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Assessing drug permeability across the blood-brain barrier (BBB) is important

when evaluating the abuse potential of new pharmaceuticals as well as

developing novel therapeutics that target central nervous system disorders.

One of the gold-standard in vivo methods for determining BBB permeability is

rodent log BB; however, like most in vivo methods, it is time-consuming and

expensive. In the present study, two statistical-based quantitative structure-

activity relationship (QSAR) models were developed to predict BBB permeability

of drugs based on their chemical structure. The in vivo BBB permeability data

were harvested for 921 compounds from publicly available literature, non-

proprietary drug approval packages, and University of Washington’s Drug

Interaction Database. The cross-validation performance statistics for the BBB

models ranged from 82 to 85% in sensitivity and 80–83% in negative

predictivity. Additionally, the performance of newly developed models was

assessed using an external validation set comprised of 83 chemicals. Overall,

performance of individual models ranged from 70 to 75% in sensitivity, 70–72%

in negative predictivity, and 78–86% in coverage. The predictive performance

was further improved to 93% in coverage by combining predictions across the

two software programs. These new models can be rapidly deployed to predict

blood brain barrier permeability of pharmaceutical candidates and reduce the

use of experimental animals.
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1 Introduction

The BBB is a primary defense system that protects the brain from exposure to

potentially toxic substances and ensures an optimal nutrient supply to the brain. An

essential part of BBB is the brain capillary endothelium, a tight membrane junction

that separates the blood from the brain tissue and restricts the paracellular transport

of compounds across the junction thereby providing selective permeability to the

compounds (Abbott et al., 2010). Due to the restrictive nature of the BBB, most

compounds enter the brain through either passive diffusion or transporter-mediated
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TABLE 1 Summary of previously published models and data sets used for log BB prediction.

Study Method* Training set (n) Data source R2**

Young et al. (1988) MLR 20 in vivo 0.69

Van de Waterbeemd and Kansy, (1992a) MLR 20 in vivo 0.70

Abraham et al. (1994) MLR 57 in vivo 0.91

Lombardo et al. (1996) MLR 55 in vivo 0.67

Norinder et al. (1998) PLS 56 in vivo 0.83

Clark, (1999) MLR 55 in vivo 0.77

Luco, (1999) PLS 58 in vivo 0.85

Feher et al. (2000) PCR 61 in vivo 0.73

Keserü and Molnár, (2001) MLR 55 in vivo 0.72

Platts et al. (2001) MLR 148 in vivo, in vitro 0.75

Hou and Xu, (2002) GA 57 in vivo 0.88

Doniger et al. (2002) ANN, SVM 324 in vivo, clinical NA

Ooms et al. (2002) PLS 83 in vivo 0.68

Subramanian and Kitchen, (2003) LR-PLS 61 in vivo, clinical 0.81

Winkler and Burden, (2004) NN 85 in vivo, in vitro 0.80

Narayanan and Gunturi, (2005) VSMP 88 in vivo 0.74

Ma et al. (2005) MLR 37 in vivo 0.91

Abraham et al. (2006) LFER 302 in vivo, in vitro 0.75

Hemmateenejad et al. (2006) GA-ANN 123 in vivo NA

Obrezanova et al. (2007) GP 85 in vivo, in vitro 0.69

Shen et al. (2008) GAVS 151 in vivo, in vitro 0.72

Fu et al. (2008) MLR 86 in vivo, in vitro 0.74

Zhang et al. (2008) kNN-Dragon 144 in vivo, in vitro 0.92

Kortagere et al. (2008) GRM-SVM 78–376 in vivo, in vitro, clinical 0.65

Deconinck et al. (2008) BRT 224 in vivo, in vitro 0.54

Lanevskij et al. (2009) Nonlinear regression 125 in vivo 0.84

Fan et al. (2010) GA-MLR 193 in vivo 0.72

Muehlbacher et al. (2011) MLR 362 in vivo, in vitro <0.59
Kunwittaya et al. (2013) SVM 374 in vivo, in vitro NA

Yan et al. (2013) MLR 198 in vivo, in vitro, clinical <0.81
Brito-Sanchez et al. (2015) MLR 381 in vivo, in vitro 0.69

