increasing trend (Anders and Keener, 1985; Curzi-Dascalova

et al., 1988; Curzi-Dascalova et al., 1993; Borghese et al., 1995;

Sahni et al., 1995; Ingersoll and Thoman, 1999; Mirmiran et al.,

2003b; Holditch-Davis et al., 2004; Hoppenbrouwers et al., 2005;

Foreman et al., 2008; Dorn et al., 2014; Guyer et al., 2015; Lan

et al., 2019; Cailleau et al., 2020; Park et al., 2020; Georgoulas

et al., 2021; Guyon et al., 2022). In addition, other factors like sex,

illness severity, body weight, ventilatory support, maternal

smoking, and ambient temperature also affect the sleep-wake

patterns (Bach et al., 2000; Hoppenbrouwers et al., 2005;

Foreman et al., 2008; Lan et al., 2019).

It is well understood that the sleep homeostasis in humans

are regulated by two independent but synergistic processes

(Borbély, 1982; Deboer, 2018): a Clock-dependent circadian

process (Process C), controlled by the SCN circadian

oscillator, determines the alternation of different sleep

propensity (Cremer et al., 2016); and a Sleep-dependent

homeostatic process (Process S) that is determined by the

prior sleep pressure, which comes from the adenosine buildup

in the basal forebrain during wakefulness (Deboer, 2018; Wong

et al., 2022). However, due to the immature development of the

central nervous system, especially the SCN, Process C and

Process S are not stably present in preterm infants or even in

term ones (Salzarulo and Fagioli, 1992; Schwichtenberg et al.,

2016). As a result, preterm infants experience many sleep and

wake episodes within the 24-h period, and those ultradian sleep-

wake rhythms persist for several months until the Process C and

Process S are gradually developed (Mirmiran et al., 2003a;

Cremer et al., 2016).

As shown in Table 1, preterm infants exhibit ultradian or

irregular sleep-wake rhythms with different periods in the early

postnatal life (Mirmiran et al., 1990; Hayes et al., 1993; Borghese

et al., 1995; Shimada et al., 1999; Scher et al., 2005; Dorn et al.,

2014; Koch et al., 2021), which might be explained by the

environmental factors, such as feeding patterns (Glotzbach

et al., 1995; Thomas, 2000; Bueno and Menna-Barreto, 2016)

and respiratory states (Palmu et al., 2013). As for when the sleep-

wake rhythms begin to occur and entrain, Scher et al. (2005),

observed the ultradian sleep-wake rhythms as early as 25 weeks

of PMA. Mirmiran and Kok, (1991) found the circadian sleep-

wake rhythms began to appear after 29 weeks of PMA. However,

McMillen et al. (1991), found that the entrainment of circadian

sleep-wake rhythms did not occur in 50% of the preterm infants

at 47 weeks of PMA, and all cases did not begin to develop the

circadian rhythms until approximately 54 weeks of PMA.

Besides, several studies also demonstrated that a definite

sleep-wake cycling existed in preterm infants with the

advanced GA and became more prominent as the PMA

increased (Sisman et al., 2005; Soubasi et al., 2009; Lee et al.,

2010). Therefore, it could be concluded that with the continuous

development of the brain and neural functions, circadian sleep-

wake rhythms in preterm infants are consolidated and eventually

developed to a 24-h pattern, just as those in adults (Mirmiran

et al., 2003a; Bennet et al., 2018).

5.2 Cardiorespiratory rhythms

Many physiological biomarkers of the cardiopulmonary

system in adults, such as the heart rate, blood pressure, and

respiratory rate, exhibit distinct circadian rhythms (Elstad et al.,

2018). A complex network that composed of the brainstem

respiratory center, autonomic nervous system, and a variety of

central and peripheral chemoreceptors and mechanoreceptors is

responsible for regulating the rhythmic oscillations of the

cardiorespiratory system (Darnall et al., 2006; Longin et al.,

2006). Due to the immaturity of this network (Hunt, 2006),

cardiorespiratory events like apnea, periodic breathing, and

bradycardia are common in premature infants (Hodgman

et al., 1990; Darnall et al., 2006), which leads to the erratic

cardiopulmonary rhythms with marked individual differences

(Begum et al., 2006). Clinically, the incidence and duration of

cardiorespiratory events are associated with the GA and PMA

(Hellmeyer et al., 2012; Fairchild et al., 2016; Patel et al., 2016).

As shown in Table 2, some, but not all, preterm infants

experienced circadian or ultradian rhythms for the heart rate,

pulse rate, respiratory rate, blood pressure, and oxygen

consumption at the first few weeks after birth (Begum et al.,

2006; Mirmiran and Kok, 1991; Bauer et al., 2009; D’Souza et al.,

1992; Updike et al., 1985). Interestingly, unlike the ultradian

sleep-wake rhythms gradually grew into circadian rhythms after

birth, these cardiopulmonary rhythms in premature infants

appeared and disappeared erratically (Tenreiro et al., 1991;

Dimitriou et al., 1999), e.g., presence on day 2 but absence on

day 7 after birth for the heart rate rhythms, which might be

caused by the residual of maternal effects (Dimitriou et al., 1999).

Tenreiro et al. (1991) also proposed that the circadian

components of these cardiopulmonary rhythms gradually and

erratically came into phases with one another, while the regular

light-dark and feeding patterns seemed to promote the presence

of the dominant circadian rhythms, which developed as the

increased coupling between the component oscillators.

In addition, the well-developed laryngeal reflexes and

coordination of pharyngoesophageal-cardiorespiratory (PECR)

responses are essential for the development and maintenance of

cardiorespiratory rhythms (Gewolb and Vice, 2006; Hasenstab-

Kenney et al., 2020). As shown in Table 2, pharyngeal

stimulations cause a decrease of heart rate in premature

infants with uncoordinated suck-swallow-respiration rhythms

due to the immature laryngeal reflexes and PECR responses,

which would aggravate the disturbance of cardiac and respiratory

rhythms (Hasenstab et al., 2019; Hasenstab-Kenney et al., 2020).
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(Gewolb et al., 2001; Gewolb and Vice, 2006) found that the

development and establishment of suck-swallow rhythms were

associated with their PMA. The swallow rhythms appeared at

32 weeks of PMA first (Gewolb et al., 2001), followed by the

stabilization of suck and suck-swallow rhythms between 36 and

40 weeks of PMA (Gewolb and Vice, 2006), then the suck-

swallow-respiration rhythms began to coordinate and to

integrate as the adaptation of feeding patterns and the

maturation of neurodevelopment (Darnall et al., 2006).

