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The cyclic GMP-AMP synthase-stimulator of interferon genes signal

transduction pathway is critical in innate immunity, infection, and

inflammation. In response to pathogenic microbial infections and other

conditions, cyclic GMP-AMP synthase (cGAS) recognizes abnormal DNA and

initiates a downstream type I interferon response. This paper reviews the

pathogenic mechanisms of stimulator of interferon genes (STING) in

different organs, including changes in fibrosis-related biomarkers, intending

to systematically investigate the effect of the cyclic GMP-AMP synthase-

stimulator of interferon genes signal transduction in inflammation and

fibrosis processes. The effects of stimulator of interferon genes in related

auto-inflammatory and neurodegenerative diseases are described in this

article, in addition to the application of stimulator of interferon genes-

related drugs in treating fibrosis.
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Introduction

Fibrosis is a normal byproduct of chronic tissue injury and is required to regenerate of

injured tissues and organs. Although fibrosis is beneficial in the short term, the long-term

progression of fibrosis may cause dysfunction or even failure of cells and organs (Rockey

et al., 2015; Henderson et al., 2020). Excessive fibrosis leads to abnormal remodeling and

progressive dysfunction of several organs, including the heart, kidneys, lungs, liver, and

other organs (Zhang and Zhang, 2020). Stress reactions and injuries (autoimmunity,
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sepsis, viruses, coronavirus disease 2019, inflammation, ischemia,

metabolic abnormalities, toxins, etc.) can lead to organ fibrosis

(Mack, 2018; Zhou et al., 2018; Horowitz and Thannickal, 2019;

Sun Z. et al., 2020; McDonald, 2021; Ung et al., 2021). In

addition, the pathophysiological process of fibrosis involves

numerous signal transduction pathways, such as Ca2+, Janus

kinase (JAK)/signal transducer and activator of transcription

(STAT), phosphatidylinositol-3-kinase (PI3K)/protein kinase B

(Akt), renin-angiotensin-aldosterone (RAAS), transforming

growth factor beta (TGF-β)/Smad, wingless/integrated (Wnt)/

β-catenin and many others (Mezzano et al., 2001; Goh et al.,

2015; Hu et al., 2018; Feng et al., 2019; Hu H. H. et al., 2020;

Montero et al., 2021; Qin et al., 2021). These signaling pathways

interact to form a complex network of pathogenic mechanisms

for fibrosis.

Ishikawa and Barber’s team discovered STING in 2008 and

demonstrated that STING could facilitate the expression of type I

interferons (IFN-1) as a defense against viral infection (Ishikawa

and Barber, 2008). Since then, STING, one of the key participants

in innate immunity, has gradually entered our view. Its primary

physiological role is to trigger responses such as innate immunity

and inflammation after recognising abnormal DNA (both

exogenous pathogenic and endogenous DNA) by the cGAS

(Hopfner and Hornung, 2020). Recent studies have shown

that STING signal transduction occurs in the remodeling and

fibrosis of various organs. The above process involves the

interaction of multiple mechanisms, such as TGF-β/Smad and

JAK/STAT signal transduction pathways.

There are still no effective treatments for fibrosis. Therefore,

more research is essential to understand how fibrosis works and

to discover viable therapeutic strategies. This article mainly

explores the effects of STING and related molecules in

exacerbating inflammation and promoting fibrosis in different

organ diseases, exploring possible new directions for therapeutic

targets. Molecular mechanisms of STING and its interactions

with other signaling pathways are also included, which are

extremely valuable for further clarification of the pathological

process of organ fibrosis. In addition, studies of STING-related

drugs were reviewed to explore their mechanisms of action and

research advances. Finally, we elucidate current issues and

perspectives for further research in the future.

Summary of the cyclic GMP-AMP
synthase-stimulator of interferon
genes signal transduction process

The discovery of the cyclic GMP-AMP
synthase-stimulator of interferon genes
signal transduction pathway

STING (or called ERIS, MITA, MPYS, TMEM173) (Jin et al.,

2008; Zhong et al., 2008; Ishikawa et al., 2009; Sun et al., 2009),

which is located in the endoplasmic reticulum (ER), was first

reported by Ishikawa and Barber’s team in 2008. It contributes to

activating interferon regulatory factor 3 (IRF3) and nuclear

factor-kappa B (NF-κB) to increase IFN-1 production and

thus resist virus attack (Ishikawa and Barber, 2008). Zhong

et al. further demonstrated the vital effect of TANK binding

kinase 1 (TBK1) in STING-induced IRF3 activation (Zhong et al.,

2008). In 2013, Wu and Sun et al. discovered that cyclic

guanosine monophosphate-adenosine monophosphate (cyclic

GMP-AMP, or cGAMP) in mammalian cells could act as an

endogenous second messenger to sense cytoplasmic DNA,

thereby triggering STING and downstream interferon

production (Wu et al., 2013). In the same year, they identified

a newDNA sensor in the cytoplasm called cGAS, which identifies

cytoplasmic DNA and promotes cGAMP production, thereby

activating STING (Sun et al., 2013). At this point, the overall

structure of the cGAS-STING signal transduction path was

understood, and new studies related to its more specific

perspectives have begun to emerge one after another.

Activation and physiological effects of the
cyclic GMP-AMP synthase-stimulator of
interferon genes signal transduction
pathway

As mentioned above, the initiation of the STING signal

transduction needs to be triggered by cytoplasmic DNA.