Wang et al. (2015) RF 341 in vivo, in vitro 0.64

Bujak et al. (2015) MLR 55 in vivo 0.84

Zhang et al. (2015) GA-SVM 260 in vivo, in vitro 0.67–0.80

Jiang et al. (2016) SVM 299 in vivo, clinical NA

Dixon et al. (2016) Kernel-based PLS 644 in vivo, in vitro NA

Toropov et al. (2017) MC-SMILES 250 in vivo 0.74

Castillo-Garit et al. (2017) Classification trees 381 in vivo, in vitro NA

Plisson and Piggott, (2019) ML 300 in vivo NA

Radchenko et al. (2020) ANN 529 in vivo, in vitro, clinical 0.81

Singh et al. (2020) RF, MLP, SMO 432, 479 in vivo, in vitro NA

Wu et al. (2021) ANN 260 in vivo, in vitro, clinical 0.91

Kim et al. (2021) ANN 328 in vivo, in vitro 0.99

Shin et al. (2021) SVR 153 in vivo, in vitro 0.64

*MLR: multiple linear regression, PLS: Partial least-squares, PCR: principal component regression, GA: genetic algorithm, NN: neural network, ANN: artificial neural network, SVM:

support vector machine, LR: linear regression, VSMP: variable selection and modeling method based on the prediction, LFER: general linear free energy relationship, GP: gaussian

processes, GAVS: genetic algorithm based variable selection, kNN: k-nearest neighbor, GRM: generalized regression model, BRT: boosted regression trees, RF: random forest, MC: monte

carlo, SMILES: Simplified molecular input-line entry systems, ML: machine learning, MLP: multilayer perceptron, SMO: sequential minimal optimization, SVR: support vector regression.

**NA: not applicable.
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uptake. Most hydrophobic compounds pass the BBB through

simple diffusion driven by the concentration gradient between

the brain and the blood. This process is governed by

physiochemical parameters including molecular size,

lipophilicity, polar surface area and charge (Begley and

Brightman, 2003; Di et al., 2008; Geldenhuys et al., 2015;

Copur and Oner, 2017).

In addition to uptake transporters, BBB also hosts efflux

transporters that actively transport molecules out of the brain.

The most common efflux transporters at the BBB are

P-glycoprotein (P-gp, ABCB1 or Multi-drug resistance 1

(MDR1) protein) and breast cancer resistance protein

(BCRP, ABCG2) which belong to the family of adenosine

triphosphate (ATP) binding cassette (ABC) transporters.

Both transporters are often referred to as “gatekeeper”

transporters as they provide a vital check on limiting the

drugs from accessing the brain (Mahringer and Fricker, 2016).

The active uptake transporters are responsible for the uptake

of a variety of substrates such as amino acids, fatty acids,

essential minerals, vitamins, and glucose. Examples of active

transporters include the large neutral amino acid transporter

(LAT1) for DOPA and gabapentin. Other uptake transporters

relevant for drugs include OATP2A1 and ENT2 (Zamek-

Gliszczynski et al., 2018). Active transporters are often

targeted to improve the delivery of drugs to the central

nervous system (CNS) (Begley and Brightman, 2003; Di

et al., 2008; Sanchez-Covarrubias et al., 2014; Geldenhuys

et al., 2015; Copur and Oner, 2017).

Investigation of BBB permeability is essential when

evaluating the abuse potential of new pharmaceuticals and

designing CNS drugs, as only 2% of small molecules cross the

BBB (Kola and Landis, 2004; Pardridge, 2005). However,

experimental determination of BBB permeability in rodents

is often tedious and expensive. As a result, several quantitative

structure-activity relationship (QSAR) models have been

developed over the years to predict BBB permeation using

a variety of methodologies and datasets (Table 1) and to

reduce the use of laboratory animals. QSAR models

describe the correlation between chemical moieties and

their biological activities under the general assumption that

similar chemical structures exhibit similar biological

activities. QSAR models are particularly useful as they

provide rapid, early screening of drugs based upon their

chemical structure. Most BBB QSAR models are based on

log BB data, which is defined as the logarithmic ratio of the

steady-state concentration of a drug in the brain to the blood

or plasma. BBB permeability has also been modeled using

permeability-surface area (log PS) data and free drug

concentration ratio between brain and plasma (Kp,uu,brain)

in vivo rodent data (Gratton et al., 1997; Liu et al., 2004;

Friden et al., 2009; Loryan et al., 2015; Varadharajan et al.,

2015). Although log PS and unbound brain-to-plasma

concentration (Kp,uu,brain) are widely accepted as critical

parameters in drug distribution, the publicly available data

are limited and therefore the applicability of these models may

also be limited (Abraham, 2004; Liu et al., 2004; Friden et al.,

2009).