5.3 Body temperature rhythms

The human body temperature is precisely regulated by a

network that consists of the skin thermal sensors, hypothalamic

thermoregulatory center, autonomic nervous system, and several

thermoregulation effector systems including brown adipose

tissue, peripheral vasomotricity, and sweat glands (Bach et al.,

1996; Jost et al., 2017). Due to the immaturity of the regulatory

network, especially the dysfunction of the autonomic nervous

system, their body temperature during the first few days of life is

susceptible to the rapidly changed external environment

temperature (Jost et al., 2017). Therefore, premature infants

are typically nursed in the incubators to treat the autonomic

dysregulation of body temperature (Thomas, 2001).

Interestingly, Bueno and Menna-Barreto (2016), found a

positive correlation between the wrist temperature and

environment temperature inside the incubator, but no

significant association between the period or potency for

them. Similarly, Thomas (2001) demonstrated that the

circadian of incubator temperature did not appear to be the

primary determinant of the body temperature rhythms.

As summarized in Table 3, due to the heterogeneity of the

body temperature monitoring, the GA of preterm infants, and

sample size, the body temperature rhythms have not yet been

consistently described. Several studies observed the ultradian

body temperature rhythms within the first few days of life

(Glotzbach et al., 1995; Mirmiran et al., 2003b; Koch et al.,

2021), and the circadian rhythms by approximately

1–3 months of PNA (Mirmiran et al., 2003b; Bueno and

Menna-Barreto, 2016). Interestingly, Thomas and Burr

(2002), found that the acrophase of circadian abdominal

skin temperature rhythms was related to the parental co-

sleeping and length of hospital stay for preterm infants at

44–46 weeks of PMA. However, some studies demonstrated

that the body temperature rhythms were only found in some,

but not all preterm infants (Mirmiran et al., 1990; Mirmiran

and Kok, 1991; D’Souza et al., 1992; Updike et al., 1985;

Thomas, 2001). For example, Tenreiro et al. (1991) found

that the ultradian and circadian rhythms of skin temperature

appeared and disappeared erratically during 6–17 weeks of

PNA, which was similar to the cardiopulmonary rhythms.

5.4 Hormonal rhythms

As summarized in Table 4, due to the difficulties in sample

collection and analysis, studies on hormonal rhythms in preterm

infants are still very limited until now, and nearly all focused on

the cortisol and melatonin rhythms. With regard to the cortisol,

due to the immature of HPA axis (Bolt et al., 2002), no significant

circadian or ultradian rhythms were observed during the early

postnatal periods (Economou et al., 1993; Jett et al., 1997; Kidd

et al., 2005; Dorn et al., 2014). Nevertheless, studies have found

that healthy preterm infants had higher nighttime cortisol levels

than daytime at birth, and that cortisol levels tended to decrease

gradually after birth (Kidd et al., 2005; Dorn et al., 2014).

Impressively, premature infants with perinatal stress like

respiratory distress experienced higher cortisol levels at

nighttime after birth compared with those healthy preterm

and term neonates (Economou et al., 1993; Gunes et al., 2006).

It remains unclear when premature infants develop the

circadian cortisol rhythms. Antonini et al. (2000) found the

salivary cortisol circadian rhythms emerged and persisted at

approximately 8–12 weeks of PNA, which was in line with

term infants. However, Ivars et al. (2017) found that the

cortisol rhythms were established by 1 month of corrected

age, persisted throughout the first year of life, but delayed by

topical corticosteroid medication. In addition, Ivars et al. (2017)

also suggested that the establishment of cortisol rhythms was

related to the GA rather than PNA, because the maturation of

adrenal cortex was depend on the GA of preterm infants (Bolt

et al., 2002).

Circadian melatonin rhythms could not be detected in

preterm infants under different ambient illumination

conditions during the early postnatal life (Commentz et al.,

1996; Mantagos et al., 1996; Biran et al., 2019). Several studies

demonstrated that the blood melatonin and urine 6-

sulfatoxymelatonin levels were positively correlated with the

GA (Biran et al., 2019) and birth weight of preterm infants

(Muñoz-Hoyos et al., 2007), but the serum melatonin levels and

urine 6-sulfatoxymelaton excretion increased during the first

7 days and even 52 weeks of PNA (Kennaway et al., 1992;

Commentz et al., 1996; Muñoz-Hoyos et al., 2007), which

might be attributed to the gradual maturation of the pineal

gland where the melatonin is mainly synthesized (Commentz

et al., 1997).

However, Commentz et al. (1996) found the urine melatonin

and 6-hydroxymelatonin sulfate excretion in male preterm infants

during 2–7 days of PNA were negatively associated with the GA,

indicating that the melatonin levels might be related to the sex. As

for the establishment of circadian melatonin rhythms, Kennaway

et al. (1992) observed the appearance of urine 6-sulfatoxymelaton

circadian rhythms was approximately at 18–21 weeks of PNA,

which was delayed by 9 weeks than those term infants and

2–3 weeks after correcting for GA.
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6 The effects and mechanisms of
caffeine on circadian rhythms

The potential association between caffeine consumption and

circadian rhythms has attracted extensive attention in the past

decades (Landolt, 2015). However, the underlying mechanisms

remain largely elusive. Various research attempts in the non-

human field also reinforce this impression (Spaeth et al., 2014). In

this section, we briefly introduce the up-to-date progress that

achieved in human and non-human mammals, while the effects

on premature infants will be delineated in the next section.