Sources of cytoplasmic DNA include bacteria, viruses, tumor

cells, micronuclei, damaged mitochondria, etc. cGAS senses

DNA from the above sources and undergoes conformational

changes, thereby catalyzing the synthesis of the second

messenger cGAMP containing 2′-5′ and 3′-5′ phosphodiester
bonds from ATP and GTP (Ablasser et al., 2013; Gao et al., 2013;

Zhang et al., 2013). Notably, the way cGAS recognizes DNA is

highly correlated with DNA length, which means that only DNA

of a certain length can effectively activate cGAS and promote the

production of IFN (Andreeva et al., 2017; Luecke et al., 2017). It

was shown that STING located in the endoplasmic reticulum had

bound a large amount of TBK1 before being activated, and these

TBK1 were also in an equally inactive state (Zhang et al., 2019).

The conformation of STING changed after binding to cGAMP.

The structural site used to bind the ligand rotates 180° clockwise

relative to the transmembrane part and releases the C-terminal

tail. Eventually, multiple STING molecules in parallel undergo

oligomerization and form disulfide bonds on cysteine residue

148 to stabilize the structure (Ergun et al., 2019; Shang et al.,

2019). At the same time, STING, which binds cGAMP, exits the

ER and translocates to the ER-Golgi intermediate compartment

(ERGIC) and the Golgi. This is a coat protein complex II (COP

II)-dependent process and is also regulated by ADP-ribosylation

factor (ARF) GTPases (Dobbs et al., 2015; Gui et al., 2019).

TBK1 bound to STING is approached by forming a STING
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polymer and eventually activated by trans-autophosphorylation

(Zhang et al., 2019; Zhao et al., 2019). Activated TBK1 catalyzes

the phosphorylation of serine residues in the pLxIS motif on the

C-terminal tail domain of STING, thereby allowing IRF3 to be

recruited and bound to this motif (Liu et al., 2015). At this time,

the neighboring TBK1 phosphorylates and dimerizes IRF3,

which then regulates gene expression to generate IFN-1.

Furthermore, inhibitor of kappa B kinase (IKK) is also

recruited by STING to activate downstream NF-κB and

facilitate the synthesis of pro-inflammatory cytokines such as

interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis

factor-alpha (TNF-α). Notably, it remains undetermined

whether this process requires the mediating role of TBK1

(Konno et al., 2013; Abe and Barber, 2014; Fang et al., 2017;

de Oliveira Mann et al., 2019; Balka et al., 2020).

Based on previous research, the effective range of cGAS-

STING has been extended to include all aspects of resistance to

infection by pathogenic microorganisms (bacteria, viruses,

parasites), anti-tumor, fibrosis, immunity, and inflammation.

Inflammation is closely associated with fibrosis, and the

former is often the initiating factor of the latter (Mack, 2018).

Pro-inflammatory cytokines can be generated by the activated

STING pathway and promote the onset and spread of

inflammation. It can, for example, promote the conversion of

endothelial cells, which are one of the vital participants in the

formation and spread of inflammation (Zhao et al., 2021), into a

pro-inflammatory phenotype (Pober and Sessa, 2007). In

addition, activated endothelial cells can produce abundant

chemokines and recruit mononuclear macrophages (Butcher,

1991) capable of producing inflammation-associated cytokines

and TGF-β (Arabpour et al., 2021). Previous extensive

conclusions have shown that TGF-β is conducive to the

multiplication of fibroblasts and the aggregation of ECM, such

as collagen (Fine and Goldstein, 1987; Clark et al., 1997). The

above is only one aspect of STING-driven inflammation and

fibrosis, and more specific molecular mechanisms remain to be

added.

cyclic GMP-AMP synthase-stimulator of
interferon genes is one of the
interconnected and interacting pro-
fibrotic signal pathways

TGF-β signal transmission contributes to fibrogenesis (Meng

et al., 2016). TGF-beta receptor II (TGF-β RII) is activated by

autophosphorylation after binding to TGF-β. TGF-β RII then

recruits and phosphorylates TGF-beta receptor I (TGF-β RI), the
next factor that activates Smad2/3. During this process,

Smad4 forms a trimer with activated Smad2/3. It is

transported to the nucleus, thereby enhancing the synthesis of

a range of molecules associated with fibrosis, including

fibronectin, alpha-smooth muscle actin (α-SMA), collagen,

and so on (Heldin and Moustakas, 2016; Meng et al., 2016;

Hu et al., 2018). In addition, the above processes facilitate the

transformation of non-myofibroblasts into myofibroblasts and

the activation of myofibroblasts, thus promoting the deposition

of ECM (Mack and Yanagita, 2015; Meng et al., 2016). Activation

of ER stress can be observed in mice receiving aortic banding or

angiotensin II-induced cardiomyocytes, and in mice receiving

CCl4 (Iracheta-Vellve et al., 2016; Zhang et al., 2020). ER stress

was shown to facilitate the stimulation of the cGAS-STING axis

(Zhang et al., 2020), thereby promoting the generation of IFN-1

and NF-κB. Pro-inflammatory cytokines produced by NF-κB can

promote the transcription and expression of TGF-β isoforms

(Villiger et al., 1993). Notably, macrophages at the site of

inflammation can continue to secrete inflammation-associated

cytokines or TGF-β (Arabpour et al., 2021). In addition,

angiotensin II can also promote the generation of TGF-β (Liu

et al., 2017). As a result of the above interactions, the cGAS-

STING signaling axis establishes an interconnection with the

TGF-β/Smad signal transduction process, which is involved in

fibrogenesis.

Numerous studies have confirmed that the JAK/STAT signal

transduction is also closely relevant to the fibrotic process in

many diseases, such as diabetic nephropathy (Zhang et al., 2021).

The cGAS-STING signaling pathway produces interleukins and

interferons that can function as ligands for the JAK/STAT

signaling pathway. The receptor undergoes dimerization upon

attachment to the ligand. JAK then couples to the receptor and

undergoes phosphorylation activation, which then recruits and

phosphorylates STAT, at which point the phosphorylated STAT

forms a dimer and enters the nucleus, thereby regulating

transcription and expression of the relevant genes (Morris

et al., 2018; Bharadwaj et al., 2020; Montero et al., 2021;

Zhang et al., 2021).

