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Background: Anti-tuberculosis drug-induced liver injury (ATB-DILI) is an

adverse reaction with a high incidence and the greatest impact on

tuberculosis treatment. However, there is a lack of effective biomarkers for

the early prediction of ATB-DILI. Herein, this study uses UPLC‒MS/MS to reveal

the plasma metabolic profile and lipid profile of ATB-DILI patients before drug

administration and screen new biomarkers for predicting ATB-DILI.

Methods: A total of 60 TB patients were enrolled, and plasma was collected

before antituberculosis drug administration. The untargeted metabolomics and

lipidomics analyses were performed using UPLC‒MS/MS, and the high-

resolution mass spectrometer Q Exactive was used for data acquisition in

both positive and negative ion modes. The random forest package of R

software was used for data screening and model building.

Results: A total of 60 TB patients, including 30 ATB-DILI patients and 30 non-

ATB-DILI subjects, were enrolled. There were no significant differences

between the ATB-DILI and control groups in age, sex, smoking, drinking or

body mass index (p > 0.05). Twenty-two differential metabolites were selected.

According to KEGG pathway analysis, 9 significantly enriched metabolic

pathways were found, and both drug metabolism-other enzymes and niacin

and nicotinamidemetabolic pathways were found in both positive and negative

ion models. A total of 7 differential lipid molecules were identified between the

two groups. Ferroptosis and biosynthesis of unsaturated fatty acids were

involved in the occurrence of ATB-DILI. Random forest analysis showed that

the model built with the top 30 important variables had an area under the ROC

curve of 0.79 (0.65–0.93) for the training set and 0.79 (0.55–1.00) for the

validation set.

Conclusion: This study demonstrated that potential markers for the early

prediction of ATB-DILI can be found through plasma metabolomics and

lipidomics. The random forest model showed good clinical predictive value

for ATB-DILI.
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Introduction

Tuberculosis (TB), a global disease caused byMycobacterium

tuberculosis, was the disease with the highest number of deaths

from a single source of infection before the novel coronavirus

pneumonia (Coronavirus Disease 2019; COVID-19) pandemic.

According to the latest report of the World Health Organization

in 2021, there will be 9.9 million new cases of tuberculosis in the

world in 2020 (World Health Organization, 2021), a significant

decrease from the 10.4 million new cases in 2019 (World Health

Organization, 2020). Approximately 1.3 million human

immunodeficiency virus (HIV)-negative TB deaths and

214,000 HIV-positive TB deaths occurred in 2020 (World

Health Organization, 2021). Eighty-six percent of patients

were cured after taking first-line anti-tuberculosis regimens,

including isoniazid and rifampicin (World Health

Organization, 2020; World Health Organization, 2021).

However, this regimen often leads to various adverse drug

reactions in the course of treatment, such as gastrointestinal

reactions, drug-induced liver injury (DILI), hyperuricemia,

leukopenia, allergy, peripheral neuritis, etc. (Jindani et al.,

2004; Hu et al., 2018; Prasad et al., 2019; Shen et al., 2019;

Wu et al., 2019). Anti-tuberculosis drug-induced liver injury

(ATB-DILI) is an adverse reaction with a high incidence and the

greatest impact on tuberculosis treatment (Jindani et al., 2004;

Shen et al., 2019; Wu et al., 2019). This may lead to protocol

changes, treatment interruptions (Jindani et al., 2004), prolonged

treatment duration, and decreased treatment success rates

(Shang et al., 2011).

Recently, metabolomics has been widely used for the

identification of biomarkers in the pathophysiological

mechanisms of many scientific fields, such as plant biology

(Schauer and Fernie, 2006), toxicology (Clarke and Haselden,

2008) and disease diagnosis and prognosis (Brindle et al., 2002;

van Laarhoven et al., 2018; Bowerman et al., 2020; Crestani et al.,

2020). Ultrahigh-performance liquid chromatography-tandem

mass spectrometry (UPLC‒MS) is the most commonly used

and effective metabolomics research method (Yu et al., 2017). Xie

et al. (2019) found that 31 metabolites were associated with drug-

induced liver injury through metabolomic analysis and were

closely related to the severity of DILI and found that primary bile

acid biosynthesis and α-linolenic acid metabolism pathways were

altered in pathway analysis. A study showed that patients’ urine

metabolomes changed significantly after taking anti-tuberculosis

drugs (Cao et al., 2018). Significant changes in bile acid profiles

were observed in patients before and after the use of anti-TB

drugs (Liu et al., 2020). As a branch of metabolomics, lipidomics

can observe lipid changes under different physiological and

pathological conditions (Brown and Murphy, 2009). This

technology has been widely used in biomarker discovery and

mechanistic research related to cardiovascular diseases, diabetes,

malignant tumors, and other diseases (Patterson et al., 2011;