There are several molecular descriptors that have been

used to predict BBB permeability including lipophilicity, polar

surface area, and hydrogen bonding ability (Young et al., 1988;

Van de Waterbeemd and Kansy, 1992a; Abraham et al., 1994;

Clark, 1999). However, more recently, 2D structure-based

dragon descriptors (Zhang et al., 2008), 3D structure-based

VolSurf descriptors (Crivori et al., 2000), solvation free

energies (Lombardo et al., 1996), and 3D conformations

(Keserü and Molnár, 2001) have been used in making BBB

models. Additionally, in the earlier studies, multiple linear

regression (MLR) analysis was utilized to relate molecular

descriptors to log BB. One shortcoming of the MLR analysis is

the finite number of descriptors that could be employed. Other

methods that have been employed include partial least square

analysis, genetic algorithms (GA), random forest (RF),

support vector machine (SVM) and artificial neural

networks (ANN).

A common limitation among many of the previously

constructed models is their small training set size, which

limits their applicability in a regulatory environment.

Although numerous models have been developed in the last

decade using much larger training sets (n = 1,000+), these

datasets often contain a combination of data types including

in silico predicted data, experimental data from in vitro and in

vivo studies, and clinical side effects data (Martins et al., 2012;

Gao et al., 2017; Fan et al., 2018; Wang et al., 2018; Yuan et al.,

2018; Miao et al., 2019; Alsenan et al., 2020, 2021; Liu et al.,

2021). Other limitations of the data sets used in previous

QSAR models include (i) the use of indirect measurements,

(ii) use of unverified or wrongly interpreted data, and (iii) lack

of chemical diversity. Finally, challenges affecting

implementation of previously developed models such as

updating training set data limit the applicability of those

models (Fan et al., 2010).

In the present study, two statistical-based models for

predicting BBB permeability have been constructed using

Leadscope Enterprise (LS) and CASE Ultra (CU). The new

training sets contain in vivo rodent data from drugs, drug

metabolites and non-drugs, and have the largest number of

chemicals compared to previously published models trained

on in vivo data. Moreover, the quality of the underlying

training data has been enhanced through careful review of

original experiments to resolve or remove discrepant studies.

In addition, predictive performance of the newly constructed

models has been assessed using both internal and external

validation experiments and showed good predictive

accuracy. Finally, these new models can be rapidly used to

design CNS drugs and to assess abuse potential of drug

candidates.
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2 Methods

2.1 Data sources

All training set data used to construct BBB permeability

model were comprised of non-proprietary data harvested from

published literature (e.g., PubMed,Web of Science v.5.34, Scopus,

Elsevier, and Google Scholar), US FDA approval packages (e.g.,

Drugs@FDA and PharmaPendium®), EMA approval packages

(e.g., PharmaPendium®), and patents. All references for BBB

databases are provided in Supplementary Table S1.

2.2 Data scoring

The BBB permeability database contains blood/plasma (B/P) or

blood/brain (B/B) ratios obtained from rodents that were treated via

intravenous, intraperitoneal, or oral routes. For the majority of data

entries, the amount of the chemical present in the brain and blood or

plasma was measured in the animals 30 min to a several hours after

administration. However, in some cases, the animals were sacrificed

at certain intervals after treatment and different B/P ratios were

reported. In such cases, the ratio of the area under the curve (AUC)

for the brain and plasma concentrations were used. In experiments

where different amounts of a chemical were reported in different

parts of the brain, the average value was considered. All findings were

transformed into a binary scoring system for modeling purposes,

where “0” denotes a negative finding (no brain penetration) and “1”

denotes a positive finding (brain penetration). Chemicals with a log

BB ≥ -1 were considered positive while chemicals with a log BB <
-1 were considered negative (Vilar et al., 2010). The final BBB

database is comprised of 921 compounds with 52% positives. The

dataset and references are provided in Supplementary Table S1.

2.3 Chemical structure curation

The chemical structures were obtained from SciFinder® and

published literature. Electronic representations of chemical structures

were created using structure data file (SDF) format. Inorganic

chemicals, noble gases, mixtures, single atoms, metals, and high

molecular weight compounds (MW ≥ 1800; polysaccharides,

proteins, polymers, etc.) were excluded from the training set due

to processing limitations within the QSAR software. Furthermore,

the neutralized free form of any simple salt was included. A final

manual inspection was performed to ensure the chemicals, their

associated data and references were accurately recorded.

2.4 QSAR software

Two commercial QSAR software platforms, Leadscope

Enterprise (LS) version 3.9 (Instem Inc., United States), and

CASE Ultra (CU) version 1.8.0.1 (MultiCASE Inc.,

United States) were used to construct two distinct binary

QSAR models. All software programs were acquired and used

under Research Collaboration Agreements between FDA/CDER

and the software providers mentioned above.