6.1 The effects of caffeine on circadian
rhythms

In humans, several clinical observational studies with small

sample size have witnessed the alterations of circadian sleep-

wake (Landolt et al., 1995a; Landolt et al., 1995b; McHill et al.,

2014; Weibel et al., 2021), body temperature (Wright et al., 1997;

Wright et al., 2000; McHill et al., 2014), blood pressure (Green

and Suls, 1996; Guessous et al., 2014), heart rates (Green and Suls,

1996; Kohler et al., 2006; Crooks et al., 2019), melatonin (Wright

et al., 1997; Wright et al., 2000; Burke et al., 2015), and cortisol

rhythms (Lovallo et al., 2005; Rieth et al., 2016) in adults who

consumed caffeine by comparison with placebo controls.

In rodents, caffeine disrupted the mesors, amplitudes, and

acrophases of the circadian heart rate, temperature, motor

activity, and sleep-wake rhythms (Pelissier et al., 1999;

Pelissier-Alicot et al., 2002; Vivanco et al., 2013; Panagiotou

et al., 2019). Caffeine also potentiated the light-induced phase

shift, which responded to the rest-activity circadian rhythms,

indicating that caffeine enhanced the clock sensitivity to light

(Antle et al., 2001; Vivanco et al., 2013; van Diepen et al., 2014;

Jha et al., 2017; Ruby et al., 2018). In addition, caffeine lengthened

the period and amplitude of circadian clocks in mammalian cells

in vitro and in mice ex vivo and in vivo (Oike et al., 2011;

Narishige et al., 2014; Burke et al., 2015). At the cellular level,

caffeine also altered the expression of circadian clock genes, such

as Clock, Bmal1, and Per1 in the liver and jejunum of mice under

ad libitum feeding conditions (Sherman et al., 2011).

6.2 The mechanisms of caffeine on
circadian rhythms

Caffeine influences the circadian rhythms by modulating the

endogenous cAMP/Ca2+ signaling pathway, the core components

of the mammalian circadian pacemaker (Harvey et al., 2020;

O’Neill et al., 2008), through a variety of complex mechanisms

(Aguilar-Roblero et al., 2007; Narishige et al., 2014; Burke et al.,

2015; Landolt, 2015; Jagannath et al., 2021) (Figure 3). Basically,

caffeine antagonizes all types of adenosine receptors (A1, A2A,

A2B, and A3 receptors) and mainly functions by non-specifically

antagonizing the A1 and A2A receptors (Nehlig et al., 1992;

Cappelletti et al., 2015; Rodak et al., 2021; Yang et al., 2021).

The blockade of adenosine receptors indirectly regulates the

production of cAMP by inhibition (A1 and A3 receptors) or

stimulation (A2A and A2B receptors) of adenylate cyclase (Nehlig

et al., 1992; Kumar and Lipshultz, 2019; Yang et al., 2021).

Caffeine also prevents the degradation and increases the

intracellular cAMP levels by non-selectively inhibiting

phosphodiesterase (Nehlig et al., 1992; Cappelletti et al., 2015;

Kumar and Lipshultz, 2019; Yang et al., 2021). In addition,

caffeine mobilizes intracellular Ca2+ transmission from the

endoplasmic reticulum through activating the ryanodine

receptor channels (Aguilar-Roblero et al., 2007; Kumar and

Lipshultz, 2019) and the inositol triphosphate receptors (Yang

et al., 2021).

The increased cytosolic cAMP/Ca2+ activates the protein

kinase A (PKA) and Ca2+/calmodulin-dependent protein

kinase Ⅱ (CaMKⅡ), thereby leading to the phospho-dependent

activation of cAMP response element binding protein (CREB),

which in concert with its coactivators to activate the cAMP

response element (CRE) (Narishige et al., 2014; Harvey et al.,

2020; Reichert et al., 2022). Besides, the increased intracellular

Ca2+ levels also result in the phosphorylation of extracellular

regulated protein kinases (ERK), which drives to form the

activator protein 1 (AP-1) transcription factor (Jagannath

et al., 2021). Then, interestingly, CRE and AP-1 together drive

the Per gene transcription (Narishige et al., 2014; Jagannath et al.,

2021), which in turn participates in the transcriptional feedback

loops that regulate circadian rhythms (Figure 3).

In addition, caffeine affects the release of neurotransmitters,

such as γ-aminobutyric acid, dopamine, glutamate, acetylcholine,

norepinephrine, and serotonin, between synaptic neurons in

almost all brain areas by blocking the adenosine receptors

(Nehlig et al., 1992; Cappelletti et al., 2015; Yang et al., 2021)

(Figure 3), thereby significantly influencing the sleep-wake

rhythms (Kumar and Lipshultz, 2019).

7 The effects of caffeine on circadian
rhythms in preterm infants

Caffeine is widely prescribed to treat or prevent the AOP

(Eichenwald, 2020; van Dam et al., 2020) and has recently been

attempted to prevent the encephalopathy (Williamson et al.,

2021; Yang et al., 2021) for preterm neonates in the NICU.

Therefore, studies on the caffeine treatment in preterm infants

mainly focus on the respiratory and neurodevelopmental

outcomes (Schmidt et al., 2006; Schmidt et al., 2007), while

less attention has been paid to its effects on their circadian

rhythms.

In fact, the ultradian or irregular circadian rhythms due to

the neurodevelopmental immaturity of preterm infants with
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different GA during the early postnatal life (Begum et al., 2006;

Darnall et al., 2006) are more likely to mask caffeine’s effects.

Moreover, preterm infants with different PNA and/or PMA

experience different circadian characteristics (Mirmiran et al.,

2003a; Darnall et al., 2006), so whether the response to caffeine

therapy are partly related to the maturation of the circadian

system in preterm infants remains to be explored.