Pechlaner et al., 2016; Lin et al., 2018; Snaebjornsson et al., 2020;

Niu Z et al., 2021). Some studies have used lipidomic techniques

to analyze the lipid metabolism characteristics of patients with

drug-induced liver injury and found some potential lipid

biomarkers (Goda et al., 2017; Saito et al., 2020; Wu et al.,

2020; Niu B et al., 2021). Studies have also found that lipid

metabolism is involved in the occurrence of ATB-DILI, and lipid

changes may increase the risk of ATB-DILI (Liu et al., 2020; Pan

et al., 2020; Xu et al., 2020). Lipid peroxidation was observed in

animal models of ATB-DILI (Pan et al., 2020; Xu et al., 2020).

Hence, the current application of omics technology in the field of

ATB-DILI is very limited, there is a lack of clinical research, and

the relationship between omics changes and ATB-DILI needs

further research.

Recently, machine learning-based analysis techniques

have been widely used in the detection, diagnosis, and

prognosis of diseases. Using a random forest machine

learning model based on whole-exome sequencing profiles

of 156 patients, Bohannan et al. (2022) found that the error

rate in predicting relapse/death in high-risk pediatric B-cell

acute lymphoblastic leukemia patients in the test group was

only 12.47% and confirmed the model’s higher specificity in

an external validation set. The researchers established a

predictive model of cardiovascular disease through several

machine learning methods, including multiple regression

models, classification and regression trees, naive Bayes,

bagged trees, AdaBoost, and random forests, and found

that the random forest model significantly outperformed

several other methods (Yang et al., 2020). Lai et al. (2020)

compared the accuracy of artificial neural networks, support

vector machines, and random forest analysis techniques in

predicting the occurrence of ATB-DILI. The artificial neural

network containing clinical and genomic data showed the

best performance; the area under the receiver operating curve

characteristic curve was 0.894, while the area under the ROC

curve of the random forest model training set was 0.724 (Lai

et al., 2020). Therefore, we believe that machine learning

techniques based on clinical and omics data may be used to

construct effective clinical predictive models for predicting

ATB-DILI.

Therefore, this study employed UPLC‒MS/MS for

untargeted metabolomic and lipidomic analysis of plasma. To

reveal the plasma metabolic characteristics and lipid

characteristics of ATB-DILI patients before medication and to

obtain novel biomarkers for predicting ATB-DILI through omics

analysis. Furthermore, random forest models are used to identify

clinical features and omics data of interest, develop accurate

models for predicting ATB-DILI, and meaningfully explain the
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impact of candidate clinical features and biomarkers on the

occurrence of ATB-DILI.

Materials and methods

Study population and sample collection

This study was reviewed and approved by the Ethics

Committee of West China Hospital of Sichuan University.

All participants were conducted in accordance with the

principles of the Declaration of Helsinki. We collected

plasma from 60 patients (30 ATB-DILI patients and

30 sex- and age-matched non-ATB-DILI patients) before

antituberculosis drug administration. Patient demographic

and laboratory data were obtained through electronic

medical records and questionnaires. The diagnostic criteria

for ATB-DILI are as follows: alanine aminotransferase

(ALT) ≥ 3 normal upper limit of normal value (ULN) and/

or total bilirubin (TBil) ≥ 2 ULN; or aspartate

aminotransferase (AST) or alkaline phosphatase (ALP) and

TBil are elevated at the same time, and at least one of them

is ≥2 ULN (Shang et al., 2011; C.S.o.T.o.C.M. Association,

2019). For ATB-DILI patients, only the Roussel Uclaf

Causality Assessment Method score of 6 or more was

accepted in this study (Danan and Benichou, 1993;

Teschke and Danan, 2020). Blood samples were collected

in the morning before breakfast using EDTA Blood

Collection Tubes. Plasma samples were separated at

4000 rpm for 10 min at 4°C and stored at −80°C until use.

The inclusion criteria were as follows: 1) newly diagnosed

and untreated TB patients without any other metabolic

comorbidities; 2) older than 16 years of age who gave written

informed consent and provided blood samples; and 3) took

standard first-line anti-TB treatment regimens (including 2-

month HRZE intensive treatment) and at least 4 months of

HRE consolidation therapy and could be followed up regularly.

The exclusion criteria were as follows: 1) abnormal liver

function at baseline; 2) concomitant liver diseases (such as

alcoholic hepatitis, viral hepatitis or liver cirrhosis), diabetes,

autoimmune diseases, malignancies, HIV infection or severe

cardiac, pulmonary, and renal insufficiency; and 3) taking

immunosuppressive drugs, antitumor drugs, and

acetaminophen and other drugs that may cause liver damage.