As a possible inducing factor of fibrosis, apoptosis is closely

related to STING (Iracheta-Vellve et al., 2016). BCL-2-associated

X protein (BAX) is an apoptosis-promoting protein involved in

the mitochondrial apoptotic pathway, and its levels can be

upregulated by STING (Li A. et al., 2019). On the one hand,

BAX increases the permeability of the mitochondrial membrane

to induce the leakage of cytochrome C and then initiates

apoptosis through caspase-9 and downstream caspase-3/7

(Murthy et al., 2020; Xiong et al., 2021). On the other hand,

mitochondrial DNA (mtDNA) released from mitochondria can

activate cGAS. In addition, ER stress is also involved in

promoting the interconnection between STING and BAX

(Murthy et al., 2020). STING can also activate the MAPK

pathway, but the exact mechanism remains to be investigated

(Hopfner andHornung, 2020). From the information available to

date, the pro-fibrotic effects of STING are achieved, at least in

part, through several of the classical fibrotic pathways described

above. Activated STING mediates inflammatory tissue damage,

thereby inducing the process of tissue repair and fibrosis. The

TGF-β pathway is an essential player in the latter, actively
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responding to the STING-induced inflammatory

microenvironment. In addition, STING activates numerous

downstream effector molecules (e.g., NF-κB, IL-6, NLRP3,

etc.) that synergistically promote inflammatory responses,

thereby exacerbating tissue damage (Li N. et al., 2019). To

summarize, cGAS-STING forms an intricate network with

numerous molecules and mechanisms involved in the fibrosis

process (the above process is summarized in Figure 1).

FIGURE 1
Crosstalk of the cGAS-STING signal transduction during inflammation and fibrosis. Cytoplasmic DNA from bacteria, viruses, dead cells,
mitochondria, and extracellular vesicles is recognized by cGAS and thus activates STING. STING then exits the ER and transfers to the Golgi
apparatus. During this process, STING completes the recruitment of TBK1 and IKK, as well as the activation of IRF3 and NF-κB. TGF-β activates TGF-β
receptors, resulting in phosphorylation of Smad2/3. The activated Smad2/3 enters the nucleus to promote transcription of fibrosis-related
genes. The pro-inflammatory cytokines produced by NF-κB can act on the signal transmission process of TGF-β/Smad. IFN from the STING pathway
activates the IFN receptor, which is sequentially phosphorylated by the receptor-coupled JAK as well as downstream STAT, and the phosphorylated
STAT dimer transfers to the nucleus to modulate gene transcription. cGAS is subject to negative regulatory effects induced by mTORC1 and Akt. It
can also be inhibited in activity by TTLL4 and TTLL6, thus antagonizing the activation of STING. The apoptosis of the Bax pathway is initiated by
caspase-9 and executed by caspase3/7, thus inhibiting the effect of cGAS initiation. α-SMA, alpha smoothmuscle actin; Akt, protein kinase B; APAF1,
apoptotic protease activating factor-1; BAX, BCL2-associated X protein; cGAMP, cyclic GMP-AMP; cGAS, cyclic GMP-AMP synthase; COP II, coat
protein complex II; ECM, extracellularmatrix; ER, endoplasmic reticulum; IFN, interferon; IFNAR, the interferon-α/β receptor; IKK, inhibitor of kappa B
kinase; IL, interleukin; IRF, interferon regulatory factor; ISGs, interferon-stimulated genes; JAK1, janus kinase 1; MCP-1, monocyte chemoattractant
protein-1; MMPs, matrix metalloproteinases; mTORC1, mechanistic target of rapamycin complex 1; NF-κB, nuclear factor-kappa B; NLRP3, NOD-
like receptor thermal protein domain associated protein 3; STAT, signal transducer and activator of transcription; STING, stimulator of interferon
genes; TBK1, TANK binding kinase 1; TGF-β, transforming growth factor beta; TGFβR, transforming growth factor beta receptor; TIMP, tissue inhibitor
of metalloproteinase; TNF, tumor necrosis factor; TRIM, tripartite motif; TTLL, tubulin tyrosine ligase-like enzymes; TYK2, tyrosine kinase 2; VCAM,
vascular cell adhesion molecule.
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The cyclic GMP-AMP synthase-
stimulator of interferon genes signal
path is a mediator of inflammatory
and fibrotic processes in numerous
diseases

The aberrantly activated cyclic GMP-AMP
synthase-stimulator of interferon genes
axis drives autoimmune and
autoinflammatory diseases

STING-mediated physiological effects are critical for fighting

pathogenic microorganisms such as viruses and bacteria and

maintaining normal host immune function. However, excessive

stimulation of cGAS and STING for various reasons can also lead

to autoimmune and autoinflammatory diseases.

Aicardi-Goutières syndrome (AGS) can be caused by

mutations in the human three-prime repair exonuclease 1

(Trex1) gene, which is essential for DNA degradation and

preventing cytoplasmic DNA accumulation (Gall et al., 2012;

Gao et al., 2015). Previous findings have suggested that intact

Trex1 negatively regulates STING-mediated effects.

