
Advances in ovarian cancer
treatment using a combination of
statins with other drugs

Lei Xia1†, Shichao Ding2†, Xuezhen Wang3, Xiaoyu Zhang3,
Lin Zhu3, Hairong Zhang4* and Huirong Li4*
1Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China,
2Department of Internal Medicine, The Third Affiliated Hospital of Shandong First Medical University,
Jinan, China, 3School of Chinese Medicine, Shandong University of Traditional Chinese Medicine,
Jinan, China, 4Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan,
China

New anti-cancer drugs are constantly being developed, especially targeted drugs.

Although these drugs have achieved significant clinical efficacy, they do not play a

significant role in ovarian cancer. Moreover, the research cycle and costs of such

drugs are often huge. The repositioning of conventional drugs has gradually

become a concern. Statins, as traditional lipid-lowering drugs, play a role mainly

by inhibiting HMGCR. In recent years, epidemiological studies and in vitro

experiments have confirmed its anti-cancer effect, especially the effect of anti-

ovarian cancer. Themutation rate of TP53 in ovarian cancer is as high as 95%, while

HMGCR is often highly expressed in TP53 mutant tumors. However, the effect of

prospective clinical trials is not ideal. This result seems understandable considering

that it seems unrealistic for a lipid-lowering drug to completely inhibit tumor

growth. Therefore, statins play more synergistic roles in the treatment of ovarian

cancer. Because ovarian cancer is a highly heterogeneous tumor, it may be a good

choice to deeply understand the mechanism of statins in the treatment of ovarian

cancer and achieve precise treatment by combining it with other drugs.
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1 Introduction

Ovarian cancer is a common malignant tumor reported in women and is also one of

the gynecological tumors with the highest mortality rate. There are 239,000 new cases of

ovarian cancer and 152,000 deaths of ovarian cancer every year in the world (GBD

2019 Stroke Collaborators, 2021). The incidence rate of Ovarian cancer in 2035 is
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estimated to be 371,000 (an increase of 55%), and the number of

deaths is estimated to be 254,000 (an increase of 67%). Most

ovarian cancers are diagnosed at stage Ⅲ and Ⅳ (Torre et al.,

2018), when 5-year survival is less than 30% (Torre et al., 2018;

Peres et al., 2019). Although routine treatment has demonstrated

therapeutic outcomes, 70% of patients with ovarian cancer

relapse and develop chemoresistance, and have a shorter

survival time. New targeted drugs have been widely used in

the treatment of tumors, but the effect is not ideal in the

treatment of ovarian cancer, especially relapsed and drug-

resistant ovarian cancer. It is therefore critical to identify

novel drugs for patients who are dissatisfied with the clinical

treatment effects. Due to the long development cycle and the high

cost of new drugs, the repositioning of traditional drugs has

gradually attracted people’s attention. Drug repositioning refers

to the method of determining new target molecules and disease

indications for approved drugs (National Academy of Sciences,

1975). When compared with traditional new drug research and

development, it has a lower cost and shorter cycle.

Statins—hyperlipidemia drugs (Schachter, 2005)—have

recently been discovered to have anti-cancer properties

manifested through the inhibition of the cell cycle, anti-tumor

proliferation (Kobayashi et al., 2015), induction of apoptosis and

autophagy (Kobayashi et al., 2015; Hutchinson and Marignol,

2017), and increasing the chemotherapy sensitivity of tumors

(Hutchinson and Marignol, 2017). Particularly, it plays an

important role in anti-ovarian cancer. Some people believe

that this is closely related to the characteristics of ovarian

cancer and the target of statins. The main target of statins is

HMGCR. The expression of HMGCR in TP53 mutant cells is

generally increased, while the proportion of TP53 mutations in

ovarian cancer cells is as high as 95%.

Several epidemiological studies and in vitro testing have

also demonstrated that statins have anti-ovarian cancer effects

(Liu et al., 2009; Xie et al., 2017; Li and ZHOU, 2018). For

example, some studies (Xie et al., 2017; Urpilainen et al., 2018)

have reported that the overall survival rate of patients taking

statins is significantly higher than that of patients not taking

statins. Even after the diagnosis of ovarian cancer, the overall

survival rate of patients taking statins was significantly higher

(Li and Zhou, 2018; Harding et al., 2019; Kim et al., 2022).