Untargeted metabolomic profiling

Metabolite extraction was performed primarily according

to previously reported methods (Dunn et al., 2011). In brief,

100 µL samples were extracted by directly adding 300 µL of

precooled methanol. After vortexing for 1 min and

incubating at −20°C for 2 h, the samples were centrifuged

for 20 min at 4,000 rpm, and 300 μL of supernatant was

removed for drying. After adding 150 μL of reconstituted

solution and vortexing for 1 min, the samples were

centrifuged for 30 min at 4,000 rpm, and the supernatant

was transferred to autosampler vials for LC‒MS analysis. A

quality control (QC) sample was prepared by pooling 10 μL of

each sample to evaluate the reproducibility of the LC‒MS

analysis.

The untargeted metabolomics analysis was performed on

an Ultra Performance Liquid Chromatography (UPLC,

Waters, United States). Chromatographic separation was

performed on a BEH C18 column (100 mm × 2.1 mm,

1.7 µm, Waters, United States), and the column

temperature was maintained at 45°C. The UPLC system

was operated with a gradient elution program consisting of

water with 0.1% formic acid (A) and acetonitrile (B). The

gradient conditions were as follows: 0–1 min, 2% B; 1–9 min,

2%–98% B; 9–12 min, 98% B; 12–12.1 min, 98% B to 2% B;

and 12.1–15 min, 2% B. The flow rate was 0.35 ml/min, and

the injection volume was 5 μL.

The high-resolution mass spectrometer Q Exactive HF

(Thermo Fisher Scientific, United States) was used to collect

data from both positive and negative ions to improve metabolite

coverage. The mass spectrometric settings for positive/negative

ionization modes were as follows: spray voltage, 3.8/−3.2 kV;

sheath gas flow rate, 40 arbitrary units (arb); aux gas flow rate,

10 arb; aux gas heater temperature, 350°C; capillary temperature,

320°C. The full scan range was 70–1050 m/z with a resolution of

70000, and the automatic gain control (AGC) target for MS

acquisitions was set to 3e6 with a maximum ion injection time of

100 ms. The top 3 precursors were selected for subsequent MSMS

fragmentation with a maximum ion injection time of 50 ms and

resolution of 30,000, and the AGC was 1e5. The stepped

normalized collision energy was set to 20, 40, and 60 eV.

Untargeted lipidomic profiling

Lipidomics analysis was performed as previously described

with slight modifications to the previously reported protocol

(Ejsing et al., 2009; Yang et al., 2012). Then, 100 µL samples were

extracted by directly adding 300 µL of precooled isopropanol,

and 10 μL of SPLASH internal standard solution was added.

After vortexing for 1 min and incubating at −20°C for 2 h, the

samples were centrifuged for 20 min at 4,000 rpm, and the

supernatant was transferred to autosampler vials for LC‒MS

analysis. The QC sample was also prepared by mixing equal

volumes (10 μL) from each sample.

An LC‒MS system consisting of aWaters 2D UPLC (Waters,

United States) and a Q Exactive high resolution mass

spectrometer (Thermo Fisher Scientific, United States) was

used for lipid separation and detection. A CSH C18 column

(1.7 μm 2.1*100 mm, Waters, United States) was used for
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chromatographic separation. The parameters of ESI were as

follows: sheath gas of 40 L/min, aux gas of 10 L/min, spray

voltage of 3.8 KV in positive ion mode and 3.2 KV in negative

ion mode, capillary temperature of 320°C and aux gas heater

temperature of 350°C. Every 10 samples are interspersed with one

QC sample for testing.

Statistical analysis

All statistical analyses were performed using IBM SPSS

Statistic 21 (SPSS Inc., Chicago, IL, United States) or R (R

Foundation for Statistical Computing, Vienna, Austria)

software. Continuous variables are described by the median

and interquartile range (IQR), and the comparison between

the two groups was carried out by the Mann‒Whitney test.

Categorical variables were expressed in numbers and percentages

and compared using the chi square test.

The raw metabolomics data were imported into

Compound Discoverer 3.0 (Thermo Fisher Scientific,

United States) software for automatic data processing, while

the raw lipidomic data were processed using LipidSearch

4.1 software. The workflow for data processing and analysis

included peak extraction, retention time correction within and

between groups, metabolite identification, and finally,

information on compound molecular weight, retention

time, peak area, and identification results were exported.