Fibromyositis of the heart occurs in Trex1-deficient mice,

especially extensive fibrosis near the endocardium. In

addition, fibromyositis also occurs in the skeletal muscles and

tongue (Gall et al., 2012). In addition, mutations in Trex1 have

previously been shown to be highly relevant to familial chilblain

lupus (FCL), retinal vasculopathy with cerebral leukodystrophy

(RVCL), and systemic lupus erythematosus (SLE) (Lee-Kirsch

et al., 2007; Rice et al., 2007; Rice et al., 2015). In recent years,

elevated levels of cytoplasmic double-stranded DNA (dsDNA),

IFN-1, and ISGs have been found in SLE patients, suggesting

start-up of the cGAS-STING axis (Gkirtzimanaki et al., 2018;

Kato et al., 2018; Wang et al., 2018). IFN-1 is an important link in

the progression of SLE and is secreted mainly by dendritic cells

and plasma cells (Murayama et al., 2020; Thim-Uam et al., 2020).

Similarly, a dNTPase named sterile alpha motif and HD domain-

containing protein 1 (SAMHD1) activates the exonuclease

activity of MRE11 and thus participates in DNA replication,

contributing to the degradation of part of the nascent DNA. In

contrast, mutations in SAMHD1 cause chronic stimulation of

STING, which is critical for AGS pathogenesis (Coquel et al.,

2018). Mutations or deficiencies of the ribonuclease H2

(RNASEH2) gene will affect the integrity of DNA, which in

turn leads to AGS (Mackenzie et al., 2016; Aditi et al., 2021). In

addition, there are still many mutations in genes that are

associated with AGS, all of which play a role in nucleic acid

metabolism and are not described here.

Overactivation of the STING signal transduction and

downstream overproduction of interferon are thought to

contribute to autoinflammatory diseases. For example,

functionally acquired mutations in STING are directly related

to STING-associated vasculopathy with onset in infancy (SAVI).

Its main manifestations include rashes, vasculitis, interstitial lung

disease, and so on (Liu et al., 2014). These manifestations are

similar to the clinical features of COPA syndrome (Volpi et al.,

2018). COPA syndrome is an autoimmune disease caused by

COPI coat complex subunit alpha (COPA) mutations with

persistent release and accumulation of IFN-1 (Lepelley et al.,

2020). COPA is indispensable for vesicular transport from the

Golgi to the ER (Brandizzi and Barlowe, 2013), so mutations in

COPA cause STING to stay in the Golgi and overstimulate IFN-1

production (Deng et al., 2020; Lepelley et al., 2020). The above

results are sufficient to demonstrate that overstimulation of

STING deviates from normal immune function and thus leads

to adverse effects.

The role of stimulator of interferon genes
in cardiac remodeling and fibrosis

Cardiac fibrosis is the terminal form of almost all types of

heart disease (Czubryt and Hale, 2021), and STING is

interspersed with fibrosis in various cardiac diseases. It has

been shown that STING expression is increased in the hearts

of dilated cardiomyopathy and hypertrophic cardiomyopathy

patients, and in mice with myocardial remodeling caused by

aortic banding. In addition, knockout of STING exhibited

reduced levels of fibrosis biomarkers such as α-SMA, collagen

type I (Col I), and collagen type III (Col III), and ER stress may be

associated with this process (Zhang et al., 2020). Similarly, in

cardiac failure mice induced by transverse aortic contraction, the

above gene expression did not show an increase after cGAS

knockout, revealing the effect of STING in pathological

remodeling caused by cardiac pressure overload (Hu D. et al.,

2020). It has also been demonstrated that the knockdown of

STING reduces myocardial injury caused by STING-IRF3-

activated NLRP3 (Li N. et al., 2019). The above studies

revealed that the cGAS-STING path is an important

participant in several heart diseases and tends to aggravate

their damage, while inhibition of this signal axis may reduce

the extent of fibrosis.

Stimulator of interferon genes in
pulmonary inflammation and fibrosis

Pulmonary fibrosis exhibits a high morbidity and mortality rate

in various diseases. It severely impairs lung function and

dramatically affects patients’ quality of life. However, few

effective treatments are still available, so the search for new

biomarkers and therapeutic strategies is essential. Current

research suggests that the pro-fibrotic effects of STING are seen

in a variety of lung diseases. Researchers used the induction of silica

to create lung inflammatory injury and fibrosis in mice. They

observed cleavage of caspase-3 and gasdermin D (GSDMD) and
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phosphorylation of mixed-lineage kinase domain-like protein

(MLKL). This demonstrates that silica-treated lung cells die by

apoptosis, pyroptosis, and necroptosis. The dead cells consequently

leak dsDNA, which triggers the action of STING and subsequent

INF-1 (Benmerzoug et al., 2018). Similarly, the lungs of mice

exposed to cigarette smoke are injured and release dsDNA that

initiates the process of cGAS-STING signal transduction, which

aggravates inflammatory injury and fibrosis in the lungs, providing a

new possible therapeutic idea for COPD (Nascimento et al., 2019).

Bleomycin (BLM), an anticancer drug, is often used to induce

pulmonary fibrosis. According to some research, STING is how

BLM causes pulmonary fibrosis to develop. After BLM treatment,

the release of dsDNA was increased and activated the STING-

mediated type 1 interferon response (Seo et al., 2021). This process

involves the TGF-β/Smad path, as evidenced by elevated

phosphorylated Smad2/3, α-SMA and Col-1 (Shi et al., 2022).

