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Retinopathy of prematurity (ROP), a vascular disease characterized by abnormal

vessel development in the retina, has become a primary cause of blindness in

children around the world. ROP can be developed during two different phases:

vessel loss and vessel proliferation. Once preterm infants with immature retinal

vessel growth are exposed to high level of oxygen inside the incubator, vessel

loss can occur. When infants are exposed to room air, they may experience the

proliferation of vessels in the retina. Althoughmultiple factors are reported to be

involved in the pathogenesis of ROP, including vaso-endothelial growth factors

(VEGFs) and hypoxia-inducible factors, the pathogenesis of ROP is not

completely understood. Although laser therapy and pharmacologic agents,

such as anti-VEGF agents, have been commonly used to treat ROP, the

incidence of ROP is rapidly rising. Given that current therapies can be

invasive and long-term effects are not fully known, the search for novel

therapeutic targets with less destructive properties needs to be considered.

Within the last decade, the field of noncoding RNA therapy has shown potential

as next-generation therapy to treat diverse diseases. In this review, we introduce

various noncoding RNAs regulating ROP and discuss their role as potential

therapeutic targets in ROP.
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Introduction

Retinopathy of prematurity

Retinopathy of prematurity (ROP) is a progressive retinal vascular disease that occurs

in preterm infants. It is characterized by abnormal vessel growth in the retina. The

incidence of ROP has gradually increased due to the development of neonatal care and has

become a leading cause of childhood blindness (Freitas et al., 2018; Filippi et al., 2022).

Various factors including oxygen supplementation, low birthweight or gestational age,

blood transfusion, and sepsis can be risk factors for ROP (Alajbegovic-Halimic et al.,

2015). The progression of the disease can be divided into two phases (Hartnett and Penn,

2012). During phase 1, retinal vessel development is delayed due to various factors, such as
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hyperoxia caused by oxygen supplementation, reactive oxygen

stress, or lowmaternal-derived factors (Graziosi et al., 2020). As a

result, a peripheral avascular region may occur in preterm

infants. During phase 2, when the preterm infants are

returned to room air, the proliferation of retinal vessels can

occur in the avascular region of the retina causing vision loss

(Hartnett and Penn, 2012).

Diverse molecular factors and signaling cascades are involved

in the development of ROP (Hartnett, 2015; Ryu, 2022). There is

evidence of downregulation of hypoxia-inducible factor 1-alpha

(HIF1α), vascular endothelial growth factor (VEGF), and

erythropoietin during phase 1, whereas these factors are

upregulated during phase 2 (Ryu, 2022). Various signaling

pathways, including HIF, VEGF, Wnt, Notch-Sox, and

Semaphorin, are activated in ROP (Chen et al., 2011; Lee

et al., 2014; Hartnett, 2015; Yang et al., 2015; Kim et al., 2016;

Ramshekar and Hartnett, 2021).

Currently, laser photocoagulation has been used as a first-line

therapy to treat ROP (Shulman and Hartnett, 2018; Linghu et al.,

2022). Although laser therapy is a widely used method to treat

ROP, it has been shown to increase the risk of myopia and other

unfavorable ocular outcomes, such as macular dragging (Mintz-

Hittner et al., 2011; Geloneck et al., 2014; Stahl et al., 2019). Anti-

VEGF agents are the alternative therapy to treat ROP. Several

anti-VEGF drugs including bevacizumab, ranibizumab,

pegaptanib, and aflibercept have been investigated in the

context of ROP, but only ranibizumab has received the

indication for the treatment of ROP in Europe and Japan (Lee

and Shirley, 2021). Although, long-term systemic effects of VEGF

inhibition on other organs have been reported, there is no

consensus on the optimal dosage and timing of anti-VEGF

agent administration (Sato et al., 2012; Harder et al., 2014;

Han et al., 2018; Hamad et al., 2020; Seery et al., 2020). Thus,

it is worthwhile to investigate novel therapeutic targets to treat

ROP and reveal more detailed mechanisms regulating ROP.