The identification of metabolites is a combined result of the

BMDB database, mzCloud and ChemSpider (HMDB, KEGG,

LipidMaps) databases. The R software package metaX was

used for statistical analysis, including multivariate statistical

analysis (Wen et al., 2017), univariate analysis, principal

component analysis (PCA), partial least squares

discriminant analysis (PLS-DA) and quality control.

Differential metabolite screening conditions: 1) variable

importance for the projection (VIP) ≥ 1, 2) fold-change ≥
1.2 or ≤ 0.83, 3) p value < 0.05. In addition, metabolic pathway

enrichment analysis was performed based on the KEGG

database. Correlation analysis of differential metabolites

and differential lipid molecules with clinical data and

differential metabolites with differential lipid molecules

were performed.

We integrated clinical data and screened differential

metabolites and differential lipid molecules to form a CSV file

for building a clinical prediction model. The stratified sampling

method was used to divide the training set (70%) and the test set

(30%). The random forest package of R software was used for

data screening and model building. The importance of each

feature in the occurrence of ATB-DILI was scored. By

performing tenfold cross-validation repeated 5 times, the

appropriate variables were selected to build the predictive

model. The ROC curve was used to evaluate the accuracy of

the model.

Results

Baseline characteristics

A total of 60 TB patients, including 30 ATB-DILI patients

and 30 non-ATB-DILI subjects, were enrolled. The clinical and

demographic characteristics of the two groups of matched

patients are presented in Table 1. There were no significant

differences between the ATB-DILI and control groups in age, sex,

smoking, drinking or body mass index (p >0.05). Only the

baseline AST level was higher in the ATB-DILI group, and

there were no obvious differences in other liver injury

markers (ALT, ALP, and TBil) between the two groups before

taking anti-TB drugs. We partially found that the baseline

creatinine level of the ATB-DILI group was significantly lower

than that of the control group. There was no significant

difference in baseline blood lipid levels between the two

groups (Table 1).

Metabonomic analysis of plasma

Sixty serum samples were analyzed by LC‒MS/MS in both

the positive and negative ion modes. Based on principal

component analysis (PCA) (Supplementary Figure S1), the

significant aggregation of QC samples indicates the stability

and repeatability of the sample analysis sequence. An RSD

threshold of 30% was displayed for 89.3.0% of positive ion

modes and 93.4% of negative ion modes, indicating high

reproducibility and stability.

As shown in Figures 1A,B, the results of the PLS-DA

analysis model, a supervised multivariate data analysis

method, showed a clear distinction between ATB-DILI and

non-ATB-DILI patients in both positive and negative

patterns. Further evaluation revealed a total of

467 features (347 in positive ion mode and 120 in negative

ion mode) that exhibited significant differences between the

ATB-DILI and non-ATB-DILI groups (Figures 1C,D).

Finally, 22 features were selected according to the

metabolites matching the database (secondary classification

name) and the reliability of the identification results

(Table 2), four of which were common differential

metabolites in both positive and negative ion modes. We

performed KEGG pathway analysis for the differential

features. A total of 9 significantly enriched metabolic

pathways were found, and the number of differential

metabolites annotated to this pathway was ≥2, p < 0.05,

including 4 in positive ion mode and 5 in negative ion

mode (Table 3). Although the differential metabolites

involved in the two modes were different, significant

differences in drug metabolism-other enzymes and niacin

and nicotinamide metabolic pathways were found in both

positive and negative ion models, indicating that these two
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pathways are significantly associated with the occurrence of

ATB-DILI.

In addition, the plasma differential metabolites of

17 patients with mild ATB-DILI and 13 patients with

severe ATB-DILI were further analyzed. A total of

11 differential metabolites with reliable identification

results were screened, including 6 in positive ion mode

and 5 in negative ion mode (Supplementary Table S1).

Among them, glycyl-L-leucine and N4 acetylcytidine were

associated not only with ATB-DILI in tuberculosis patients

but also with the severity of ATB-DILI.

Lipomics analysis of plasma

The QC samples were tightly clustered in PCA

(Supplementary Figure S1), and 92% of lipidomics showed a

30%RSD threshold, indicating that the processing and analysis of

the data was qualified. The PLS-DA model can better distinguish

ATB-DILI patients from non-ATB-DILI patients (Figure 2A).

After filtration, 7 out of 1014 lipid molecules were significantly

different by lipidomic analysis; 4 were upregulated and 3 were

downregulated in the ATB-DILI group (Figure 2B; Table 4).

Metabolic pathway enrichment analysis was performed on these

differential lipid molecules based on the KEGG pathway

database. The results indicated that differentially expressed

metabolites in ATB-DILI patients were enriched in the

following pathways: ferroptosis and biosynthesis of

unsaturated fatty acids (Table 5).