Thus, relevant advances are summarized here to delineate

those effects of caffeine on the circadian rhythms in preterm

infants. Besides, theophylline and aminophylline, another two

methylxanthines and fully metabolized in the body to produce

the main metabolite caffeine (Bory et al., 1979; Pacifici, 2014), are

also commonly used in the treatment of AOP (Henderson-Smart

and De Paoli, 2010; Henderson-Smart and Steer, 2010;

Eichenwald et al., 2016). The real effects of theophylline and

aminophylline are thus thought to be related to caffeine in nature

(Bory et al., 1979). Collectively, studies involving the effects of

caffeine, theophylline, and aminophylline on the circadian

rhythms in preterm infants are summarized in Tables 5, 6

and described as follows:

FIGURE 3
The mechanisms of caffeine on circadian rhythms. A1, A3, A2A, and A2B, adenosine receptors; AC, adenylate cyclase; Ach, acetylcholine; AMP,
adenosine monophosphate; ATP, adenosine triphosphate; AP-1, activator protein 1; BMAL1, brain and muscle ARNT-like 1; CaMKⅡ, Ca2+/
calmodulin-dependent protein kinase Ⅱ; cAMP, cyclic adenosine monophosphate; CLOCK, circadian locomotor output cycles kaput; CRE, cAMP
response element; CREB, cAMP responsive element binding protein; CRTC, CREB regulated transcription coactivator; DA, dopamine; ER,
endoplasmic reticulum; ERK, extracellular regulated protein kinases; GABA, γ-aminobutyric acid; Gi, inhibitory adenylate cyclase G protein; Glu,
glutamate; Gs, stimulating adenylate cyclase G protein; GTP, guanosine triphosphate; IP3R, inositol triphosphate receptor; NE, norepinephrine; P,
phosphorylation; PDE, phosphodiesterase; PER, period; PKA, protein kinase A; RyR, ryanodine receptor; 5-HT, serotonin.
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7.1 The effects on sleep-wake rhythms

The well-studied effects of caffeine on sleep-wake rhythms in

preterm infants are still limited as the sample sizes were small and

the study designs were heterogeneous (Table 5). Some studies

revealed that the sleep-wake patterns were not significantly

changed after short-term treatment with caffeine or

theophylline during short observation periods (Gabriel et al.,

TABLE 5 Studies about the effects of methylxanthine on sleep-wake rhythms in preterm infants.

Studies Subjects Treatments Methods of
evaluation

Main findings

Seppä-Moilanen
et al. (2021)

21 preterm infants (GA:
28.4–33.6 weeks)

Caffeine citrate (loading:
20 mg/kg; maintenance:
5 mg/kg/day)

Polysomnography • Caffeine do not affect the sleep-arousal
characteristics of preterm infants on the
second day of treatment

Koch et al. (2020) 52 preterm infants (GA: 29.9 ±
1.96 weeks) vs. 12 preterm infants (GA:
33.4 ± 1.75 weeks)

Caffeine citrate (loading:
20 mg/kg; maintenance:
5–10 mg/kg/day) vs. no-
caffeine

Videographic recordings • In caffeine cohort with GA ≥ 28 weeks:
AS↓ and wakefulness↑ as caffeine
concentrations and PNA increased over
the first 5 days of life

• In caffeine cohort with GA < 28 weeks:
no clear caffeine effects on sleep-wake
behavior

• In no-caffeine cohort: no PNA effects
on sleep-wake behavior

Hassanein et al.
(2015)

20 preterm infants (GA: 31.70 ±
1.16 weeks)

Caffeine citrate (loading:
20 mg/kg)

aEEG recordings • A loading dose of caffeine leads to AS↓,
QS↓, drowsiness↓, quite alert↑, active
alert↑, crying↑

Lee et al. (2010) 35 preterm infants (GA:
24.9–31.9 weeks)

Aminophylline (loading:
5 mg/kg; maintenance:
1.5 mg/kg/8 h)

aEEG recordings • The sleep-wake cycling is more
prominent in preterm infants receiving
aminophylline at 34–36 weeks PMA

• Aminophylline use is associated with
the appearance of sleep-wake cycling in
preterm infants

Hayes et al. (2007) 14 preterm infants (GA: 28.6 ±
2.3 weeks) vs. 13 preterm infants (GA:
30.3 ± 1.5 weeks) vs. 10 preterm infants
(GA: 32.4 ± 1.5 weeks)

Caffeine vs. theophylline vs.
untreated control

Videographic recordings;
Actigraphy

• Methylxanthine duration is associated
with: AS↓, wakefulness↑, sleep-related
movements↑

• Methylxanthine vs. untreated: arousal
rate↓, wakefulness↓, sleep-related
movement↓ at night (from 24:00 to
05:00)

Chardon et al.
(2004)

11 preterm infants (GA: 31.1 ±
1.8 weeks) vs. 11 preterm infants (GA:
30.3 ± 2.0 weeks)

Caffeine citrate (4.0 ±
0.5 mg/kg/day) vs. no-caffeine

Actigraphy; EEG; Eye
movement monitors; Visual
observations

• Caffeine has no significant effects on the
TST, AS, QS, and IS for preterm infants
during the inter-feeding
intervals (2–3 h)

Curzi-Dascalova
et al. (2002)

10 preterm infants (GA: 32.6 ±
0.21 weeks) vs. 5 preterm infants (GA:
32.7 ± 0.3 weeks)

Caffeine citrate (loading:
20 mg/kg; maintenance:
5 mg/kg/day) vs. no-caffeine

Polysomnography • Caffeine has no significant effects on the
AS, QS, IS, wakefulness, and state
transitions for preterm infants during
daytime (from 09:00 to 19:00) between
33 and 34 weeks PMA

Thoman et al.
(1985)

4 preterm infants (GA: 28–30 weeks) vs.
5 preterm infants (GA: 29–35 weeks) vs.
28 term infants (GA: 37–42 weeks)

Theophylline vs. no-
theophylline vs. untreated
control

Direct behavioral
observations

• Theophylline vs. no-theophylline for
preterm infants at 2–5 weeks post-term:
waking activity↑, alert↑, drowse or
transition↑, AS↓

• Theophylline preterm vs. untreated
term infants: waking activity↑, alert↑,
drowse or transition↑, AS↓, QS↓

Gabriel et al. (1978) 6 preterm infants (GA: 30.4–32.9 weeks) Aminophylline (loading:
5.5 mg/kg; maintenance:
1.1 mg/kg/8 h)

Polysomnography • Sleep cycles of AS, QS, and IS are
unaffected during short-term
theophylline treatment and after drug
withdrawal

Dietrich et al.
(1978)

9 preterm infants (GA: 26–32 weeks) Aminophylline (loading:
5.8 mg/kg; maintenance:
1.4 mg/kg/8 h)

Direct behavioral
observations; EEG

• During theophylline therapy vs. before
theophylline therapy: AS↑, QS↓, IS↓,
wakefulness↑

Abbreviations: aEEG, amplitude-integrated electroencephalography; AS, active sleep; EEG, electroencephalography; GA, gestational age; IS, indeterminate sleep; PMA, postmenstrual age;

PNA, postnatal age; QS, quiet sleep; TST, total sleep time.
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TABLE 6 Studies about the effects of methylxanthine on cardiorespiratory rhythms in preterm infants.