However, some data showed the opposite results. For instance,

some studies reported that statins can reduce the recurrence

rate of ovarian cancer, but have no impact on the overall

survival rate (Lavie et al., 2013; Bar et al., 2016; Chen et al.,

2016). On the other hand, some studies believe that the use of

statins can prevent the occurrence of ovarian cancer (Lavie

et al., 2013; Zhang et al., 2019), while others believe that the

use of statins cannot prevent the occurrence of ovarian cancer

(Baandrup, 2015). Moreover, some studies found that the use

of statins did not have a different effect on different ovarian

cancer subtypes (Couttenier et al., 2017), but other studies

showed that statins have a more obvious therapeutic effect on

non-serous papillary epithelial cell ovarian cancer subtypes. It

has been suggested that it may be related to the type of statin,

lipophile and hydrophilic statins may have different effects on

ovarian cancer (Jiao et al., 2020), and lipophile statins are

more effective in reducing tumor progression because they

have less liver selectivity than hydrophilic statins (Kato et al.,

2010; Majidi et al., 2021).

In addition, the prospective clinical trials using statins to treat

ovarian cancer have mostly been unsatisfactory (Altwairgi, 2015).

The reason may be related to the type of ovarian cancer and the

dosage of statins. On one hand, ovarian cancer exhibits high

heterogeneity, the histological classification of ovarian cancer is

complex with over 100 types having been identified (Granström

et al., 2008). Ovarian cancer treatment pathways are targeted at

the type and depend on histopathological diagnosis. Ovarian

cancer can be divided into epithelial, sex cord-stromal, and germ-

cell tumor types. Among these, epithelial ovarian cancer is the

most common one and can be further categorized into serous,

mucinous, endometrioid, and clear cell cancers according to their

cell types. In addition, ovarian cancer can be low-grade or high-

grade, based on the degree of malignancy. The biological

characteristics of the two types of tumors are extremely

different as are their genetic backgrounds. The common

mutations in HGSOC were TP53 (96%), BRCA1/2 (23%) and

HRD (homologous recombination defect) mutation (50%); The

commonmutations in clear cell carcinoma are PIK3CA, ARD1A,

PTEN and microsatellite instability (MSI); Common mutations

in endometrioid carcinoma are CTNNB1, ARID1A, PTEN, MSI;

The common mutations in mucinous carcinoma are KRAS,

HER2 and CDKN2A mutations; In LGSOC, mutations such

as BRAF, KRAS, NRAS, ERBB2 and PIK3CA are more

common (Schachter, 2005).

The anti-tumor effect of statins is not limited to HMGCR

inhibition, but it has different anti-tumor effects against different

tumors. On the other hand, in several studies, the drug dosage is

often utilized for hypercholesterolemia treatment, which may

have resulted in the plasma concentration of the drug being lower

than that necessary for inducing cell apoptosis in vitro tests

(Robinson et al., 2013). However, large-dose statins may cause

myalgia and other adverse effects.

It is undeniable that, although some studies have shown that

there is no difference in the survival time between the simple use

of statins and the simple use of chemotherapy drugs,

epidemiological investigations often combine statins on the

basis of conventional treatment. Therefore, the anti-tumor

effect of statins is mainly reflected by the combination with

other therapies, or it mainly plays an auxiliary role. Therefore, it

is important to better understand its anti-ovarian cancer

mechanism and the synergistic role with other drugs, which

has a significant role in improving the overall clinical efficacy and

reducing adverse drug reactions.

This study examined research on the mechanism of statin

treatment of ovarian cancer and how the therapeutic effects can
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be improved through drug combinations. This study aimed to

obtain ideas for application in future fundamental research and

clinical treatment (Table 1).