2.4.1 Leadscope Enterprise (LS)
LS is a data mining, visualization, and advanced informatics

application that includes the capability to build and apply QSAR

models. To construct QSAR models for BBB, a training set of

921 chemicals was imported into LS and fingerprinted using a set

of 27,142 pre-defined medicinal chemistry structural features as

candidate descriptors for model building. A small predictive

subset of these features was used to construct the model.

Additionally, a set of unique scaffolds was automatically

constructed from the pre-defined structural features that

specifically defined structure-activity relationships in the

training set. The unique set of scaffolds was generated for the

BBB permeability model using the following settings: 1) a

minimum of three compounds per scaffold; 2) a minimum six

of atoms per scaffold; 3) no restriction on the maximum number

of rotatable bonds; and 4) a minimum absolute Z-score of 1.0.

Z-score of a structural features is the difference between themean

activity of the subset of compounds having that feature and the

mean activity of the full set (Roberts et al., 2000). Molecular

properties such as molecular weight, number of rotatable bonds,

number of hydrogen bond donors, number of hydrogen bond

acceptors, Lipinski score, AlogP (logarithm of 1-octanol/water

partition coefficient), polar surface area, and atom count were

calculated using Leadscope. The squared Pearson correlation

coefficients (R2) for the molecular properties were computed

using python and added to the models to improve predictive

performance.

Highly predictive features and the corresponding helper

features were identified in the feature editor for retention

while weakly predicted features were removed using Z-score,

frequency, precision and mean activity as discriminating

parameters (Roberts et al., 2000). Subsequently some features

were divided to better define their chemical environment (acyclic

vs cyclic) or expanded using the expand features to more

specifically define their functional groups. Additional pruning

was manually performed to reduce the number of features while

maintaining optimal predictive performance. Specifically,

redundant features, highly overlapping or similar features, and

coincidental features that were highly correlated were removed.

Lastly, the total number of model features was reduced using a

partial least-squared regression algorithm leaving only those that

best fit the experimental activity scores in the training set

(Roberts et al., 2000).

For BBB model, cross-validation was performed 10 times

using a 10 × 10% leave-many-out (LMO) method. This method

randomly selects 10% of the training set for testing and

reconstructs a reduced model using the remaining 90% of the
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compounds and recalculates the descriptor weights. This process

was repeated 10 times with 10 diverse training sets ensuring that

all the compounds present in the training set were predicted ten

times. The average predicted values were used in calculating the

Cooper statistics (Cooper et al., 1979).

A classification threshold was determined by varying the

positive cutoff probability thresholds for equivocal results and

analyzing the resulting Cooper statistics. The optimal probability

range for indeterminate predictions for the BBB model were

identified to be 0.4 to 0.6. Predictions that are above the

0.6 probability cutoff were classified as positive, while

predictions below 0.4 were classified as negative. A chemical

was treated as out-of-domain (OOD) in instances where the test

chemical did not contain any structural model features or showed

a lack of similarity to the training set compounds (at least 30%

similarity to a single training set compound is required).

2.4.2 CASE Ultra (CU)
CU is a QSAR software platform that builds models using

various machine learning algorithms applied on training sets of

chemical structures and their activity labels. The algorithm

automatically generates molecular fragments from the training

structures and uses them as descriptors. A CUmodel contains a

set of structural alerts and deactivating features identified from

the training data. The structural alerts are substructures

primarily associated with active training compounds and the

deactivating features decrease the potency of the alerts. These

features are incorporated in a global logistic regression QSAR

model and therefore contains positive and negative quantitative

weights. During application of the model, the alerts and

deactivating features are searched in the test chemical, and

the regression model is used to generate a score between 0 and

one to indicate the likelihood of the test chemical being positive.

The model also verifies if all three-atom linear fragments

generated from the test compounds are present in the

training structures to establish that the test chemical is

within the applicability domain of the model. No hyper-

parameter optimization is performed.

The BBB model was constructed in CU using a training set of

921 chemicals. The models were cross-validated internally

10 times using a previously described 10 by 10% LMO

method. The classification threshold was selected based on

optimal balance between sensitivity and specificity on the

receiver operating characteristic (ROC) curve. During model

application, predictions were classified as equivocal when a

predicted confidence was within ±0.1 of the classification

threshold. Predicted values above the upper bound of this

range were treated as positive, and those below this range

were treated as negative. An out-of-domain (OOD) response

was given to any chemicals that contained one or more unknown

fragments not recognized by the model and do not contain

combination of alerts/features strong enough to give a positive

prediction.