Noncoding RNAs

Noncoding RNAs (ncRNAs) are RNAs that do not generally

translate proteins. Various types of ncRNAs are reported to play

a critical role in regulating heart, vascular, and neuronal diseases

(Poller et al., 2018; Jae and Dimmeler, 2020; Ryu et al., 2021;

Yoon et al., 2021; Ryu et al., 2022). Compared to messenger RNA

(mRNA), the function of ncRNAs has not been thoroughly

investigated. In this article, we will focus on the role of three

different types of ncRNAs: microRNA (miRNA), long noncoding

RNA (lncRNA), and circular RNA (circRNA).

miRNAs, relatively short ncRNAs with length around

22 nucleotides, have been widely studied in diverse diseases

including ocular diseases. Various miRNAs were differentially

expressed in vitreous humor of patients with ocular diseases

(Ragusa et al., 2013). In addition, expression of miRNAs in

vitreous humor of patients with uveal melanoma was analyzed

and several miRNAs such as miR-146a were significantly

upregulated suggesting their potential use as diagnostic

biomarkers (Ragusa et al., 2015). miRNAs are highly

conserved in mammals and function as modulators during

post-transcription. They can bind to mRNA and inhibit

protein translation or completely break down mRNA (Esteller,

2011). Single miRNAs can target multiple mRNAs and may

involve in various biological processes (Hashimoto et al., 2013).

lncRNAs, longer-length ncRNAs, are typically longer than

200 nucleotides. Although lncRNAs have 5′ capped ends and are

spliced showing similar characteristics as those of mRNAs, they

lack open reading frames (ORF) resulting in the absence of

protein-coding potential. Compared with mRNAs, the

expression of lncRNAs is relatively weak and may differ

depending on the types of species, tissue, or cell (Derrien

et al., 2012). Moreover, the roles of lncRNAs may differ based

on their localization. lncRNAs localized in the nucleus can

modulate gene expression, whereas lncRNAs localized in the

cytoplasm may function as miRNA sponges (Fatica and Bozzoni,

2014).

circRNAs, circular form RNA without 5′ and 3′ ends, are
variable in length and are most frequently created by back-

splicing events. Previously, circRNAs were considered as

byproducts of mRNA processing; however, the diverse

regulatory roles of circRNAs have been reported in various

diseases. The most extensively studied function of circRNAs is

their possible role as miRNA sponges (Hansen et al., 2013; Lasda

and Parker, 2014). Additionally, circRNAs have been reported to

act as protein sequesters or are involved in translation in cases

where an ORF is included within the circRNAs. circRNAs are

stable because they are not readily degraded by exonuclease due

to their circular structure (Ryu et al., 2021). Thus, circRNAs may

be a promising approach to treat various diseases. Recently,

ncRNAs have also been investigated in various retinal vascular

diseases. Compared to other retinal vascular diseases, the

pharmacologic treatment options for ROP are limited. Thus,

in this article, we review studies of ncRNAs in ROP and discuss

their potential as novel therapeutic targets for the treatment

of ROP.

Noncoding RNA studies in
retinopathy of prematurity

We searched Pubmed and Embase databases for ncRNAs

studies in the context of ROP, using the ncRNA-relevant search

terms such as miRNA, lncRNA, and circRNA, and disease-

related terms, such as retinopathy of prematurity, retinopathy,

preterm infants, oxygen-induced retinopathy, retinal

neovascularization, vaso-proliferation, vessel loss, and vaso-

obliteration. We then manually reviewed the title and abstract

of the articles to verify their relevance to our topic and selected
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TABLE 1 microRNAs regulating ROP.

miRNA Expression Study
phase

Effects on
ROP

Study model Key findings Reference

18a-5p Up Phase 2 Inhibits RNV in vivo: OIR mice Inhibits FGF1 and HIF1α Guan et al. (2020)

34a Down Phase 2 Inhibits RNV in vitro: VEGF-treated HRMECs
in vivo: OIR rats

Inhibits Notch1 Shi et al. (2019)

96 Down Phase 1 Inhibits vessel
loss

in vitro: hyperoxia-induced HRMECs
in vivo: OIR rats, vaso-obliteration model (80%
O2)
ex vivo: choroid isolated from rats at vaso-
obliteration phase

Regulates VEGF and
Angiopoietin-2

Desjarlais et al.
(2020)

145 Up Phase 2 Promotes RNV in vitro: hypoxia-treated HRMECs
in vivo: OIR mice

Inhibits TMOD3 Liu et al. (2019)

150 Down Phase 2 Inhibits RNV in vitro: VEGF-induced HRMECs
in vivo: miR-150 KO mice
ex vivo: aortic rings and choroidal explants from
miR-150 KO mice

Inhibits CXCR4, DLL4, or
FZD4

Liu et al. (2015)

181a-5p Down Phase 2 Inhibits RNV in vitro: VEGF-induced HRECs
in vivo: OIR mice

Inhibits Endocan Chen et al. (2020)