2 Treatment by inhibiting the
mevalonic acid (MVA) pathway

Statins’ anti-tumor effect mainly blocks theMVA pathway by

inhibiting HMGCR. HMGCR is considered a metabolic

oncogene that promotes tumor growth and development

(Clendening et al., 2010). HMGCR is commonly seen in

TP53-mutated tumor cells, and the TP53 mutation rate in

ovarian cancer cells is as high as 95% (Freed-Pastor and

Prives, 2016). De Wolf et al. investigated 12 ovarian tumor

cell lines and found that HMGCR was upregulated in ovarian

tumor cells when compared to that in normal ovarian surface

epithelial cells (De Wolf et al., 2017). Combining HMGCR with

other MVA pathway antagonists may achieve a sound synergistic

anti-ovarian cancer effect (Figure 1).

2.1 Synergistic blocking of protein
isoprenylation by statins andMVApathway
inhibitor

FPP, GGPP, and cholesterol are intermediate and end-

products of the MVA pathway. FPP and GGPP, for example,

can provide isopentenyl groups, thereby allowing isoprenylation

of multiple small GTPase binding proteins and anchoring them

to the cell membrane (e.g., Ras and Rho). Membrane localization

is, therefore, necessary for these proteins to function, and several

oncogenes interfering with the isoprenylation of these proteins

can have an anti-tumor effect (Mctaggart, 2006; Svensmark and

Brakebusch, 2019).

Ibandronate and zoledronic acid are FPP synthase inhibitors,

which limit the production of FPP and GGPP and thus inhibit

the isoprenylation of the relevant proteins (Kobayashi et al., 2015;

Pletcher et al., 2017). These drugs can inhibit various tumors

(Green, 2004), and the combination of statins with zoledronic

acid has synergistic inhibitory effects on the growth of ovarian

cancer cells (Abdullah et al., 2017).

TABLE 1 Synergistic effect of statins with other drugs in the treatment of ovarian cancer.

Drugs Cell models Potential References

The mechanism

1 Zoledronic acid +
fluvastatin

22 pre-treated ovarian carcinomas Activates the tricarboxylic acid cycle,
autophagy

Robinson et al. (2013)

2 Fluvastatin + cisplatin CAOV3 SKOV3 Induction of apoptosis Mctaggart (2006)

Inhibition of GGT

Inhibition of Ras, Rho, Rab

3 Lovastatin + doxorubicin A2780ADR Inhibiting P-glycoprotein. De Wolf et al. (2017)

4 Oxysterols + statins SKOV-3 Inhibition of SREBPs Lipper et al. (2019)

OVCAR-8

5 Carboplatin + simvastatin A2780, Ovcar-5, Ovcar-8 Igrov-1 Unclear Liu et al. (2009)

6 Paclitaxel + simvastatin A2780, Ovcar-5, Ovcar-8 Igrov-1 Unclear Liu et al. (2009)

7 Paclitaxel + simvastatin ES2 Inhibition of VDCA1 binding to tubulin Abdullah et al. (2019), Kobayashi et al.
(2022)

8 Panobinostat +
simvastatin

ES2 Inhibition of HDAC Kobayashi et al. (2022)

9 Prednisolone +
pitavastatin

Ovsaho, Cov-318, Cov-362, Ovcar-3,
Ovcar-4

Inhibition of MVA pathway; Svensmark and Brakebusch (2019)

HMGCR and FDPS were reduced

10 ABT-737 + pitavastatin Igrov-1 PARP cleavage Jeon and Osborne (2012)

Bcl-xL was reduced

11 Pictilisib + pitavastatin OVCAR3 Inhibiting NF-κB Jeon and Osborne (2012)

PTEN modulation

12 Atorvastatin + JQ1 Hey, SKOV3 Inhibiting c-Myc Jones et al. (2017)
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TABLE 2 Summary of the evidence regarding impact of statin therapy on risk and survival of ovarian cancer.

Type of
study

Size of population Primary outcome
variable

Conclusion References

Retrospective
cohort

8,629 Risk of ovarian cancer Improved survival among use statin after diagnosis, especially in
endometrioid cancer and those who use statin for long.