2.5 External validation

The predictive performance of the BBB models was assessed

using an external validation set comprised of 83 chemicals

(42 positives and 41 negatives) obtained from published

literature. All references and activity scores are provided in

Supplementary Table S2 for the external validation set.

2.6 Combining model outputs in external
validation

To examine the combined predictive performance of LS and

CU, a positive prediction from any one software platform was

used to justify an overall positive prediction. Similarly, an

equivocal prediction from any one software platform was used

to justify an overall equivocal prediction, in the absence of a

positive prediction. In the case that one of the models was OOD

and the other model generated a prediction, the OOD was

disregarded and the prediction was used to generate an overall

call. An overall negative prediction was reported when a

statistical model generated a negative prediction in the

absence of positive or equivocal predictions from the other

model.

2.7 Performance statistics

In order to evaluate the performance of individual model

outputs, Cooper statistics was employed. Briefly, predictive

performance was evaluated using a classic 2x2 contingency

table containing counts of true positives (TP), true negatives

(TN), false positives (FP), and false negatives (FN). Chemicals

classified as OOD and equivocal were excluded from Cooper

statistic calculations. Statistics such as sensitivity [TP/(TP + FN)],

specificity [TN/(TN + FP)], positive predictivity [TP/(TP + FP)],

negative predictivity [TN/(TN-FN)], and accuracy [(TP + TN)/

(TP + TN + FP + FN)] were calculated as described by Cooper

et al., 1979 (Cooper et al., 1979). Coverage was calculated as the

percentage of all chemicals screened for which a prediction could

be made (OOD results do not constitute a prediction).

3 Results

3.1 Database overview

In the present study, the rodent BBB permeability dataset was

compiled from publicly available data sources and the original

study data were used. The results from rats and mice were treated

as equivalent since previous studies show no significant

difference in brain permeability between rats and mice

(Murakami et al., 2000; Abraham et al., 2006). The final BBB
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permeability database contains 921 unique chemicals of which

621 compounds are from in vivo studies in rats and 300 in mice.

The database is well-balanced with a total of 478 compounds

scored as positive and 443 as negative (activity scores provided in

Supplementary Table S1). Furthermore, the database is

comprised of 263 drug substances approved between 1939 and

2022, 21 drug derivatives, 13 drug metabolites, 61 investigational

drugs undergoing clinical trials, 14 prodrugs, and 549 other non-

drug molecules. This database covers a broad range of chemical

space, functional groups, and Anatomical Therapeutic Chemical

(ATC) classes as presented in Figure 1. Most functional groups

and ATC classes have an equal distribution between positives and

negatives in the database. Chemicals that contain carboxylic acid,

sulfone, sulfonyl and sulfonamide functional groups were mostly

negative. As expected, the majority of central nervous system

drugs in the database cross the BBB. However, two triptan

analgesics (rizatriptan and almotriptan) were identified among

negative drugs (Figure 2B). A possible reason is that triptans are

usually substrates of human, but not rat, BBB uptake transporters

(Zhang et al., 2016). Another interesting finding is that majority

of the cardiovascular drugs in the database cross the BBB. A

review of the literature suggested that the lipophilicity of many

cardiovascular drugs, specifically beta blocking agents, may be

the reason for their BBB permeability (McAinsh and

Cruickshank, 1990; Goldner, 2012; Shah et al., 2020). When

compared to several of the previously described models, the

current training set showed improved coverage of almost all

chemical functional groups (Supplementary Table S5).

3.2 QSAR model development

Previous modeling efforts employed calculated

physicochemical descriptors such as polar surface area (PSA),

number of hydrogen donors/acceptors, and molecular weight to

predict BBB (Young et al., 1988; van de Waterbeemd and Kansy,

1992b; Abraham et al., 1994; Lombardo et al., 1996; Norinder

et al., 1998; Clark, 1999; Luco, 1999; Feher et al., 2000; Keserü and

Molnár, 2001; Platts et al., 2001; Abraham, 2004; Abraham et al.,

2006). While these properties influence BBB permeability of

molecules and can be applied to simple cases, they are limited

in their ability to comprehensively predict BBB permeability of

drugs that pass through more complex mechanisms. In the

present study, machine-learning algorithms were used to

examine all structural features present in the training set and

global molecular properties that are useful to predict and

FIGURE 1
Database analysis (A) Assessment of the functional groups present in the entire BBB database. (B) Anatomical Therapeutic Chemical (ATC) level
1 classes present BBB database. (C) ACT level 2 classes of the nervous and cardiovascular systems.
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interpret BBB permeability. The two modeling platforms that

were used to construct BBB models are LS and CU.