Studies Subjects Treatments Methods of
evaluation

Main findings

Seppä-Moilanen
et al. (2021)

21 preterm infants (GA:
28.4–33.6 weeks)

Caffeine citrate (loading: 20 mg/kg;
maintenance: 5 mg/kg/day)

Polysomnography • Caffeine leads to SpO2↑, while HRV not
changed on the second day of treatment

Williams et al.
(2020)

32 preterm infants (GA:
27.27–31.49 weeks)

Caffeine citrate (loading: 20 mg/kg) EMG • A loading dose of caffeine leads to RR↑

Shivakumar et al.
(2019)

185 preterm infants (GA: 29.5 ±
1.6 weeks)

Caffeine citrate (loading: 20 mg/kg;
maintenance: 5 mg/kg/day) vs.
aminophylline (loading: 5 mg/kg;
maintenance: 1.5 mg/kg/8 h)

Echocardiography • Aminophylline leads to HR↑, while
caffeine has no significant increase in
HR after 48 h of continued therapy
compared with pretreatment values

Huvanandana
et al. (2019)

40 preterm infants (GA:
23.6–33.3 weeks)

Caffeine base (loading: 10 mg/kg) Intra-arterial blood
pressure monitor; ECG

• A loading dose of caffeine leads to mean
arterial pressure variability↑, pulse
pressure variability↑, HRV↓

Dix et al. (2018) 34 preterm infants (GA: 28.8 ±
2.1 weeks)

Caffeine base (loading: 10 mg/kg) Physiological parameter
monitor

• A loading dose of caffeine leads to HR↑
and MABP↑ over time, while RR and
SaO2 not changed

Dekker et al.
(2017)

13 preterm infants (GA:
26–28 weeks) vs. 10 preterm
infants (GA: 27–29 weeks)

Caffeine base (loading: 10 mg/kg) Pulse oximeter • A loading dose of caffeine leads to HR↑,
while RR and SpO2 not changed

Parikka et al.
(2015)

17 preterm infants (GA:
23.7–31.9 weeks)

Caffeine citrate (loading: 20 mg/kg) Pulse oximeter • A loading dose of caffeine leads to HR↑,
while RR not changed

Hassanein et al.
(2015)

20 preterm infants (GA: 31.70 ±
1.16 weeks)

Caffeine citrate (loading: 20 mg/kg) Continuous cardiovascular
and respiratory monitoring

• A loading dose of caffeine leads to HR↑,
MABP↑, SpO2↑

Ulanovsky et al.
(2014)

21 preterm infants (GA: 30.3 ±
2.5 weeks)

Caffeine citrate (loading: 15–20 mg/kg;
maintenance: 5–10 mg/kg/day)

Cardiac monitor • A loading dose of caffeine has no
significant effects on HRV

Supcun et al.
(2010)

51 preterm infants (GA:
24–33 weeks)

Caffeine base (loading: 10 mg/kg) Cardiac monitor • A loading dose of caffeine leads to
MABP↑, while HR and SaO2 not
changed

Soloveychik et al.
(2009)

43 preterm infants (GA: 27.62 ±
2.94 weeks)

Caffeine citrate (5, 10, 20 mg/kg) Continuous cardiovascular
monitoring

• A dose of caffeine leads to BP↑, HR↑

Hoecker et al.
(2006)

16 preterm infants (GA:
24–33 weeks)

Caffeine citrate (loading: 25 mg/kg/4 h;
maintenance: 10 mg/kg/day)

Continuous cardiovascular
and respiratory monitoring

• Two divided loading dose of caffeine
lead to HR↑, diastolic BP↑, while RR not
changed

von Poblotzki
et al. (2003)

16 preterm infants (GA:
24.0–29.5 weeks)

Theophylline (5 mg/kg) Continuous
cardiorespiratory
monitoring

• A dose of theophylline leads to HR↑,
while RR and SpO2 not changed

Hoecker et al.
(2002)

16 preterm infants (GA: 31 ±
1.2 weeks)

Caffeine base (loading: 25 mg/kg;
maintenance: 5 mg/kg/day)

Continuous
cardiorespiratory
monitoring

• A loading dose of caffeine has no
significant effects on BP and HR

Bauer et al. (2001) 18 preterm infants (GA:
28–33 weeks)

Caffeine citrate (loading: 10 mg/kg;
maintenance: 5 mg/kg/day)

Continuous
cardiorespiratory
monitoring

• The RR, HR, and SaO2 are not
significant changed at 48 h after
caffeine treatment

Dani et al. (2000) 20 preterm infants (GA: 30.4 ±
3.0 weeks)

Caffeine citrate (loading: 10 mg/kg;
maintenance: 2.5 mg/kg/day) vs.
aminophylline (loading: 5 mg/kg;
maintenance: 1.25 mg/kg/12 h)

Pulse oximeter;
Continuous
cardiorespiratory
monitoring

• The HR, MABP, and SaO2 are not
significant changed after caffeine or
aminophylline treatment for at least
3 days

Carnielli et al.
(2000)

18 preterm infants (GA: 32.7 ±
1.1 weeks)

Aminophylline (loading: 5 mg/kg;
maintenance: 1.25 mg/kg/12 h)

Continuous
cardiorespiratory
monitoring

• A loading dose of theophylline leads to
HR↑, RR↑

Govan et al.
(1995)

20 preterm infants (GA: 28.0 ±
2.0 weeks)

Aminophylline (loading: 6 mg/kg) Pulsed Doppler; Intra-
arterial blood pressure
monitor

• A loading dose of theophylline leads to
HR↑, while MABP not changed

Chang and Gray,
(1994)

10 preterm infants (GA:
27–32 weeks)

Aminophylline (loading: 7.5 mg/kg) Cardiorespiratory monitor • A loading dose of theophylline leads to
HR↑, while MABP not changed

Bucher et al.
(1994)

13 preterm infants (GA:
26–34 weeks)

Aminophylline (loading: 6 mg/kg) Pulse oximeter; ECG • A loading dose of theophylline leads to
HR↑, while SaO2 not changed

McDonnell et al.
(1992)

10 preterm infants (GA:
23–31 weeks)

Aminophylline (loading: 6.2 mg/kg) Pulse oximeter; Intra-
arterial blood pressure
monitor

• A loading dose of theophylline leads to
HR↑, while MABP not changed

(Continued on following page)
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1978; Curzi-Dascalova et al., 2002; Chardon et al., 2004; Seppä-

Moilanen et al., 2021).