182-5p Down Phase 2 Inhibits RNV in vitro: hypoxia-induced HRMECs
in vivo: OIR mice

Inhibits ANG and BDNF Li et al. (2022)

299 Down Phase 2 Inhibits RNV in vitro: COCl2-induced HRECs
in vivo: OIR mice

Inhibits VEGF-A Wang et al. (2022)

ANG, angiogenin; BDNF, brain-derived neurotrophic factor; CXCR4, C-X-C chemokine receptor type 4; DLL4, delta like ligand 4; FGF1, fibroblast growth factor 1; FZD4, frizzled class

receptor 4; HIF1a, hypoxia-inducible factor 1-alpha; HREC, human retinal endothelial cell; HRMEC, human retinal microvascular endothelial cells; KO, knockout; miRNA, microRNA;

Notch1, neurogenic locus notch homolog protein 1; OIR, oxygen-induced retinopathy; RNV, retinal neovascularization; TMOD3, tropomodulin3; VEGF, vascular endothelial growth

factor.

TABLE 2 long noncoding RNAs and circular RNAs regulating retinopathy of prematurity (ROP).

lncRNA Expression Study
phase

Effects
on
ROP

Study model Key findings Reference

MALAT1 Up (P12) Phase 2 Promotes
RNV

in vivo: OIR mice Inhibition of MALAT1 reduced RNV Wang et al.
(2020)

Up Phase 2 Promotes
RNV

in vitro: hypoxia-
induced HUVECs
in vivo: OIR mice

Functions as miR-124-3p sponge and regulates
EGR1 Inhibition of MALAT1 reduced RNV

Xia et al.
(2021)

MEG3 Down (P12) Phase 2 Inhibits
RNV

in vivo: OIR mice Overexpression of MEG3 inhibited RNV through PI3K/AKT/
VEGF signaling pathway and reduced the expression of
inflammatory factors

Di et al. (2022)

MIAT Not applicable Phase 2 Promotes
RNV

in vivo: OIR mice Inhibition of MIAT1 reduced RNV by regulating PI3K/AKT/
VEGF signaling pathway

Di et al. (2021)

TUG1 Up Phase 2 Promotes
RNV

in vitro: CoCl2-treated
HRECs
in vivo: OIR mice

Acts as miR-299 sponge and regulates VEGF-A Wang et al.
(2022)

circRNA

circPDE4B Down Phase 2 Inhibits
RNV

in vitro: hypoxia-
induced HRECs
in vivo: OIR mice

Acts as miR-181c sponge and regulates VHL Deng et al.
(2020)

circZNF609 Up (P17) Phase 2 Promotes
RNV

in vitro: H2O2 or
CoCl2-treated
HUVECs
in vivo: OIR mice

Functions as miR-615-5p sponge and modulates MEF2A
Inhibition of circZNF609 reduced vessel loss and
pathological RNV

Liu et al. (2017)

OIR retinal
circRNAs

Up/down Phase 2 Not
applicable

in vivo: OIR mice May work as ceRNAs in ROP Zhou et al.
(2019)

AKT, protein kinase B; ceRNA, competing endogenous RNA; circRNA, circular RNA; EGR1, early growth reponse 1; HREC, human retinal endothelial cell; HUVEC, human umbilical

endothelial cells; lncRNA, long noncoding RNA; MALAT1, metastasis-associated lung adenocarcinoma transcript 1; MEF2A, myocyte Enhancer Factor 2A; MEG3, maternally expressed

gene 3; MIAT, myocardial infarction-associated transcript; OIR, oxygen-induced retinopathy; PI3K, phosphoinositide 3-kinase; RNV, retinal neovascularization; ROP, retinopathy of

prematurity; VEGF, vascular endothelial growth factor; VHL, von Hippel-Lindau.
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articles for review (Tables 1, 2). By analyzing ncRNA studies in