The LSQSAR model was optimized by manual refinement of

chemical structural features and physicochemical descriptors.

Highly predictive features were identified for retention while

14 redundant and less discriminating chemical features were

removed. The total number of chemical features present in the

final BBB model is 386. Examples of chemical features with

highest and lowest Z-scores, corresponding to highest and lowest

BBB permeability are presented in Figure 2A. Chemical features

with highest Z-scores are comprised of aliphatic and aromatic

rings while carboxylic acids and carbonyls have the lowest

Z-scores. Moreover, polycyclic secondary and tertiary amines

are also positive features.

Additionally, six physicochemical descriptors including

molecular weight, number of rotatable bonds, number of

hydrogen bond donors, Lipinski score, AlogP, and PSA were

assessed for their predictive ability. The overall results showed a

very poor correlation between the individual physicochemical

descriptors and log BB alone. Specifically, the squared Pearson

correlation coefficient (R2) values for log BB ratio and molecular

weight, PSA, and number of hydrogen bond donors are 0.02,

0.08 and 0.02, respectively (see Figure 2B and Supplementary

Figure S1). However, it should be noted that a 3% increase in

statistical performance was observed upon inclusion of the six

molecular descriptors. The predictivity of the model and

frequency of the compounds as a function of probability is

presented in Figure 2C. The U-shaped plots indicate the optimum

regression, with the maximum probability located at the two ends of

the axis. The lowest predictivity and frequency was identified to be at

approximately 0.5 and selected as the equivocal range.

The CU models were optimized using ROC plots that were

generated by varying the classification threshold which defines a

positive prediction (Figure 3A). The optimal classification threshold

was identified to be 0.55 (Figure 3A; orange dot). The number of

chemical fragments present in the CU model is 171. Selected

examples of chemical fragments with the highest number of

positive and negative compounds are presented in Figure 3B.

Chemical fragments with the highest number of chemicals that

permeate the BBB contain aromatic moieties and amines while

chemical fragments with the highest number of negative chemicals

contain carboxylic acids and cyclic ethers.

FIGURE 2
Leadscope model analysis. (A) Selected chemical features with highest and lowest Z-scores. The arrow shows the order of Z-scores associated
with features in themodel. (B)Correlation (R2) between pairs of physicochemical features. (C)Histogram of the predictivity (blue bars) and frequency
(grey bars) as a function of probability in LS model.
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3.3 Performance statistics of BBB
permeability model using cross-validation
and external validation

The predictive performance statistics for the BBB models

based on 10% LMO cross-validation experiments as well as the

external validation experiments are presented in Table 2.

However, it should be noted that the coverage in the cross-

validation statistics from LS and CU cannot be compared directly

as they are calculated differently. The CU coverage is calculated

using domain analysis while LS provides a prediction for all the

chemicals in the cross-validation experiment. The LS model

achieved a sensitivity of 82% and a negative predictivity of

80% in cross-validation, while the CU model achieved a

sensitivity of 85% and a negative predictivity of 83%.

Furthermore, when using an external validation set of

83 chemicals (51% positive; 28 drugs and 55 non-drug

molecules), the LS model achieved a sensitivity of 70% and a

negative predictivity of 72%, while the CU model achieved a

sensitivity of 75% and a negative predictivity of 70%. The

partitioned predictive performance for drugs and nondrugs is

provided in Supplementary Table S3. Additionally, a prediction

comparison analysis for LS and CU by functional groups and

drug classes is provided in Supplementary Figures S2–4.

In a subsequent evaluation, the combined predictive

performance of the LS and CU models was assessed (Table 2).

Here, the models achieved a sensitivity of 80% and negative

predictivity of 70%. However, a decrease in specificity (51%) and

positive predictivity (64%) was observed when predictions across

the two software programs were combined. These results were

anticipated given that combining predictions across different

software platforms results in an increase of false positive

predictions. A total of 11 chemicals were outside the

applicability domain for LS while 18 were outside applicability

domain for CU. However, when predictions from the LS and CU

were combined, 93% of all chemicals were within the

applicability domain.

4 Discussion

4.1 Database development

Obtaining meaningful alerts and a robust QSAR model

depend heavily on the quality of the training set data. In the

present study, efforts were made to identify and extract high

quality data for the BBB permeability model. One of the most

commonly reported and trusted measures for BBB permeability

is log BB; this parameter is generated by most pharmaceutical

companies for drug candidates. Among the challenges of

combining Log BB data from multiple sources is the potential

for introducing conflicting data into models thereby affecting the

quality of the data. To enhance the overall quality of the

underlying data, chemicals with contradictory and/or

equivocal study results were reviewed and resolved or

removed from the databases.