However, some other studies observed significant effects of

caffeine on the sleep-wake rhythms, although these effects were

not entirely consistent (Dietrich et al., 1978; Thoman et al., 1985;

Hayes et al., 2007; Hassanein et al., 2015; Koch et al., 2020). For

example, Koch et al. (2020), found that the AS decreased while

the wakefulness increased but QS unchanged as caffeine

concentrations and the PNA increased over the first 5 days of

life in preterm infants more than 28 weeks of GA, but no clear

effects on the sleep-wake states were found in preterm infants less

than 28 weeks of GA, and no such PNA effects were found in no-

caffeine cohort. Hassanein et al. (2015) also detected significant

decreases in the AS, QS, and drowsiness, while increases in the

quite alert, active alert, and crying in preterm infants half an hour

after caffeine administration. Similar methylxanthine-induced

changes in the AS and wakefulness states were also observed in

studies conducted by Hayes et al. (2007) and by Thoman et al.

(1985). However, Dietrich et al. (1978) found the AS and

wakefulness increased while the QS and IS decreased during

theophylline therapy.

In addition, Lee et al. (2010) discovered that the appearance

of sleep-wake cycling was associated with the aminophylline use

and more prominent. However, in the prospective follow-up

study of the CAP trial (Marcus et al., 2014), no significant

differences in sleep states were found in preterm infants aged

5–12 years who had been treated with caffeine after birth

compared with the placebo group, which possibly due to the

apparent discrepancy in total recording and sleep time between

the two groups.

This is also true for some animal studies. Denenberg et al.

(1982) found that theophylline reduced the AS, while increased

wakefulness, delayed the development of QS, and affected the

intermediate states of sleep-wake and AS-QS transitions in

newborn rabbits. Montandon et al. (2009) also discovered that

the sleep time was reduced, sleep onset latency was increased, and

non-REM sleep was fragmented in adult rats treated with caffeine

compared to controls during the neonatal period.

Due to the heterogeneous designs and inconsistent results of

the above studies, it is difficult to draw clear conclusions.

Nonetheless, it can be summarized that caffeine affects the

sleep patterns in preterm infants, especially the AS and

wakefulness, and the effects might persist into the childhood

and even the adulthood. If this hypothesis holds true, then the

inhibition of adenosine receptors by caffeine would exactly

explain the altered sleep-wake states in preterm infants, as the

association between caffeine, adenosine, and sleep has been well

documented in adults (Huang et al., 2011; Porkka-Heiskanen and

Kalinchuk, 2011; Huang et al., 2014a; Urry and Landolt, 2015;

Reichert et al., 2022). In addition, the alteration of sleep-wake

patterns might be partially responsible for the caffeine-induced

increase in cerebral cortical activity (Supcun et al., 2010;

Hassanein et al., 2015) and decrease in apneic episodes

(Dietrich et al., 1978; Montandon et al., 2009; Seppä-Moilanen

et al., 2019; Seppä-Moilanen et al., 2021).

7.2 The effects on cardiorespiratory
rhythms

Current studies have confirmed that caffeine acts both

peripherally and centrally to stimulate respiration mainly via

inhibiting the adenosine A1 and A2A receptors (Abdel-Hady

et al., 2015; Eichenwald et al., 2016; Dobson and Hunt, 2018).

Caffeine activates the medullary respiratory center, improves

sensitivity to carbon dioxide, increases respiratory muscle

strength, enhances diaphragmatic contractility, and induces

bronchodilation (Kassim et al., 2009; Parikka et al., 2015;

Dekker et al., 2017; Sanchez-Solis et al., 2020; Williams et al.,

2020), which synergistically cause the increased minute

ventilation and oxygen consumption, while cause the

decreased apnea, periodic breathing, and intermittent hypoxia

TABLE 6 (Continued) Studies about the effects of methylxanthine on cardiorespiratory rhythms in preterm infants.

Studies Subjects Treatments Methods of
evaluation

Main findings

Pryds and
Schneider, (1991)

16 preterm infants (GA:
25–34 weeks)

Aminophylline (loading: 10 mg/kg) Intra-arterial blood
pressure monitor

• A loading dose of theophylline has no
significant effects on MABP

Walther et al.
(1990)

10 preterm infants (GA: 29.6 ±
3.0 weeks)

Caffeine citrate (loading: 20 mg/kg;
maintenance: 5 mg/kg/day)

ECG; Oscillometry • Caffeine leads to MABP↑ during first
3 days treatment, while HR not
changed

Saliba et al. (1989) 7 preterm infants (GA: 31.3 ±
2.0 weeks)

Caffeine citrate (20 mg/kg) or saline ECG; Oscillometry • A loading dose of caffeine leads to HR↑,
while MABP not changed

Walther et al.
(1986)

10 preterm infants (GA: 30.7 ±
0.8 weeks)

Aminophylline (loading: 6.8 mg/kg;
maintenance: 2 mg/kg/8 h)

Pulsed Doppler;
Echocardiography

• Theophylline leads to HR↑ during first
7 days treatment, while MABP not
changed

Abbreviations: BP, blood pressure; bpm, beats per minute; ECG, electrocardiography; EMG, electromyography; GA, gestational age; HR, heart rate; HRV, heart rate variability; MABP,

mean arterial blood pressure; PMA, postmenstrual age; PR, pulse rate; RR, respiratory rate; SaO2, arterial oxygen saturation; SpO2, pulse oximeter oxygen saturation.
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(Seppä-Moilanen et al., 2021; Seppä-Moilanen et al., 2019;

Dobson et al., 2017; Rhein et al., 2014; von Poblotzki et al.,

2003; Bauer et al., 2001; Carnielli et al., 2000).