Subgroup analysis according to the severity of ATB-DILI

identified 16 differential lipid molecules in the premedication

plasma of patients with mild and severe ATB-DILI

(Supplementary Table S2), of which 13 were upregulated and

3 were downregulated.

Correlation analysis

Correlation analysis was conducted between differential

plasma metabolites, differential plasma lipids and laboratory

tests. We found that some different metabolites were

significantly correlated with patient baseline laboratory tests

(Supplementary Table S3). We found that both indole-3-

acetaldehyde and indole-3-lactic acid were positively

correlated with baseline uric acid and creatinine levels in

tuberculosis patients (absolute value of correlation

coefficient > 0.5, p < 0.05). Unfortunately, no laboratory test

or differential metabolites were found to be significantly

correlated (absolute value of correlation coefficient > 0.5 and

p < 0.05) with differential lipid molecules (Supplementary Tables

S4, S5).

Random forest model results

Random forest analysis was performed on 29 differential

features (22 differential metabolites and 7 differential lipid

molecules) and clinical characteristics of patients. A total of

TABLE 1 Clinical characteristics of the two groups.

Feature Control
group (n = 30)

ATB-DILI
group (n = 30)

p

Age, years, median (IQR) 33.5 (27.0,43.3) 38.0 (27.8,49.0) 0.201

Females (%) 15 (50.0) 16 (53.3) 0.796

Weight, kg, median (IQR) 55.0 (47.6–62.6) 52.5 (49.8–59.3) 0.970

BMI, kg/m2, median (IQR)) 20.5 (18.5–22.3) 20.1 (18.4–21.6) 0.830

Smoking, n (%) 6 (20.0) 6 (20.0) 0.893

Drinking, n (%) 2 (6.7) 5 (16.7) 0.266

Extrapulmonary tuberculosis, (%) 11 (36.7) 17 (56.7) 0.121

Total bilirubin, μmol/L, median (IQR) 9.4 (5.9–15.7) 10.1 (8.5–14.2) 0.324

Alanine aminotransferase, IU/L, median (IQR) 16.0 (10.0–20.3) 17.0 (13.0–29.0) 0.103

Aspartate aminotransferase, IU/L, median (IQR) 18.5 (16.0–23.3) 23.0 (17.5–30.5) 0.047

Albumin, g/L, median (IQR) 46.7 (44.5–47.7) 45.1 (42.3–47.3) 0.182

Creatinine, μmol/L, median (IQR) 70.0 (60.0–82.0) 62.0 (57.0–70.0) 0.029

Uric acid, mmol/L, median (IQR) 299.0 (225.8–361.0) 271.0 (226.0–353.0) 0.500

Triglyceride, mmol/L, median (IQR) 1.0 (0.8–1.3) 1.0 (0.7–1.2) 0.512

Cholesterol, mmol/L, median (IQR) 4.18 (3.8–4.8) 3.99 (3.7–4.3) 0.174

High density lipoprotein, mmol/L, median (IQR) 1.4 (1.1–1.5) 1.4 (1.1–1.6) 0.629

Low density lipoprotein, mmol/L, median (IQR) 2.4 (2.1–2.9) 2.2 (1.8–2.5) 0.098

Abbreviations: BMI, body mass index; IQR, interquartile range.
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42 variables are included. When ntree = 500 and mtry = 6, the

model reaches the optimum, and the error rate of classifying the

training set data based on this parameter is 28.57%. Figure 3A

shows the mean decrease accuracy and mean decrease Gini

values of the top 30 important variables. The larger the value

is, the greater the importance of the indicator. After sorting the

variables from high to low according to the mean decrease in

accuracy value, the cross-validation curve results obtained by

performing tenfold cross-validation repeated 5 times show that

the first 30 variables are selected for model establishment with the

lowest error (Supplementary Figure S2). After model evaluation,

the area under the ROC curve for the training set was 0.79

(0.65–0.93), and the area under the ROC curve for the test set was

0.79 (0.55–1.00) (Figures 3B,C), indicating that the model has

moderate accuracy for predicting the occurrence of ATB-DILI.

Discussion

A total of 60 sex- and age-matched tuberculosis patients were

included in this study; 30 were ATB-DILI patients, and 30 were

tuberculosis patients with normal liver function during anti-

tuberculosis treatment. Through nontargeted metabolomics,

22 differential metabolites were found in the plasma before

administration between the two groups, including niacin,

glycyl-L-leucine, trigonelline, and 18-beta-glycyrrhetinic acid.