Furthermore, STING expression was positively correlated with

TGF-β-induced fibrosis (Sun S. C. et al., 2020), indicating a

synergistic effect of STING and TGF-β in the fibrogenesis

process. The application of some materials, such as graphitized

multi-walled carbon nanotubes (GMWCNTs) in medicine can also

induce inflammation and fibrosis of the lungs, showing thickening

of the alveolar wall and upregulation of STING, TGF-β, and collagen
levels in the diseased lungs (Han et al., 2021). The development of

the coronavirus disease 2019 (COVID-19) has also been mentioned

to involve the STING signaling-mediated type I interferon response

(Neufeldt et al., 2022). Mitochondrial dysfunction, mtDNA release,

cell fusion, and nucleus disruption induced by severe acute

respiratory syndrome coronavirus two infection largely contribute

to the activation of this pathway (Ren et al., 2021; Zhou et al., 2021;

Liu X. et al., 2022; Domizio et al., 2022). While early INF-1 helps to

fight viral infection, late-stage IFN-1 has been shown to exacerbate

the severe COVID-19 inflammatory response andmay be associated

with poor prognosis (Wang N. et al., 2020; Lee et al., 2020; Lee and

Shin, 2020; Galani et al., 2021). Both tissue damage and many

inflammation-associated cytokines contribute to fibrosis after

COVID-19. As well as the above traditional cGAS-STING-

TBK1-IRF3 axis, Zhang et al. reported a non-classical STING-

protein kinase RNA-like endoplasmic reticulum kinase (PERK)-

eukaryotic initiation factor 2 alpha (eIF2α) signaling pathway, which
is independent of each other and the direct activation of PERK by

STING precedes that of TBK1-IRF3. The activation of PERK-eIF2α
can be observed inmice with BLM-induced pulmonary fibrosis, and

either knockout of STING or inhibition of eIF2α can reduce

pulmonary fibrosis (Zhang et al., 2022). This provides a new

possibility for a therapeutic approach targeting STING.

Stimulator of interferon genes and fibrosis
in liver diseases

Fibrosis can be the common outcome of chronic liver disease,

regardless of the cause (Iracheta-Vellve et al., 2016). Illness and

fibrosis often characterise liver injury from various causes (such

as nonalcoholic steatohepatitis and hepatitis virus) (Kisseleva

and Brenner, 2021). Nonalcoholic steatohepatitis (NASH) can be

considered as one of a series of types of nonalcoholic fatty liver

disease (NAFLD), and its characteristics include liver

inflammatory reaction, steatosis, damage to hepatocytes, and

varying levels of fiber deposition (Friedman et al., 2018; Schuster

et al., 2018; Pierantonelli and Svegliati-Baroni, 2019). In mice

with these diseases, STING deficiency or disruption reduced

hepatic steatosis, inflammatory damage and fibrous deposition

(Luo et al., 2018), as indicated by the down-regulated Col1A1 and

α-SMA contents (Yu et al., 2019). In addition, researchers

analyzed liver samples from NASH patients and found that

overall levels of STING and phosphorylated TBK1 were

significantly elevated and consistent with the severity of

fibrosis. At the same time, hepatic stellate cells (HSCs) were

activated, and the overall levels of Col1A1, fibronectin, and TGF-

β1 were significantly upregulated (Wang X. et al., 2020). Infection

with schistosomiasis is also accompanied by liver fibrosis (He

et al., 2020). Liang et al. used western blotting to detect fibrosis

indicators in mice parasitized by Schistosoma japonicum and

found that cGAS knockout mice showed less severe and a smaller

proportion of fibrosis than control mice. Notably, STING

knockout mice did not exhibit the above results, leading the

researchers to conclude that neither STING nor IFN-β is

involved in the fibrotic process in the liver following

Schistosoma japonicum infection (Liang et al., 2022).

Initiation of the STING signal transduction is attributed to

the leakage of mtDNA to the outside of the mitochondria,

followed by upregulation of pro-inflammatory cytokine

expression by NF-κB, which ultimately promotes fibrosis

(Yong et al., 2021; Shen et al., 2022). Additionally, liver

damage and fibrosis caused by microbial DNA can also be

mediated by STING signaling (Luo et al., 2022). The

activation and conversion of HSCs to myofibroblasts has been

shown in numerous studies to be crucial for the formation of

fibrosis (Tsuchida and Friedman, 2017), revealing the role of

STING activation of HSCs in fibrosis. In summary, STING may

be one of the markers of liver fibrosis progression and a target for

treatment.

Stimulator of interferon genes and kidney
disease

Fibrosis of the kidney is the universal pathological

manifestation of chronic renal disease (Romagnani et al.,

2017). It can eventually destroy the kidney’s normal function

and seriously threaten patients’ health. For mitochondrial DNA

to remain intact, transcription factor A (TFAM) is essential.

Enhanced cGAS-STING signaling was observed in kidney

samples deficient in TFAM, accompanied by poor renal

function, high levels of inflammation, and fibrosis, suggesting
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that STING-mediated renal fibrosis can be induced by mtDNA

(Allison, 2019; Chung et al., 2019). Hao et al. studied a folic acid-

induced fibrosis model in mice with renal insufficiency and

found that the overall levels of STING, TBK1, IRF3, and

perforin were elevated in IL-2-treated NK cells. After

treatment with STING inhibitors and high-dose Shenkang

injection, the levels of these substances decreased significantly

and were accompanied by an improvement in renal function. In

addition, similar results from in vitro experiments verified the

above findings. It is proven that Shenkang injection can exert its

anti-fibrosis effect by inhibiting the STING pathway (Hao et al.,

2022). The increased expression of STING, TBK1 and IRF3 could

also be seen in the renal tubular epithelial cells of G2APOL1

(G2 coding variant of apolipoprotein L1) mice, while the collagen

deposition decreased significantly after knockout of STING.

Similarly, STING inhibitors showed protective effects on renal

function, such as reducing the concentration of serum creatinine,

blood urea nitrogen, proteinuria, and the degree of fibrosis (Wu

et al., 2021). Furthermore, some studies have found that in

rhabdomyolysis-induced acute kidney injury mice deficient in

absent in melanoma 2 (AIM2), dsDNA released from injured

muscle cells is turned to activate STING and increase the

expression of IFN-1 and NF-κB, exacerbating inflammation

and fibrosis due to the inability of AIM2 deficiency to

scavenge inflammatory macrophages in time (Baatarjav et al.,

2022).