Recently, several studies have suggested that the steady state

unbound brain-to-plasma ratio, Kp,uu,brain is a relevant parameter

to measure drug concentration as the key driving force for drug

distribution is the free concentration in the brain. However,

publicly available data for Kp,uu,brain are very limited and

therefore a viable model to predict Kp,uu,brain could not be

developed at this time.

4.2 Role of descriptors in BBB permeability

Previously published models employed calculated

physicochemical descriptors such as lipophilicity, PSA and/or

hydrogen bonding (Young et al., 1988; Van de Waterbeemd and

FIGURE 3
Case Ultra model analysis. (A) ROC plot of the BBB model. The orange dot corresponds to the optimal classification threshold (B) Selected
examples of chemical fragments with highest number of positive and negative compounds.
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Kansy, 1992a; Abraham et al., 1994; Clark, 1999). There is a

general agreement that these specific descriptors can influence

log BB (Clark, 2003). For instance, lipophilicity is positively

correlated with log BB (Young et al., 1988; Calder and

Ganellin, 1994; Kaliszan and Markuszewski, 1996; Salminen

et al., 1997; Goodwin and Clark, 2005) while hydrogen

bonding is negatively correlated to brain penetration (Van de

Waterbeemd and Kansy, 1992a; Calder and Ganellin, 1994;

Clark, 1999). In addition, several reports indicate log BB is

negatively correlated to molecular weight (Calder and

Ganellin, 1994; Kaliszan and Markuszewski, 1996; Salminen

et al., 1997; Kaznessis et al., 2001; Platts et al., 2001). In this

investigation, the use physicochemical descriptors was found to

improve the overall performance of the LSmodels (by 3%) when

combined with chemical features, although physicochemical

descriptors were poorly correlated with experimental log BB

parameter alone. This can be attributed to the larger log BB

data set that covers a more diverse chemical space (Brito-Sanchez

et al., 2015). It is anticipated that as more data become available,

finding a single equation that describes log BB as a function of

physicochemical descriptors will become more difficult.

Therefore, models that use a combination of chemical and

physicochemical features may be advantageous.

A review of alerts and deactivating chemical features in LS

and CUmodels revealed that the top features with highest activity

scores belong to polycyclic aromatic compounds. The training set

structures representing these alerts are relatively nonpolar

(lipophilic), which is favorable for crossing the BBB. In

addition, unlike primary amines, polycyclic secondary and

tertiary amines are among the top positive alerts. Beside the

reduced polarity of those amines, the ability of making hydrogen

bonds is also reduced compared to primary amines, which may

explain their higher BBB permeability (Silverman et al., 2009). In

contrast, features that contained carboxylic acids and alcohols

had the lowest activity scores presumably due to their ability to

form hydrogen bonds (Abraham et al., 1994). At physiological

pH of 7.4, carboxylic acids are dissociated to carboxylate ions,

which improves their water solubility and the ability to form

hydrogen bonds (Bredael et al., 2022). The low lipophilicity of

carboxylic acids, at physiological pH, also limits their BBB

penetration (Soloway et al., 1960). Additionally, ethers were

also found among negative features due to their ability to

accept hydrogen bonds. However, one should be aware of

exceptions to the hydrogen bond rule. As discussed earlier,

there is a low correlation between log BB and number of

hydrogen bond acceptors/donors. A detailed assessment of the

functional groups that are present in the BBB database showed

that the current training set contains 135 compounds that have

carboxylic acid groups with 30 being BBB permeable (Figure 1A).

Compounds with carboxylic acids that pass BBB are typically

substrates of uptake transporters. An example of this is L-DOPA,

a precursor for dopamine, which has a carboxylic acid and a diol

group and is capable of crossing BBB (Di et al., 2013).

4.3 External validation of BBB QSAR
models

In this investigation, an external validation set was used to

examine BBB models individually and by combining predictions

across LS and CU. In a regulatory setting, high sensitivity and

negative predictivity are preferred to reduce the risk of false

negatives and minimize the risk to public health. Towards this

end, the current BBB models were tuned to achieve high

sensitivity and negative predictivity while maintaining good

overall predictive performance in other statistical parameters.