Feng et al. (2021)

Case control
study

Cases, 4,103; matched
controls, 58,706

Risk of epithelial ovarian cancer Decreased risk seen in mucinous ovarian cancer. No association
with epithelial subtype

Baandrup et al.
(2015)

Retrospective
cohort

442 Progression-free survival and
disease-specific survival

Improved survival among statin users was not seen except in
non-serous papillary epithelial ovarian cancer

Habis et al.
(2014)

Case control
study

Cases, 12; matched
controls, 126

Risk of ovarian cancer and
survival

Decreased risk along with improved survival was reported Lavie et al. (2013)

Retrospective
cohort

73,336 Risk of ovarian cancer Non-significant decrease in ovarian cancer risk was found Yu et al. (2009)

Retrospective
cohort

126 Progression-free survival and
overall survival

Improved survival was seen in statin users Elmore et al.
(2008)

Retrospective
cohort

361,859 Risk of ovarian cancer No association was found Friedman et al.
(2008)

Case control
study

Cases, 91; controls, 7,393 Risk of ovarian cancer Statins have no substantial effect on ovarian cancer risk Abdullah et al.
(2019)

Retrospective
cohort

997 Risk of ovarian cancer No difference in frequency of cancer between statin users/non-
users was reported

Clearfield et al.
(2001)

Retrospective
cohort

421 Mortality rate of ovarian cancer Pre-diagnostic use of statins was observed to be associated with
decreased mortality

Urpilainen et al.
(2018)

FIGURE 1
MVA pathway and the related inhibitors.
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Other targets in the isoprenylation pathway have also been

investigated to identify their effects on ovarian cancer. The

cumulative results demonstrated that lonafarnib (farnesyl transferase

inhibitor) and GGTI-298 (geranylgeranyl transferase inhibitor) can

inhibit the proliferation of SKOV3 and OVCAR5 cells by inhibiting

isoprenylation. By inhibiting the MVA pathway, 6-fluoromevalonate

(mevalonate pyrophosphate decarboxylasyrophose inhibitor) andYM-

53601 (squalene synthase inhibitor) could inhibit tumor cells.

However, a higher dosage of 6-fluoromevalonate and YM-53601 is

warranted (Kobayashi et al., 2017). By inhibiting the MVA pathway,

drugs can induce cell autophagy. Nevertheless, whether these drugs

and statins have a synergistic anti-ovarian cancer effect needs further

verification (Figure 1).

2.2 Combination of statins and cisplatin
blocks the small GTPase signaling
pathway

Among the diverse isoprenylated proteins, the small GTPase

superfamily, which comprises Ras, Rho, and Rab, has attracted

significant attention. In addition, it has been demonstrated that

lovastatin and simvastatin can inhibit the proliferation of ovarian

cancer cells, induce apoptosis, and cause cell-cycle arrest (Kato et al.,

2010; Martirosyan et al., 2010), which is closely related to the

inhibition of Ras, Rho, and Rab (Taylor-Harding et al., 2010).

Meanwhile, it was found that fluvastatin and cisplatin possess

synergistic cytotoxicity (Taylor-Harding et al., 2010). Accordingly,

a hypothesis was proposed that Rab1 protein regulated the cell

membrane transport and cell growth and that the detection of

unmodified Rab1 protein might lead to the synergistic effect of

fluvastatin and cisplatin combination therapy. Robinson et al. (2013)

reported that statins alone could reduce cell activity and proliferation

and increase cell apoptosis and autophagy. A superposition effect

was discovered when the experimental cells were exposed to statins

and carboplatin or paclitaxel, although the specific mechanism was

not explored in depth. Nevertheless, some scholars (Martirosyan

et al., 2010) claim that the combination of lovastatin and cisplatin

has synergistic effects only at high concentrations (Figure 2).

2.3 Combination of statins and prednisone
promotes apoptosis of ovarian cancer
cells

Previous studies (Abdullah et al., 2019) have demonstrated that

prednisolone has minimal influence on the caspase 3/7 activity in

ovarian cancer cells. However, pivastatin combined with

prednisolone significantly increased the caspase activation when

compared to that by pivastatin alone. Scholars have also investigated

the expression of MVA pathway-related genes as prednisolone

regulates gene expression by binding to glucocorticoid receptors.