In addition, caffeine or theophylline therapy increases the

cardiac output, stroke volume, and metabolic rate (Walther et al.,

1986; Walther et al., 1990; Carnielli et al., 2000; Bauer et al., 2001;

Soloveychik et al., 2009; Shivakumar et al., 2019), but decreases

blood flow velocities in cerebral and intestinal arteries (Pryds and

Schneider, 1991; McDonnell et al., 1992; Bucher et al., 1994;

Chang and Gray, 1994; Govan et al., 1995; Lundstrøm et al., 1995;

Lane et al., 1999; Hoecker et al., 2002; Hoecker et al., 2006; Dix

et al., 2018; Hwang et al., 2018; Abdel Wahed et al., 2019) for

preterm infants, which appeared to be related to the enhanced

endothelial function through antagonism of adenosine receptors,

inhibition of phosphodiesterase, and through promotion of

intracellular calcium concentrations (Higashi, 2019). Although

the clinical significance remains unclear, this reduced perfusion

activity was a reminder that caffeine might have adverse effects

on the developing brain and gastrointestinal tract (McDonnell

et al., 1992; Lane et al., 1999; Hoecker et al., 2002; Hoecker et al.,

2006; Atik et al., 2017; Abdel Wahed et al., 2019).

Unlike the cardiopulmonary system, the effects of caffeine on

the cardiorespiratory rhythms in preterm infants have not been

specifically studied. Nonetheless, the effects of caffeine on the

heart rate, respiratory rate, blood pressure, and oxygen saturation

have been examined. As summarized in Table 6, some studies

found that a loading of caffeine or theophylline increases the

heart rate (Hassanein et al., 2015; Dekker et al., 2017; Parikka

et al., 2015; von Poblotzki et al., 2003; Carnielli et al., 2000;

Soloveychik et al., 2009; Dix et al., 2018; Govan et al., 1995; Chang

and Gray, 1994; Bucher et al., 1994; McDonnell et al., 1992; Saliba

et al., 1989), blood pressure (Soloveychik et al., 2009; Supcun

et al., 2010; Hassanein et al., 2015; Dix et al., 2018; Huvanandana

et al., 2019), respiratory rate (Williams et al., 2020), and oxygen

saturation (Hassanein et al., 2015), which were in line with those

studies with multiple caffeine dosing (Walther et al., 1986;

Walther et al., 1990; Hoecker et al., 2006; Shivakumar et al.,

2019). Those findings reflected the complex effects, directly or

indirectly like the enhanced autonomic nervous system

responsiveness (Huvanandana et al., 2019), of caffeine on the

cardiopulmonary system. However, several other studies did not

find similar effects (Pryds and Schneider, 1991; Dani et al., 2000;

Bauer et al., 2001; Hoecker et al., 2002; Ulanovsky et al., 2014).

Unfortunately, no research has touched this area yet in

premature infants until now. It is worth mentioning that

neonatal caffeine treatment upregulates adenosine receptors in

cardiorespiratory related nuclei of the rat brain (Gaytan et al.,

2006; Gaytan and Pasaro, 2012), and this effect persists into the

adulthood (Bairam et al., 2009), which underscores the urgent to

study the potential long-term effects of caffeine on the

cardiorespiratory system in preterm infants (Montandon et al.,

2008). In view of the complex and profound effects of caffeine in

this field, systematic and in-depth research is still necessary.

7.3 The effects on other rhythms

Two studies recorded the body temperature of preterm

infants and incubator temperature during short-term caffeine

administration. Chardon et al. (2004) found that caffeine has no

significant effect on the skin temperature and incubator

temperature. However, Bauer et al. (2001) observed that a

lower incubator temperature was sufficient to maintain a

normal body temperature for preterm infants after caffeine

treatment, which might be related to the increased

metabolism caused by methylxanthines (Bucher et al., 1994;

Carnielli et al., 2000; Bauer et al., 2001). However, the effects

of caffeine on circadian body temperature rhythms have not been

extensively studied. Similarly, although caffeine has been shown

to affect melatonin (Wright et al., 1997;Wright et al., 2000; Burke

et al., 2015) and cortisol (Lovallo et al., 2005; Rieth et al., 2016)

rhythms in adults, these effects in premature infants still need to

be addressed.

Collectively, the relevant research on the circadian rhythms

in premature infants receiving caffeine therapy is still scarce.

Although existing studies have suggested the possible effects of

caffeine on the circadian rhythms, heterogeneity in study designs

and inconsistency in conclusions weaken the power of those

evidence. More research is needed in the future to confirm the

effects of caffeine and the underlying mechanisms. The story

should not end here.

8 Circadian-based caffeine
therapeutic strategies for AOP: New
possibility opens up

It is estimated that more than 15 million neonates are born

preterm globally each year, and the preterm birth appears to be

increasing in most countries (Vogel et al., 2018; Walani, 2020;

Deng et al., 2021). Premature babies may have various problems

like AOP. Unfortunately, the tough challenges are always there

for the current AOP therapy, such as significant interindividual

variability in the response to caffeine (Saroha and Patel, 2020; He

et al., 2021). Intriguingly, one most recent study revealed that the

Clock gene polymorphisms were significantly associated with the

response to caffeine therapy in preterm infants (Guo et al., 2022).

Although the molecular action mechanism through which there

is a better response is unknown, these results show that the

circadian rhythms might play a critical role in response to the

therapy. In this way, a new possibility opens up in this area of

research (Figure 4), and we tentatively propose three initiatives.

8.1 Considering the circadian changes

As discussed above, the efficacy of caffeine appeared to

interact with the circadian rhythms in premature infants.