The relationship between stimulator of
interferon genes and neurodegenerative
diseases

In recent years, some new achievements have been made in

researching the cGAS-STING axis in degenerative neurologic

disorders. Alzheimer’s disease (AD) is a prevalent neurologic

degenerative condition, and its pathological manifestations are

mainly characterized by amyloid beta-peptide (Aβ) plaques and
tau neurofibrillary tangles (Jack et al., 2018; Scheltens et al.,

2021). In addition, more and more studies suggest that

neuroinflammation is a key driver of AD progression. Hou

et al. conducted a study using an APP/PS1 mutant mouse

model of AD and used the nicotinamide adenine dinucleotide

(NAD) precursor nicotinamide riboside (NR) as a treatment and

found significantly elevated levels of NLRP3 inflammasome in

APP/PS1 mutant mice. And both DNA damage and the degree of

inflammation were improved by using NR. Moreover, STING

and cGAS expression was increased in microglia, and NR

decreased cytoplasmic DNA levels in human AD fibroblasts,

suggesting that neural inflammation may be induced by signaling

associated with cGAS and STING (Hou et al., 2021).

Parkinson’s disease (PD) is another common neurologic

degenerative condition. Both in the intrastriatal αSyn
preformed fibril (αSyn-PFF) mouse model of PD and in

microglia cultured in vitro, αSyn-PFFs caused DNA damage,

as evidenced by increased levels of γH2A.X, a marker of DNA

damage. Furthermore, activation of TBK1 in mice and increased

STING expression in human Parkinson’s disease patients show

that STING activation contributes to α-synuclein-induced
neuroinflammation and degeneration (Hinkle et al., 2022).

In mice with amyotrophic lateral sclerosis (ALS),

accumulated TAR DNA-binding protein 43 in the cytoplasm

can lead to mtDNA leakage and thus activate cGAS, ultimately

causing upregulation of NF-κB and IFN-1 levels. In contrast, in

STING-deficient ALS mice, neuroinflammation and

degeneration were ameliorated (Yu et al., 2020). In addition,

the amplification of the GGGGCC sequence in the open reading

frame 72 of chromosome 9p (C9ORF72) is directly related to the

pathogenesis of most familial ALS (DeJesus-Hernandez et al.,

2011; Renton et al., 2011), and deletion of C9ORF72 can promote

STING-mediated IFN-1 production (McCauley et al., 2020).

Superoxide dismutase 1 (SOD1) mutations are another

common cause of inherited ALS (Chen et al., 2013; Mejzini

et al., 2019), resulting in misfolding of the SOD1 protein. In

SOD1mutant ALS mice, cGAS senses mitochondrial destruction

and activates STING (Tan et al., 2022). This evidence provides a

new option for effective interventions in neurodegenerative

diseases, that is, to suppress STING.

Stimulator of interferon genes and other
diseases

In BLM-induced systemic sclerosis mice, an increase in

cytoplasmic DNA was observed, which promoted the

translocation of RNA polymerase III A (POLR3A) and

activated the POLR3A/STING pathway. The result is the

activation of fibroblasts, increased collagen, vascular

endothelial injury, and fibrosis. Both knockout of STING and

the use of H-151 (an inhibitor of STING) can reduce the fibrosis

and vascular lesions of systemic sclerosis (Liu C. et al., 2022).

Mouse colitis and human inflammatory bowel disease (IBD) have

the characteristics of chronic inflammatory injury and fibrosis,

and the high expression of STING can also be observed in their

intestines (Shmuel-Galia et al., 2021). Notably, in addition to

exacerbating colonic inflammation caused by intestinal

microorganisms, STING promotes the expression of the

cytokine IL-10, which has anti-inflammatory properties, to

diminish the extent of colitis. In addition, it also reduces the

production of intestinal polyps and may reduce the potential for

conversion of colitis to cancer. This demonstrates the function of

STING in maintaining immune homeostasis (Ahn et al., 2017).

On the other hand, the mutated autophagy-related protein 16-

like 1 (Atg16l1) gene triggers impaired autophagy, resulting in

reduced STING and cytoplasmic DNA clearance, which is closely

associated with IBD. Treatment with IL-22 can activate the

cGAS-STING pathway by endoplasmic reticulum stress or by
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increasing cytoplasmic DNA, and deletion or mutation of the