Specifically, the new models showed a sensitivity ranging from

70 to 75% and negative predictivity ranging from 70 to 72% in

external validation. Furthermore, when predictions from the two

methodologies were combined, a sensitivity of 80% and coverage

of 93% was achieved. While the increase in the false positive rate

is not ideal when predictions are combined, it can be mitigated by

TABLE 2 Validation statistics for BBB permeability QSAR models. Columns 2 and 3 show cross-validation performance statistics and columns
4–6 show external validation performance statistics for single and combined models.

Statistics Cross-validation
(10% LMO)

External validation (n = 83; 51% pos)

Software platforms LS CU LS CU LS/CU

Sensitivity 82% 85% 70% 75% 80%

Specificity 78% 86% 68% 72% 51%

Positive Predictivity 80% 88% 66% 77% 64%

Negative Predictivity 80% 83% 72% 70% 70%

Accuracy 80% 86% 69% 74% 66%

Coverage 100% 70% 86% 78% 93%

Chi-squared 336 35 10.3 14 8

Matthews Correlation Coefficient 0.6 0.71 0.38 0.6 0.4
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evaluating the alerts behind the positive prediction and

examining structurally similar analogs. Perhaps the most

striking finding was that OOD chemicals in CU were

successfully predicted by LS, suggesting that the two software

platforms interpret chemicals differently resulting in different

OOD domain predictions. Moreover, the overall increase in

coverage is desirable for predicting a large diversity of chemicals.

BBB penetration of drugs is a complicated process involving

passive diffusion and active transport (efflux or uptake). The current

data set includes known substrates of active transporters. The model

is agnostic to such complicated processes. Furthermore, the log BB

data entries are collected from different experiments where drugs are

administered through different routes and brain samples are

collected at various time points post administration. Despite all

these complications, the model can estimate BBB permeation with

relatively high precision. In future, utilization of a combination of

models for different transport mechanismsmay further improve the

log BBB predictivity.

5 Conclusion

In the present study, a complementary computational model

has been developed using two software platforms, LS and CU to

predict whether an unknown substance can penetrate the blood-

brain barrier (BBB). The model has a large training set and includes

up-to-date information for drugs and their metabolites, and non-

drugs to provide an optimal domain of applicability. Advantages of

the current data set over previous ones are (i) exclusive use of data

from in vivo rodent experiments and (ii) use of a more balanced

dataset, which allows for more accurate modeling. The current

models demonstrate improved coverage of chemical functional

groups over several of the previously described models and show

good sensitivity and negative predictivity, which are critical

parameters for the safety assessment. Furthermore, the use of

two software platforms was found to increase coverage to 93%.

When predictions are in consensus, greater confidence can be

inferred. However, when predictions are inconclusive or

conflicting among the two software platforms, an expert review

can provide supporting information.

In conclusion, the newly constructed models can be rapidly

deployed during drug development to predict BBB permeability

of drugs and their metabolites and reduce the need to test

laboratory animals. Identification of drug candidates that cross

the BBB can inform strategies for derisking the potential for

abuse liability and to assist with designing CNS drugs.
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Glossary

ABC ATP binding cassette transporters

ANN: Artificial neural networks

ATP Adenosine triphosphate

B/P Brain concentration/plasma concentration

BB Brain concentration/blood concentration

BBB Blood-brain barrier

BCRP Breast cancer resistant protein

BRT Boosted regression trees

CDER Center for drug evaluation and research

CU CASE Ultra

DT Decision tree

FN False negatives

FP False positives

GA Genetic algorithm

GA-CG-SVM Genetic algorithm-conjugate gradient-SVM

GAVS Genetic algorithm based variable selection

kNN k-nearest neighbor

Kp,uu,brain Unbound brain-to-plasma concentration

LDA Linear discriminant analysis

LLC-PK1 Lilly Laboratories cell-porcine kidney cells

LMO Leave-many-out

LS Leadscope

MC Monte Carlo

MDR1 Multi-drug resistance protein 1 (same as P-gp)

ML Machine learning

MLP Multilayer perceptron

MLR Multiple linear regression

NA not applicable

NN Neural network

OOD Out-of-domain

PCR Principle component regression

P-gp P-glycoprotein

PHASE Public health assessment via structural evaluation

PLS Partial least-squares

PS Permeability-surface area

PSA Polar surface area

QSAR Quantitative structure-activity relationship

RF Random forest

ROC Receiver operating characteristic

SMILES Simplified molecular input-line entry systems

SMO Sequential minimal optimization

SVM Support vector machine

SVR Support vector regression

TN True negatives

TP True positives

VSMP Variable selection and modeling method based on the

prediction
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