Frontiers in Pharmacology frontiersin.org23

Dai et al. 10.3389/fphar.2022.1053210

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1053210


Studies have demonstrated the significant effects and underlying

mechanisms of caffeine in adults and in animals (Landolt, 2015),

but it remains unclear whether the similar mechanisms also exist

in those preterm infants. The effects of caffeine on the circadian

rhythms, especially the sleep-wake rhythms, are advised to be

considered into the strategy of the caffeine therapy (Figure 4).

In addition, studies have revealed that several circadian-

related problems like sleep, breathing, and blood pressure in

premature infants may persist into childhood and even

adulthood (Weisman et al., 2011; Huang et al., 2014b; Sipola-

Leppanen et al., 2015; Caravale et al., 2017; Durankus et al.,

2020). Based on the existing evidence, it is feasible to propose that

caffeine’s effects on circadian rhythms may ameliorate those

problems and promote the maturation of circadian rhythms in

preterm infants to the level of normal term infants.

8.2 Considering the chronopharmacology

The concept of chronopharmacology holds that the ADME

processes and the sensitivity of a biological target to a drug are

determined by the endogenous biological circadian oscillations

(Ohdo et al., 2019; Bicker et al., 2020; Dong et al., 2020; Dobrek,

2021). Variable efficacy and safety profiles would be exhibited for

many drugs if they are administered at different times of the day

(Dallmann et al., 2016; Cederroth et al., 2019; Nahmias and

Androulakis, 2021). For preterm infants, interestingly, several

circadian-related gene polymorphisms were found to be

significantly associated with the response to caffeine therapy

for AOP (Guo et al., 2022). It remains unclear whether caffeine

administrated at different times of the day would cause changes

in the ADME processes and the therapeutic effects, but it really

opens a possibility to applicate the chronopharmacology in

the NICU.

Although less research is currently available, there are rare

but thought-provoking reports that arouse our strong interests

(Smolensky et al., 1987; Pelissier-Alicot et al., 2002), which will

lead us into a wonderland in the future. For examples, Pelissier-

Alicot et al. (2002) found that the pharmacokinetic profiles of

caffeine in rats, such as the clearance, volume of distribution, and

area under the plasma concentration-time curve (AUC),

depended strongly on the time of day of administration, while

the daily rhythmicity of heart rate, body temperature, and

locomotor activity in rats also changed with the dosing time

of caffeine. Similarly, Smolensky et al. (1987) demonstrated that

the pharmacokinetic profiles and therapeutic effects of

theophylline in asthmatic children varied with the dosing

time. These findings attract us that the circadian rhythms

might play a critical role in the ADME processes as well as

the efficacy and safety of caffeine therapy in preterm infants.

Currently, caffeine is now commonly administered once

daily in preterm infants (Long et al., 2021). The question is

whether we are willing to make positive attempts to tailor the

dosing time according to the principles of chronopharmacology.

If the significant association between circadian-related gene

polymorphisms and response to caffeine therapy in preterm

infants (Guo et al., 2022) were true and phenotypically

manifested, then the administration at different time points of

the day is more likely to witness those potentially altered

pharmacokinetics of and clinical response to caffeine.

Maintaining normal circadian rhythms are necessary to stay

health. Essentially, caffeine interferes with these rhythms to a

FIGURE 4
The circadian-based therapeutic strategies of caffeine in preterm infants with apnea of prematurity. ADME, absorption, distribution,
metabolism, and excretion.

Frontiers in Pharmacology frontiersin.org24

Dai et al. 10.3389/fphar.2022.1053210

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1053210


certain extent, and its arousal effects are very important for the

AOPmanagement among various pharmacological mechanisms.

Therefore, whether to apply caffeine in accordance with the

circadian rhythms to maintain the stabilities of these rhythms

as much as possible, or to subtly counteract these rhythms to

amplify its arousal effect and achieve a better therapeutic effect,

all these aspects deserve our in-depth consideration (Figure 4).

8.3 Considering the other external stimuli

If the homeostasis of circadian rhythms were necessary for

health, then correcting the possible adverse effects due to preterm

birth is a matter that needs to be taken seriously in the NICU,

including the effects on the treatment drugs being used. As

discussed above, several external stimuli or known as

zeitgebers, such as light, sound, temperature, nursing, and

parental care, etc., play important roles in the maturation of

circadian rhythms. Cycled light (Abraham et al., 2006; Ohta et al.,

2006; Bode et al., 2011), music therapy (Arnon et al., 2006; Loewy

et al., 2013), appropriate incubator temperature (Tourneux et al.,

2008), comfortable nursing (Collins et al., 2015; Lan et al., 2018),

and even the adequate parental care (Löhr and Siegmund, 1999;

Nishihara et al., 2002; Park et al., 2020) are helpful for the

development and maturation of the circadian rhythms in

neonates.

Therefore, the beneficial effects of those external stimuli on

the circadian rhythms for premature infants cannot be ignored in

the NICU, taking the application of caffeine to manage the AOP

for example (Figure 4). Coordinating all treatment strategies with

the principles of circadian rhythms will be a constructive attempt

to improve the disease management and care for premature

infants. Assuredly, we have to admit that only rare evidence is

available currently, and the realization of the therapeutic

strategies cannot be achieved overnight. However, any kind of

discussions, attempts, and efforts in this field should well be

encouraged in the future.

9 Conclusion

Due to the tough challenges and potential role of circadian

rhythms in the response to current caffeine therapy for the AOP

management, a comprehensive review was conducted here.

Studies have revealed that the human circadian system begins

to form in early pregnancy, receives the maternal circadian

signals through the placenta before birth, and progressively

matures under the influence of the external cues and the

mother after birth. Preterm infants experience the ultradian or

irregular rhythms during the early postnatal life, which are

progressively developed into circadian rhythms as the

maturation of neurodevelopment. Caffeine alters the circadian

rhythms in humans and animals, and its promising role in

preterm infants has also been revealed. The proposed novel

circadian-based therapeutic strategies could open new

possibilities in the clinical practice to promote the precision

caffeine therapy. Arguably, as studies going on, it is believed that

in the near future, these initiatives will remain powerful

approaches to enhance our biological understanding of the

relationship between preterm infants, circadian rhythms, and

caffeine therapy.
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