the context of ROP, we found that most studies focused on phase

2 of human ROP, in which retinal neovascularization (RNV) is

maximized and the anti-angiogenic function of ncRNAs was

investigated. Additionally, we found that the majority of studies

were conducted in oxygen-induced retinopathy (OIR) in vitro or

in vivo models. In the OIR in vitro model, human retinal

microvascular endothelial cells (HRMECs), human retinal

endothelial cells (HRECs), or human umbilical endothelial

cells (HUVECs) were commonly used. Introducing cells to

FIGURE 1
Oxygen-induced retinopathy (OIR) animal models. Animal models commonly used to investigate retinopathy of prematurity (ROP) are shown.
In an OIR mice model, mouse pups and their mothers are placed in hyperoxia 7 days after birth for 5 days, which mimics phase 1 of ROP in humans.
During hyperoxia, shrinkage of newly developed vessels occurs. The animals are then returned to room air (relative hypoxia) for 5 days, which
resembles phase 2 of human ROP. During hypoxia, retinal neovascularization (RNV) begins and maximizes at 17 days after birth. In an OIR rat
model, rat pups and their mothers are exposed to 50% oxygen on the first day and 10% oxygen on the next day, and this cycle is repeated for 14 days.
During this fluctuating oxygen level period, normal vessel development is delayed. From 14 to 20 days, the rat pups aremoved to room air, and RNV is
induced.

FIGURE 2
Majormechanism of noncoding RNAs (ncRNA). Themajormechanisms of ncRNAs regulating ROP are depicted.microRNAs (miRNAs) bindwith
their targetmRNA and degrademRNA or inhibit translation. When long noncoding RNA or circular RNA act as amiRNA sponge, it can prevent miRNA
binding with its target mRNA and recover mRNA processing.
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hyperoxia induced vaso-obliteration, whereas exposing cells to

hypoxia promoted RNV. In addition, VEGF, H2O2, or CoCl2 was

applied to cells to induce ROP. In the case of OIR in vivomodels,

mice or rats were commonly used, and the oxygen level was

altered to mimic human ROP (Figure 1). miRNAs were the most

commonly studied ncRNAs in ROP. Many miRNAs were found

to target angiogenesis-related genes, such as VEGF, HIF1α, and
Angiopoietin-2 (Figure 2). Compared to published research on

miRNAs, there are comparatively few studies of lncRNAs and

circRNAs in the context of ncRNAs in ROP. Most lncRNA and

circRNAs were reported to function as miRNA sponges and

indirectly regulate the target of miRNA (Figure 2).

MicroRNAs regulating retinopathy of
prematurity

Various miRNAs have been investigated for their effects on

ROP (Table 1). The role of miR-18a-5p was studied in both in

vivo and in vitro OIR model (Guan et al., 2020). miR-18a-5p was

found to be upregulated in the OIR retina. Invitreal

administration of the miR-18a-5p mimic, agomiR-18a-5p,

significantly reduced the neovascular area in OIR mice retina.

Similarly, agomiR-18a-5p-treated HRMECs showed reduced

proliferation, migration, and tube formation. In addition,

direct targets of miR-18a-5p, fibroblast growth factor 1

(FGF1) and HIF1α, were found. The mRNA expressions of

FGF1 and HIF1α were significantly reduced after agomiR-18a-

5p treatment in HRMECs. This study revealed that miR-18a-5p

regulates pathological angiogenesis by targeting HIF1α and

FGF1 in the OIR model.

The effect of miR-34a on retinal angiogenesis was studied in

OIR in vitro and in vivomodel (Shi et al., 2019). Previously, miR-

34a was reported to inhibit tumor angiogenesis in endothelial

cells, and the neurogenic locus notch homolog protein 1

(Notch1) pathway has been reported to play an important

role in vascular endothelial growth factor (VEGF)-treated

angiogenesis (Liu et al., 2003; Kumar et al., 2012). Therefore,

the potential relationship of miR-34a and Notch1 in retinal

angiogenesis was also investigated. miR-34a was

downregulated, whereas Notch1 was upregulated in the in

vivo OIR rat models. Similarly, administration of miR-34a

mimic significantly reduced the expression of Notch1 in

VEGF-induced HRMECs. Additionally, silencing of

Notch1 significantly suppressed proliferation, migration, and

tube formation in VEGF-induced HRMECs. Thus, it was

shown that miR-34a reduces retinal neovascularization

through inhibition of Notch1.

The role of miR-96 was investigated by Desjarlais et al.