They found that neither pitavastatin nor prednisolone alone had any

effect on HMGCR, GGTⅠ-β, IDI1, MVD, and FDPS levels, but they

could reduce the GGTⅡ-β expression. Pitavastatin with

prednisolone reduced the levels of GGTⅡ-β and resulted in

FIGURE 2
Effect of statins on small GTPase and its potential antitumor effects.
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significantly lower levels of HMGCR and FDPS. In addition, the

combination of prednisolone and pivastatin led to a significant

PARP accumulation relative to that of either drug individually

(Abdullah et al., 2019).

3 Inhibition of tumor growth by
metabolic reprogramming

Aerobic glycolysis is common in tumor cells. Aerobic

glycolysis can lead to increased acidic substances, inhibiting

immune cell function, and promoting tumor metastasis.

Acetyl CoA increased, whereas lactate decreased significantly

in statins-treated cells. It was also found through the analysis of

other metabolites that metabolites related to the tricarboxylic

acid cycle increased significantly and that their metabolic

characteristics were similar to those of normal cells (Figure 3).

3.1 Inhibition of tumor growth by VDAC1

VDAC1 was demonstrated to be a positively correlated gene

with statin response in ovarian cancer cells (Kobayashi et al., 2022).

VDAC1 encodes a 30-kDa channel protein found in the outer

mitochondrial membrane (Mannella and Bonner, 1975). VDAC

may transport substrates for energy metabolism from the cytoplasm

to the intermembrane zone and metabolites from the

intermembrane zone to the cytoplasm as it can non-selectively

penetrate substances with a molecular weight of about 6,000 Da.

Therefore, it is an essential protein for effective energymetabolism in

the mitochondria (Rostovtseva et al., 2006). By binding to

hexokinase, VDAC regulates glycolysis and interacts with

mitochondrial respiration (the rate-limiting enzyme of glycolysis)

(Pastorino et al., 2002; Mazure, 2017). VDAC1 expression is

upregulated in several human cancer cell lines when compared

to normal cell lines. VDAC1 is thus a potential therapeutic target for

cancer. In addition, statins have a regulating effect on VDAC1

(Baandrup, 2015; Lipper et al., 2019).

Paclitaxel and panopistat have synergistic anti-ovarian

cancer effects (Kobayashi et al., 2022). Paclitaxel is an effective

anti-tumor drug that can stoichiometrically and specifically bind

to the β-tubulin subunit in tubulin. The VDAC 1 expression may

be involved in the synergistic effect of statins and paclitaxel.

Tubulin can regulate VDAC via a functional interaction between

dimer tubulin and VDAC1 (Rostovtseva et al., 2008). Tubulin

and VDAC interact at the C-terminal tail of tubulin, which then

penetrates the lumen of the VDAC barrel and functions as a plug.

Because of the length of the C-terminal tail, which is about the

length of the VDAC pore, the C-terminal tail is negatively

charged and the VDAC-related domain is positively charged,

FIGURE 3
Other potential antitumor effects of statins.
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which contributes to tubulin and VDAC binding (Mazure, 2017).

Statins are one of the promising drugs for targeting VDAC;

hence, the synergistic antitumor effect of paclitaxel and statins

may be related to microtubules and VDAC binding (Reina And

De Pinto, 2017; Fang And Maldonado, 2018).

3.2 Cholesterol metabolism affected the
proliferation of ovarian cancer cells

Elevated cholesterol levels could decrease progression-free

survival in ovarian cancer patients (Li et al., 2010). Statins reduce

cholesterol synthesis by inhibiting the MVA pathway. Statins can

induce HMGCR increase through the sterol reaction in some statin-

resistant tumor cells, rather than in statin-sensitive cells. This type of

feedback depends on SREBPs (Jeon and Osborne, 2012). Oxysterol

inhibits SREBP activation by preventing protein processing and

nuclear transport. Indeed, statins-oxysterol combination treatment

could significantly enhance statin cytotoxicity in ovarian cancer cells

(Casella et al., 2014). This drug combination is effective against

statins-sensitive cells and has a synergistic effect on statin-resistant

cells. The mechanism may be related to the inhibition of SREBPs

activity, and, thus, a decrease in the intracellular cholesterol content.

LXRs bind to oxysterol and active LXRs can inhibit the growth of

ovarian cancer cells. Notably, 25HC was used in this study, and the

results showed that 25HC had no significant effect on promoting

apoptosis or proliferation in ovarian cancer cells (Casella et al.,

2014), despite past research suggesting that HC might promote

tumor growth. 27HC was tested in another study (He et al., 2019),

which could be metabolized by cholesterol through CYP27A1.