Atg16l1 gene has been shown to enhance the IFN-1 levels

elevated by IL-22, thereby exacerbating intestinal

inflammatory injury (Aden et al., 2018). The above results

reveal the association of the Atg16l1 gene, STING and IL-22

in IBD. In addition, recent results show that in mouse ovarian

granulosa cells, mtDNA can activate the STING pathway

through a similar mechanism, causing an increase in

FIGURE 2
The cGAS-STING signaling pathway during organ inflammation and fibrosis. The cGAS-STING signal transduction process is inseparably linked
to inflammation and fibrogenesis in multiple systems, including respiratory, circulatory, digestive, urinary, and neurological systems. The etiology of
fibrosis includes inflammation, injury, toxins, radiation, foreign bodies, parasites, immunity, etc. STING works with TGF-β and many other molecular
mechanisms to promote fibrosis in various organs. Although not all fibrosis etiologies and related mechanisms can be described exhaustively
here, it is certain that the above pathways have a place in the fibrosis of different human systems. α-SMA, alpha smoothmuscle actin; αSyn-PFF, αSyn
preformed fibril; Aβ, amyloid beta-peptide; AB, aortic banding; AIM2, absent in melanoma 2; Ang-II, angiotensin II; Atg16l1, autophagy-related
protein 16-like 1; BLM, bleomycin; cGAMP, cyclic GMP-AMP; DMXAA, 5,6-dimethylxanthenone-4-acetic acid; dsDNA, double-stranded DNA; ECs,
epithelial cells; eIF2α, eukaryotic initiation factor 2 alpha; ER, endoplasmic reticulum; G2APOL1, G2 coding variant of apolipoprotein L1; GMWCNTs,
graphitized multi-walled carbon nanotubes GSDMD, gasdermin D; IFN, interferon; IL, interleukin; IRF, interferon regulatory factor; ISGs, interferon-
stimulated genes; MLKL, mixed-lineage kinase domain-like protein; mtDNA, mitochondrial DNA; NASH, nonalcoholic steatohepatitis; NF-κB,
nuclear factor kappa-B; NLRP3, NOD-like receptor thermal protein domain associated protein 3; NR, nicotinamide riboside; PERK, protein kinase
RNA-like endoplasmic reticulum kinase; POLR3A, RNA polymerase III A; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SASP,
senescence-associated secretory phenotype; STAT, signal transducer and activator of transcription; STING, stimulator of interferon genes; TBK1,
TANK binding kinase 1; TFAM, mitochondrial transcription factor A; TGF-β, transforming growth factor beta; TNF, tumor necrotic factor.
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cytokines such as TNF-α, thereby promoting the spread of

inflammation and interstitial hyperplasia (Liu K. et al., 2022).

Rheumatoid arthritis can be driven by TNF, which also relies on

STING-IRF3-mediated interferon production. In THP-1 cells

chronically treated with TNF, mtDNA was observed to be

released into the cytoplasm and bound to cGAS to initiate a

downstream inflammatory response, consistent with elevated

ISGs in the joints of the mouse model (Willemsen et al., 2021).

Radiation therapy is an important cancer treatment, but the

clinical complications it causes should not be ignored. Treating

malignant tumors with radiation is often complicated by lung

radiation damage, which can eventually cause pulmonary fibrosis.

The activated STING signal axis exists in the macrophages of mice

with radiation pneumonia (RP), suggesting a possible association

with inflammation and fibrosis in RP (Yang et al., 2022a). In

addition, radiation has been shown to accelerate cancer cell

senescence and is associated with an elevated senescence-

associated secretory phenotype (SASP). This process involves

the recognition of radiation-induced dsDNA by cGAS and thus

activates the subsequent effects of STING (Glück et al., 2017;

Takahashi et al., 2018; Constanzo et al., 2021). Furthermore, SASP

after radiation therapy is thought to promote fibrosis (Nguyen

et al., 2018). This partially explains how STING contributes to

fibrogenesis by radiation treatment for cancer. In Figure 2, the

connection between STING and the illnesses of each of the organs

mentioned above is depicted uniformly.

Application of stimulator of interferon
genes agonists and antagonists

Theoretically, STING agonists can aggravate the fibrogenic

effect of cGAS-STING signaling. Therefore, STING activators are

not usually used to treat fibrosis. STING agonists, such as

DMXAA, have been shown to aggravate liver inflammation and

steatosis in mice, as well as increase TNF-α and IL-6 expression

(Yu et al., 2019). In addition, wild-type mouse BMDMs were co-

cultured with human liver stellate cells in conditions containing

TGF-β. When the above cells were treated with DMXAA, the

phosphorylation level of p38 and the content of molecules

associated with fibrous deposition (e.g. α-SMA) were increased

(Luo et al., 2018). Therefore, the application of STING activators in

fibrosis treatment is limited except for experimental purposes.

STING agonists utilize the principle of cGAS-STING-induced type

I interferon response and are now commonly used in clinical

practice as one of the anti-tumor treatments (Jiang et al., 2020;

Wang Y. et al., 2020; Amouzegar et al., 2021). DMXAA and ADU-

S100 (an agonist of STING) attenuated motor dysfunction in mice

with bone tumors and reduced abnormal behavior in mice due to

bone pain. X-rays showed that bone destruction due to tumors was

also ameliorated by STING agonists (Wang et al., 2021). In the

BRCA1-deficient mouse breast cancer model, DMXAA also

promoted the polarization of macrophages to M1 in the tumor

microenvironment, thus enhancing the anti-tumor activity of

macrophages (Wang et al., 2022). In a clinical trial of

melanoma, breast cancer, lymphoma, ovarian cancer, and many

other tumor types, ADU-S100 showed good safety and tolerance,

accompanied by immune activation such as increased levels of

inflammation and active T cell proliferation (Meric-Bernstam

et al., 2022). In addition, the melanoma model of B16-F10 mice

was treated with c-di-GMP packaged with nanoparticles, and the

result was that the drug resistance of the tumor to anti-PD-1 was

reduced (Nakamura et al., 2021). In addition to these, many CDN

analogues or synthetic agonists still play a role in a variety of solid

tumor types (Jiang et al., 2020). The types, effects, safety,

mechanisms, and modes of action of these agonists will be

important future research directions in tumor immunity.