(2022). Expression of miR-96 was found to be downregulated

in OIR rats and hyperoxia-induced HRMECs. Moreover, miR-96

mimics upregulated pro-angiogenic factors, such as VEGF,

Angiopoietin-2, and FGF2, whereas antagomiR-96 inhibited

these factors. Additionally, intravitreal injection of miR-96

mimic before hyperoxia significantly suppressed the vessel

loss, which suggests that miR-96 has vaso-protective properties.

miR-145 was found to play a significant role in the regulation

of endothelial cells during pathological angiogenesis (Liu et al.,

2019). The investigators revealed that miR-145 directly targets

tropomodulin3 (TMOD3), an actin-capping protein. The

expression of miR-145 was upregulated, whereas the

expression of TMOD3 was downregulated in the retinas of

the OIR mice model and hypoxia-treated HRMECs. The

function of miR-145 was investigated in an in vitro and in

vivo OIR model. miR-145 inhibitor reduced RNV, whereas

miR-145 mimic promoted retinal angiogenesis in HRMECs.

Administration of miR-145 mimic reduced expression of

TMOD3 and altered the structure of actin and endothelial

cells. Additionally, either miR-145 inhibitor or miR-145

inhibitor along with small interfering RNA (siRNA) of

TMOD3 was administered intravitreally in the eyes of OIR

mice. Compared to the control group, the mice group injected

with miR-145 inhibitor showed a significant reduction in

neovascular area. However, when TMOD3 was suppressed

along with miR-145, the neovascular region increased

significantly. These results demonstrated that miR-145

regulates TMOD3 and revealed the role of the miR-145/

TMOD3 axis in pathological RNV of the OIR model.

miR-150 was reported to involve in the pathological RNV

(Liu et al., 2015). The authors found that expression of miR-150

was reduced in the retinal vessels of OIR mice. miR-150 mimic

significantly inhibited proliferation, migration, and tube

formation in HRMECs and the neovascular region in an OIR

in vivo model. Targets of miR-150, C-X-C chemokine receptor

type 4 (CXCR4), delta-like ligand 4 (DLL4), and frizzled class

receptor 4 (FZD4) were identified by using the seed region

sequence of miR-150. The miR-150 mimics were shown to

inhibit the expression of CXCR4, DLL4, and FZD4 in

HRMECs. Moreover, compared to the control, significant

enlargement of the sprouting area of the aortic ring and

choroid was detected in ex vivo experiments of miR-150

knockout mice. This study revealed the anti-angiogenic role of

miR-150 in retinal neovascularization and downstream target

genes of miR-150.

The role of miR-181a-5p in RNV was investigated in an OIR

model (Chen et al., 2020). Previously, endocan was found to

regulate the expression of proangiogenic factors, such as VEGF-

A and VEGF-C, and be involved in cell activation and

angiogenesis of endothelial cells. Endocan was upregulated in

an in vivo experiment using OIR mouse model retinas.

Suppression of endocan reduced survival, proliferation and

tube formation in VEGF-treated HRECs and the neovascular

area in OIR mice retinas. Additionally, the target of endocan,

miR-181a-5p, was predicted using bioinformatics analysis and

verified through the use of a luciferase assay. miR-181a-5p mimic

inhibited proliferation, tube formation, survival in VEGF-treated
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HRECs. Moreover, overexpression of miR-181a-5p reduced the

neovascular area in OIR mice retinas. Although the authors

found the anti-angiogenic function of miR-181a-5p and miR-

181a-5p/endocan regulatory axis, the effects of miR-181a-5p on

other angiogenic pathways remain to be discovered in further

research.

In a study by Li et al. (2022) the target of angiogenin (ANG)

and brain-derived neurotrophic factor (BDNF) was revealed to

be miR-182-5p. ANG was shown to be a pro-angiogenic factor

that accelerates cell growth and endothelial tube formation

(Miyake et al., 2015). Additionally, BDNF was found to

promote migration and angiogenesis in endothelial cells

(Matsuda et al., 2012). Through bioinformatics, the authors

predicted that miR-182-5p was a potential target of ANG and

BDNF. The expression level of miR-182-5p was downregulated,

whereas the expressions of ANG and BDNF mRNA were

upregulated in the retinas of OIR mice and hypoxia-induced

HRMECs. In addition, when miR-182-5p mimic was introduced,

the expression of ANG and BDNF was reduced in hypoxia-

induced HRMECs. Compared to the scramble group, the miR-

182-5p mimic group showed decreased cell migration and

increased cell viability and tube formation in hypoxia-induced

HRMECs (Li et al., 2022). Thus, the authors discovered that miR-

182-5p, ANG, and BDNF can be potential targets to treat RNV.