Moreover, 27HC has been shown to inhibit the growth of

ovarian cancer cells. Whether 27HC can cooperate with the anti-

tumor effect of statins warrants further verification. Moreover,

27HC may promote the metastasis of ovarian cancer cells, which

needs further consideration.

4 Other mechanisms

4.1 Induction of cell apoptosis by the PI3K/
AKT signal pathway

The PI3K/AKT signaling pathway promotes tumor cell

proliferation and anti-apoptosis and is overexpressed in 45% of

high-grade ovarian cancer (Cancer Genome Atlas Research

Network, 2011). Statins can inhibit PI3K activation by inhibiting

NF-κB, which promotes the expression of PTEN and reduces AKT

activation (Ghosh-Choudhury et al., 2010; Miraglia et al., 2012). The

investigation of OVCAR3, OVCAR8, A2780, and Igrov-1

constitutively activated by the PI3K/AKT signaling pathway

revealed that the combination of pictilisib and pivastatin had a

synergistic inhibitory effect on OVCAR3 but an antagonistic effect

on A2780 and Igrov (DeWolf et al., 2018). This observation may be

attributed to the low expression of PTEN in A2780 and Igrov cells,

which results in an inability to reduce AKT activation.

Simvastatin inhibited the PI3K/AKT pathway in SKOV3 and

HEY cells, increased the active oxygen level to cause DNA

damage, induced ER stress, and reduced the VEGF expression,

thus playing an anti-proliferation and metastasis role in ovarian

cancer (Stine et al., 2016). Moreover, after lovastatin

intervention, total glutathione, reduced glutathione, and

oxidized glutathione levels in the ovarian cancer cells were

significantly decreased (Kobayashi et al., 2017) (Figure 3).

4.2 Induction of cell apoptosis by the Bcl-2
superfamily

The Bcl-2 family includes pro-apoptotic proteins, anti-

apoptotic proteins, and pro-apoptotic proteins of BH-3-only.

Herein, the anti-apoptotic protein acted by binding with the pro-

apoptotic proteins or BH-3-only proteins. Past studies (De Wolf

et al., 2018) have demonstrated that pivastatin had no significant

effect on Bcl-2 alone, although it could promote the expression of

the pro-apoptotic protein Bim and decrease the expression of the

anti-apoptotic protein Bcl-XL. Moreover, Bcl-XL was highly

expressed in ovarian cancer (Lee et al., 2019).

ABT-737 is a BH3 mimetic inhibitor, and the combination of

pivastatin and ABT-737 significantly promoted ovarian cancer cell

death (De Wolf et al., 2018). Pivastatin may increase Bim and

decrease Bcl-xL, accelerating ABT-737, antagonizing Bcl-xL, and

inducing Bim release, which finally activated the cell-specific

apoptosis process. A relatively significant synergistic effect can be

found in Igrov cells, but none inA2780 cells, whichmay be due to the

low expression of Bcl-xL but a high expression of Mcl-1 in

A2780 cells. Furthermore, ABT-737 could inhibit Bcl-xL, Bcl-2,

and Bcl-w, but not Mcl-1, Bcl-B, or Bfl-1 (Witham et al., 2007)

(Figure 3). However, some studies have determined that simvastatin

could inhibit TNF-α-induced NF-κB activation, leading to the

downregulation of cyclin D1, Bcl-2, MMP9, and VEGF (Ahn

et al., 2007).

4.3 Anti-tumor chemoresistance
mediated by p-gp

ABCB1 encodes p-gp, and increasing its expression can

accelerate drug excretion, which is one of the critical

mechanisms of tumor chemoresistance (Waghray and Zhang,

2018). Past studies (Martirosyan et al., 2010) noted no significant

synergistic effect between statins and cisplatin or doxorubicin

and statins for chemotherapy-sensitive A2780 cells; however,

there was a significant synergistic effect between lovastatin and

adriamycin in chemo-resistant A2780ADR cells. Moreover,

adriamycin treatment increased the expression of p-gp in

A2780 cells, while statins could affect the inhibitory effect of
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the p-gp overexpression. Meanwhile, the adriamycin level of the

chemo-resistant cell strain rose. However, because the p-gp

expression was not considered in the cells, the combination of

statins and adriamycin demonstrated no significant synergistic

effect in treating A2780 cells. Therefore, the authors proposed

that statins had therapeutic effects on ovarian cancer via the

MVA pathway, could antagonize drug chemoresistance by

inhibiting p-glycoprotein and had synergistic effects with the

use of chemotherapeutic drugs (Figure 3).