Functional analysis showed multiple metabolic pathways, drug

metabolism-other enzymes, niacin, and nicotinamide

metabolism, tyrosine metabolism, tryptophan metabolism,

protein digestion, and absorption, fatty acid biosynthesis, and

porphyrin and chlorophyll metabolism pathways, involved in

ATB-DILI. Plasma untargeted lipidomics identified 7 differential

lipid molecules between the two groups, including TG, PC, PS,

and PMe, and in the pathway analysis, it was found that

ferroptosis and unsaturated fatty acid biosynthesis pathways

were associated with the occurrence of ATB-DILI.

Furthermore, some differential metabolites and lipid molecules

that may be related to the severity of ATB-DILI were identified.

Finally, the machine learning method based on the random forest

model showed that the prediction model constructed by

integrating clinical data and omics data can predict ATB-

DILI well.

Consistent with previous findings, significant metabolic

differences were also found between ATB-DILI and non-ATB-

FIGURE 1
Metabolomics Analysis. (A,B) Partial least squares-discriminant analysis score scatter plots of the two groups. (C,D) Volcano map of differential
metabolites. Green is the downregulated differential metabolite (labeled green), red is the upregulated differential metabolite (labeled red), and
metabolites without differences are labeled purple‒gray.
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DILI patients in this study (Loots et al., 2005; Li et al., 2013; Zhao

et al., 2017; Cao et al., 2018; Rawat et al., 2018; Ruan et al., 2018;

Liu et al., 2020). Animal experiments show that the combination

of anti-tuberculosis drugs can significantly change metabolic

characteristics (Loots et al., 2005; Li et al., 2013). The

investigators identified some urine differential metabolites that

could serve as biomarkers for ATB-DILI and non-ATB-DILI

patients; nine metabolites, including uric acid and cis-4-

octenedioic acid, were significantly elevated in the ATB-DILI

group, and nineteen, including aconitic acid and hypoxanthine,

exhibited significantly reduced metabolites (Cao et al., 2018).

Other investigators found that serum bile acid profiles were

TABLE 2 Identified differential plasma metabolites between the two groups.

Metabolites Molecular weight Real time VIP Fold change p Label

Nicotinic acid 123.0 0.7 1.8 4.45 0.022 up

Glycyl-l-leucine 188.1 3.1 1.4 1.82 0.047 up

Trigonelline 137.0 3.6 1.8 6.31 0.012 up

Hesperetin 302.1 4.2 1.7 12.58 0.036 up

Salicylic acid 138.0 4.4 2.0 0.59 0.006 down

Indole-3-pyruvic acid 203.1 4.8 1.4 0.62 0.030 down

Indole-3-lactic acid 205.1 4.8 1.0 0.80 0.015 down

Indole-3-acetaldehyde 159.1 4.8 1.1 0.79 0.024 down

1-phenylethanol 122.1 5.5 1.4 2.21 0.019 up

4′-methoxyacetophenone 150.1 6.8 1.3 0.74 0.028 down

Polygodial 234.2 8.0 1.3 2.36 0.024 up

Artemisinin 282.1 8.6 1.3 0.75 0.013 down

18-β-glycyrrhetinic acid 470.3 9.1 3.2 64.82 0.000 up

L-glutamic acid 147.1 0.6 1.1 1.48 0.045 up

Nicotinuric acid 180.1 1.1 2.1 31.25 0.009 up

N4-acetylcytidine 285.1 1.2 3.0 0.44 0.005 down

Phenol 94.0 2.8 1.2 0.73 0.036 down

2-methylhippuric acid 193.1 3.2 1.1 2.04 0.049 up

Propylparaben 180.1 5.9 1.5 0.42 0.047 down

Caprylic acid 144.1 6.5 1.3 0.62 0.031 down

Genistein 270.1 7.3 1.6 29.09 0.019 up

Decanoic acid 172.1 7.8 1.3 0.64 0.038 down

Glycochenodeoxycholate 449.3 8.4 1.2 1.65 0.040 up

Abbreviation: VIP, variable importance for the projection.

TABLE 3 Enrichment table of metabolic pathways for differential metabolites.