As STING inhibitors, C-178 and C-176 belong to nitrofuran

derivatives. The nitro and furan rings are essential for maintaining

activity, and the group at the 4-position of the phenyl ring also

influences the magnitude of their effects. These two compounds

were shown to inhibit palmitoylation of STING by covalent

modification of cysteine 91 (Cys91) (Haag et al., 2018), whereas

palmitoylation of Cys88/91 is essential for STING activation (Mukai

et al., 2016). In mice, C-178 and C-176 partially reversed the

activating effect of CMA (a STING agonist) on STING. In

addition, using C-176 reduced some clinical manifestations of

AGS syndrome in Trex1 knockout mice. However, the above

two inhibitors did not show inhibitory effects on human STING

(hsSTING) (Haag et al., 2018). C-176 inhibits perinuclear

translocation of STING and NF-κB translocation into the

nucleus, thereby reducing upregulated inflammatory cytokines

and ultimately reducing fibronectin expression to reduce liver

fibrosis (Shen et al., 2022). In addition, C-176 attenuated kidney

fibrosis andGMWCNTs-mediated inflammatory injury and fibrous

deposition in the lung, thereby protecting organ function (Chung

et al., 2019; Han et al., 2021). Intestinal reperfusion injury can

involve the lungs and cause acute tissue damage. C-176 can

significantly reduce apoptosis in this case, thereby improving

lung injury and subsequent fibrosis. Notably, STING inhibition

was accompanied by an increase in AMPK phosphorylation levels,

which suggests an interaction between AMPK and STING from

another perspective (Yang et al., 2022b). Indole urea (H-151) is

derived from 3-acylamino indole, which is also a derivative of

nitrofuran. It is a selective STING inhibitor with high efficiency

and a strong inhibitory effect on both mouse STING and hsSTING

(Haag et al., 2018). It improves heart function in mice after

myocardial infarction (MI) by reducing STING-induced type

1 interferon response and inflammation. In addition, cardiac

remodeling, apoptosis of cardiomyocytes, and the generation of

fibrotic biomarkers, including α-SMA, collagen, etc., were reduced

(Hu et al., 2022; Rech et al., 2022). However, using H-151 did not

seem beneficial in improving mortality in the early stages of MI

(Rech et al., 2022).

Similarly, endogenous nitro fatty acids (NO2-FA) can also

reduce IFN-1 production by inhibiting the palmitoylation of
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STING (Hansen et al., 2018). It is a product of endogenous

unsaturated fatty acids nitrated by nitrogen dioxide and has anti-

inflammatory properties (Delmastro-Greenwood et al., 2015).

The cyclic peptide Actin C is a chlorinated cyclopentapeptides

extracted from the natural medicinal plant Aster Tataricus and

belongs to one kind of Compositae cyclopeptide. It is composed

of one protein amino acid and four non-protein amino acids. In

addition, it also contains two chlorine atoms as functional

groups. Astin C is a STING antagonist that acts at the site on

STING that binds cyclic dinucleotide (CDN), and the

recruitment of IRF3 by STING is thus blocked (Li et al.,

2018). It is worth noting that NO2-FAs, Astin C, and

tetradroisoquinolone acetic acid (compound 18, an inhibitor

of STING) (Siu et al., 2019) were found to be less effective

against human STING. In addition to the above, Hong et al.

substituted phenoxy-methyl in a group of compounds containing

benzene-1-sulfonamido-3-amide groups with phenol hydroxyl

groups, resulting in the compound SN-011, a STING inhibitor

with high affinity for the CDN-binding pocket, which improved

systemic inflammation and clinical outcomes in Trex1 knockout

mice and was shown to be effective in both mice and humans,

with lower toxicity and higher specificity thanH-151 (Hong et al.,

2021). ISD017 is a fusion peptide of the influenza hemagglutinin

protein and is located in the N-terminal region of the

HA2 peptide chain of hemagglutinin. It is another STING

inhibitor effective in both mice and humans. It relies on the

STING ER retention factor stromal interaction molecule 1

(STIM1) to prevent STING migration from the ER to the

Golgi, thereby blocking the downstream activity (Prabakaran

et al., 2021). Given that SN-011 and ISD017 are relatively new

results, their detailed mechanisms and anti-fibrotic effects

remain to be investigated. Details of the application of

STING-related drugs can be found in the Supplementary

Material.

From the currently available information, there is no doubt

that STING inhibitors are effective in improving fibrosis, so more

and more in-depth animal experiments and clinical trials are

essential for the clinical translation of STING inhibitors.

Discussion and prospect

According to general belief, the cGAS-STING axis assists the

body in combating potentially adverse factors such as bacteria,

viruses, and tumors. However, a large number of new results on

the cGAS-STING signal transduction pathway that exaggerate

inflammatory damage and its pro-fibrotic effects show its bad

side. It is now well established that activated cGAS-STING

promotes inflammatory injury and subsequent fibrotic repair,

which enriches the mechanistic system of fibrosis and contributes

to the search for new therapeutic strategies against fibrosis. In

addition, the effects of cGAS-STING pathway activation gave us

many insights. As previously mentioned, auto-inflammatory

diseases characterized by STING overactivation and IFN-1

overexpression (e.g., SAVI and AGS) have more promising

therapeutic targets. STING inhibitors will fundamentally block

the progression of this type of disease by preventing the

continued transmission of STING signals, thereby reducing

excessive inflammatory damage. Inflammation and fibrosis are

often two juxtaposed processes in tissue injury, which means that

numerous patients with congenital autoimmune diseases would

benefit from STING inhibitors, as they often suffer irreversible

organ remodeling. In addition, considering the source of DNA

recognized by cGAS, we believe that the administration of

membrane stabilizers or drugs that protect the integrity of the

nuclear membrane for specific diseases such as radiological lung

injury could help to block the conduction of this pathway from

upstream of STING.

However, many unknown aspects still need to be answered

by future research. For instance, how to discriminate between

one’s DNA and exogenous deleterious DNA, how to maintain

appropriate inflammation, and how to circumvent the

pathogenic effects of STING while making full use of its

immune defenses are all important research directions. The

signaling networks involved in fibrosis are intricate, and here

we identify some of the mechanisms of STING based on existing

studies. However, the specific detailed mechanisms of cGAS-

STING to promote fibrosis remains to be refined, and this will be

the focus of future studies. Many STING inhibitors reverse the

inflammation and fibrosis of diseased organs in animal

experiments. In addition, more and more STING antagonists

sensitive to human STING have been screened out in vitro. The

scope of application of STING inhibitors will expand gradually,

and we believe that future clinical trials will further verify the

potential of STING inhibitors.
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