4.4 Anti-tumor effect mediated by Myc

C-Myc is associated with both cell proliferation and the cell

cycle. Statins may induce cell growth arrest by inhibiting c-Myc. In

some studies, three statins were used to intervene in ovarian cancer

cells OVCAR8 and its multidrug chemo-resistant cell strain NCI-

ADR/RES. The results demonstrated that all three statins could

inhibit cell proliferation without causing cell apoptosis while also

arresting the G1 and S phases. Meanwhile, statins accelerated c-Myc

degradation and inhibited c-Myc protein synthesis, indicating that

statins interfere with c-Myc biosynthesis, which exists not only in

chemotherapy-sensitive ovarian cancer cells but also in multi-

chemo-resistant cells. JQ1 is a c-Myc inhibitor, and Jones et al.

found that JQ1 combined with Atorvastatin had a synergistic

inhibitory effect on c-Myc and a synergistic anti-ovarian cancer

effect (Jones et al., 2017).

Hence, we believe that statins can be clinically applied in

chemo-resistant tumor cells. However, after ceasing the

administration, the cell proliferation gradually recovered,

indicating the significance of statin action time in cancer

treatment (Rao and Rao, 2021) (Figure 3).

5 Discussion

Although several studies have demonstrated that statins play an

important role in the prevention and treatment of ovarian cancer,

most of these studies are retrospective in nature and often combined

with the use of statins on the basis of conventional treatment (Table

2). The results of ovarian cancer treated with statins alone are full of

contradictions (Robinson et al., 2013; Chen et al., 2016; Wang et al.,

2019), and some studies even believe that statins can promote the

occurrence of ovarian cancer (Desai et al., 2018). On the one hand,

this contradiction is related to the positioning of statins. It is difficult

to imagine that an anti-lipid drug can completely kill tumor cells.

Therefore, statins may need to be applied together with other drugs

to better play an anti-tumor role. On the other hand, it may also be

related to the high heterogeneity of ovarian cancer.

Some studies (Baandrup et al., 2015; Verdoodt et al., 2017;

Feng et al., 2021) believe that statins have obvious effects in the

treatment of endometrioid and mucinous carcinoma, but not in

serous or mucinous carcinoma. In serous ovarian cancer, statins

have a protective effect only after diagnosis (Hanley et al., 2021).

Therefore, the protective effect of statins may be limited to

certain specific subtypes, but, even for a certain subtype, the

biological characteristics of cancer cells are different.

At present, the sample size of the ongoing or completed

clinical trials is small. Although the sample size of the

retrospective trials can be relatively large, the data collected is

not precise enough. Therefore, the data collection of relevant

retrospective studies should be more detailed and targeted. For

example, not only the type of statin, the type of ovarian cancer,

but also the conventional treatment method should be

considered, and relevant clinical studies should look for

appropriate molecular markers on the basis of existing studies,

rather than simply relying on tissue type.

6 Conclusion and prospect

The anti-tumor effect of statins not only affects the MVA

pathway by inhibiting HMGCR, but also may affect cell

proliferation, apoptosis and drug resistance through metabolic

reprogramming, Bcl-2 family and other pathways. Moreover,

statins can exert synergistic anti-ovarian cancer effect by

combining with a variety of drugs. However, the current clinical

studies mainly focus on the combined use of statins and

chemotherapy drugs. Combination with other drugs is less

common. A thorough understanding of the working mechanism

of statins is expected to facilitate the achievement of “precision

treatment” by using them either alone or in combination, thereby

improving the overall clinical efficacy. Furthermore, suitable tumor

markers are essential and should be investigated in the future.
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