Pathway Ion modes Count Count all p

Drug metabolism-other enzymes Positive 4 52 <0.001
Nicotinate and nicotinamide metabolism Positive 2 55 0.018

Tyrosine metabolism Positive 2 78 0.034

Pertussis Positive 1 10 0.037

Tryptophan metabolism Positive 2 81 0.037

Dopaminergic synapse Positive 1 12 0.044

Protein digestion and absorption Negative 2 47 0.003

Fatty acid biosynthesis Negative 2 50 0.003

Drug metabolism-other enzymes Negative 2 52 0.003

Nicotinate and nicotinamide metabolism Negative 2 55 0.004

Porphyrin and chlorophyll metabolism Negative 2 142 0.022
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significantly changed in tuberculosis patients before and after

taking the combination regimen (isoniazid + rifampicin +

pyrazinamide); compared with baseline levels, bile acid and

chenodeoxychol acid levels increased significantly (Liu et al.,

2020). Animal experiments also showed that serum metabolite

levels changed significantly after taking anti-tuberculosis drugs,

and fatty acids and bile acids were involved in the metabolic

pathways of anti-tuberculosis drugs (Liu et al., 2020). By

comparing the urine metabolome data of 33 ATB-DILI

patients and 41 patients without ATB-DILI, our group

identified 11 metabolites that were significantly different

between the two groups (Wu et al., 2022). The above studies

show that there were significant differences in the metabolic

profile between ATB-DILI patients and non-ATB-DILI patients

at the time of DILI.

Studies have shown that the characteristics of the circulatory

system before medication are associated with the occurrence of

DILI after medication (Zhang et al., 2020; Ho et al., 2021).

Metabolomics analysis was performed on serum samples

before ingestion of Polygonum multiflorum, and 25 main

differential metabolites were screened out, involving multiple

metabolic pathways, such as glycerophospholipid metabolism,

sphingolipid metabolism and fatty acid metabolism, which are

involved in the occurrence of liver injury after medication (Zhang

et al., 2020). Analysis of 15 systemic inflammatory factors in the

plasma of pulmonary tuberculosis patients before taking anti-

tuberculosis drugs found that interleukin (IL)-22 binding

protein, interferon gamma-inducible protein 1, soluble CD163,

IL-6 and CD206 were correlated with the occurrence of ATB-

DILI and had good predictive value for ATB-DILI (Ho et al.,

2021). Consistent with these findings, by comparing predrug

FIGURE 2
Lipidomics analysis. (A) Partial least squares method-discriminant analysis model score map. (B) The volcano map.

TABLE 4 Identified differential lipids between the two groups.

Lipids Molecular weight Real time VIP Fold change p Label

PMe (52:1) 941.8 11.6 2.9 6.17 0.005 up

TG (29:0/18:2/18:2) 1055.0 11.9 3.5 0.34 0.013 down

TG (29:0/18:1/18:2) 1057.0 12.1 3.1 0.43 0.029 down

PC (37:4) (rep)(rep) 796.6 6.3 1.1 0.79 0.026 down

PS (38:4) 810.5 6.8 3.0 5.00 0.007 up

PS (36:1) 790.6 7.1 2.1 5.32 0.023 up

PC (24:1/18:2) 912.7 8.5 1.8 1.25 0.046 up

Abbreviations: VIP, variable importance for the projection; PMe, phosphatidyl methanol; TG, triglyceride; PC, phosphatidylcholine; PS, phosphatidylserine.

TABLE 5 Enrichment table of metabolic pathways for differential
lipids.

Pathway Count Count all p

Ferroptosis 2 29 <0.001
Biosynthesis of unsaturated fatty acids 2 74 <0.001
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metabolome data, we also found that ATB-DILI patients had

different metabolic profiles before taking ATB-drugs than non-

ATB-DILI patients. This result indicated that the differential

metabolites and pathway changes identified before

administration were closely related to the occurrence of ATB-

DILI in patients after administration. Therefore, early

identification of these markers can help these patients

personalize medication and avoid DILI after medication.

As the liver is a key organ involved in lipid metabolism and

transport, this study is the first to analyze the plasma lipid profile of

ATB-DILI patients. Potential lipid biomarkers associated with DILI

can be found by analyzing lipid metabolism profiles. Disorders of

lipid metabolism, including increased levels of phosphatidylcholine

(PC) and phosphatidylethanolamine species (Ming et al., 2017) and

marked reductions in sphingomyelin (Xu et al., 2019), are associated

with liver injury caused by acetaminophen and valproic acid,

respectively. Saito et al. analyzed the lipid profile of 53 patients

with drug-induced liver injury (Saito et al., 2020) and found that the

mixed and cholestatic types showed specific lipid changes between

stages, while the hepatocellular type did not. A total of

202 characteristic lipids were identified by lipidomic analysis of

liver tissue of DILI rats induced by Polygonum multiflorum,

indicating that Polygonum multiflorum may lead to liver injury

by interfering with phospholipid metabolism (Wu et al., 2020).

Likewise, we also found that lipids play an important role in ATB-

DILI. Before medication, we found that the lipid molecule

concentrations of PMe(52:1), PS(38:4), PS(36:1), and PC(24:1/18:

2) were increased in ATB-DILI patients compared with non-ATB-

DILI patients, while the concentrations of TG (29:0/18:2/18:2), TG

(29:0/18:1/18:2), and PC(37:4)(rep)(rep) showed a decline.

Functional analysis showed that ferroptosis and unsaturated fatty

acid biosynthesis pathways were related to the occurrence of ATB-

DILI.

Pathway enrichment analysis of differential metabolites and

differential lipid molecules revealed that several metabolic pathways,

including drugmetabolism-other enzymes, niacin and nicotinamide

metabolism, tyrosine metabolism, tryptophan metabolism,

ferroptosis, and unsaturated fatty acid biosynthesis pathways

(Tables 3, 5), are related to the occurrence of ATB-DILI.

Mahuang Decoction can significantly protect against DILI by

regulating the metabolic pathways of niacin and nicotinamide

and the metabolism of tryptophan (Liao et al., 2021). Tyrosine

and tryptophan biosynthesis and phenylalanine and tyrosine

metabolism were found to be significantly associated with DILI

in a hydrazine-induced rat liver injury model (An et al., 2018).

Metabolic pathway analysis also showed that Polygonum

FIGURE 3
Random forest prediction model. (A) Top 30 important variables. The ordinate is each variable, and the abscissa is the mean decrease accuracy
and themean decrease Gini value. The larger the value is, themore important the variable is. (B) Training set ROC curve, (C) Validation set ROC curve.
Abbreviations: CREA, creatinine; HDL C, high-density lipoprotein; TG, triglyceride; LDL C, low-density lipoprotein; CHOL, cholesterol; ALT, alanine
aminotransferase; PC, phosphatidylcholine; PS, phosphatidylserine.
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multiflorum mainly caused liver damage by disrupting

phenylalanine and tyrosine metabolism, accompanied by chronic

kidney damage (Yan et al., 2020). Impaired bile secretion was

observed in mouse models of liver injury, accompanied by loss

of bile transporters and tight junction proteins in the progression of

chronic liver injury (Pradhan-Sundd et al., 2018). Consistent with

the results of animal studies, our study also found that bile acid

metabolism and glycerophospholipid metabolism pathways were

associated with DILI (Duan et al., 2020). Previous research found

that ferroptosis induced by omega-6 PUFAs was associated with

acetaminophen-induced DILI (Yamada et al., 2020; Niu B et al.,

2021) and protected mitochondria by inhibiting voltage-dependent

anion channel oligomerization, thereby attenuating ferroptosis in

hepatocytes (Niu B et al., 2021). Pan et al. (2020) identified

ferroptosis in the liver of a mouse model of ATB-DILI by

transmission electron microscopy and used flow cytometry to

assess lipid peroxidation and molecular markers of ferroptosis,

including reactive oxygen species, lipid peroxidation, and cellular

iron content, confirming that lipid peroxidation and ferroptosis

occur duringATB-DILI, and glutathione supplementation can block

this process, while iron supplementation will enhance this effect.

Consistent with these studies, the present study found that the

ferroptosis pathway was involved in the development of ATB-DILI,

and alterations in this pathway occurred prior to the use of anti-TB

drugs. The biosynthetic pathway of unsaturated fatty acids is

involved in the occurrence of metabolism-related fatty liver (Li

et al., 2020). This study is the first to discover that this pathway is

involved in the occurrence of ATB-DILI, and further research is

needed.

Previously, Taipei Medical University researchers compared

the accuracy of multiple machine learning methods in predicting

ATB-DILI based on clinical and genomic data of 21 patients with

ATB-DILI and 106 non-ATB-DILI patients. Artificial neural

networks with clinical and genomic factors showed the best

results (the sensitivity was 80%, and the specificity was 90.4%

in the test set) (Lai et al., 2020). This study is the first to establish

an ATB-DILI prediction model by combining clinical data,

metabolomic data and lipidomic data using a machine

learning method. The model built with the top 30 important

variables had the lowest error, and the area under the ROC curve

for the test set was 0.79, indicating that the model had moderate

accuracy for predicting the occurrence of ATB-DILI.

In conclusion, compared with non-ATB-DILI patients, the

plasma metabolic profile and lipid profile of ATB-DILI patients

before treatment were significantly different. A number of novel

biomarkers were identified from the plasma of ATB-DILI

patients and non-ATB-DILI patients before drug

administration, involving multiple metabolic pathways

involved in the occurrence of ATB-DILI after drug

administration. The random forest model based on plasma

metabolomics, lipidomics, and clinical characteristics has good

clinical predictive value for ATB-DILI. Validation in larger

samples as well as in targeted studies is needed.
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