Long noncoding RNAs regulating
retinopathy of prematurity

Several lncRNAs have been investigated in terms of their role

in ROP (Table 2). The pro-angiogenic role of lncRNAmetastasis-

associated lung adenocarcinoma transcript 1 (MALAT1) was

revealed in two studies (Wang et al., 2020; Xia et al., 2021). Wang

et al. reported that lncRNA MALAT1 expression was

upregulated in OIR mice. Compared to the control, inhibition

of MALAT1 reduced RNV and suppressed CCN1/Akt/VEGF

pathway and inflammatory cytokines, including IL-1β, IL-6, and
TNF-α, during hyperoxia (Wang et al., 2020). These results

suggest that the inhibition of lncRNA MALAT1 may reduce

the progression of ROP. In addition, Xia et al. revealed that

lncRNA MALAT1 can act as an miR-124-3p sponge and

modulate early growth response 1 (EGR1) (Xia et al., 2021).

The expression levels of miRNAs, lncRNAs, and mRNAs in an

OIRmice model were evaluated in the microarray. miR-124-3p, a

significantly downregulated miRNA in microarray, was selected

for further study. As shown in themicroarray, expression of miR-

124-3p expression was significantly reduced in a hypoxia-

induced in vitro model. The addition of miR-124-3p inhibited

proliferation and migration, whereas suppression of miR-124-3p

promoted proliferation and migration of hypoxia-treated

HUVECs. Through bioinformatics analysis, the interacting

partners of miR-124-3p, lncRNA MALAT1, and EGR1 were

predicted. The expression of EGR1 and lncRNA MALAT1 was

upregulated in hypoxia-treated HUVECs and retinas of OIR

mice. Overexpression of miR-124-3p or inhibition of

MALAT1 also suppressed EGR1 in hypoxia-induced

HUVECs. Thus, the results of the study revealed the novel

regulatory axis of lncRNA MALAT1/miR-124-3p/EGR1 in

OIR in vitro and in vivo models.

The role of the maternally expressed gene 3 (MEG3) in ROP

was revealed by Di et al. (2022). Intravitreal injection of

MEG3 overexpressing lentivirus reduced retinal angiogenesis

via VEGF/phosphoinositide 3-kinase (PI3K)/protein kinase B

(Akt) signaling pathway and suppressed inflammatory markers,

such as IL-1β and IL-6 in OIR mice. Additionally, this research

group also investigated the effect of lncRNA myocardial

infarction-associated transcript (MIAT) in the OIR mice

model (Di et al., 2021). The investigators found that

silencing lncRNA MIAT by administering intravitreal

injection suppressed retinal angiogenesis through

downregulation of the VEGF/PI3K/Akt pathway. Thus,

lncRNA MEG3 or MIAT may be a promising therapeutic

target to treat ROP.

Lastly, Wang et al. explored the function of lncRNA

TUG1 in retinal angiogenesis (Wang et al., 2022).

Previously, lncRNA TUG1 was studied in various cancer;

however, its role in retinal angiogenesis was not investigated.

The authors found that the expression of TUG1 was

upregulated in the retinas of OIR mice, whereas the

expression of miR-299-3p was downregulated. They

showed that knockdown of lncRNA TUG1 reduced RNV,

apoptosis, inflammation, and the level of angiogenesis

markers such as VEGF-A in OIR mice retinas. Moreover,

lncRNA TUG1 was found to act as a miR-299-3p sponge and

modulate VEGF-A. Overexpression of miR-299 inhibited

VEGF and TUG1 and reduced tube formation, migration,

and apoptosis in CoCl2-treated HRECs.

Circular RNAs regulating retinopathy of
prematurity

There are a few studies in which the role of circRNA in ROP

has been investigated (Table 2) (Liu et al., 2017; Zhou et al., 2019;

Deng et al., 2020). Deng et al. reported that the expression of

circPDE4B was decreased in hypoxia-treated HRECs and retinas

of OIR mice (Deng et al., 2020). Overexpression of circPDE4B

inhibited the expression of angiogenic factors, such as HIF1α and
VEGF-A, cell proliferation, and vascular tube formation in vitro.

Moreover, the authors found that circPDE4B works as a miR-

181c sponge and modulates von Hippel-Lindau (VHL). This

study revealed the anti-angiogenic function of circPDE4B and

found that circPDE4B/miR-181c/VHL regulatory axis

regulates ROP.

Liu et al. investigated the function of circZNF609 (Liu et al.,

2017). The expression of circZNF609 was upregulated during
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hypoxia. Inhibition of circZNF609 promoted cell viability,

migration, and tube formation and suppressed RNV in OIR

mice model. Using bioinformatics databases, the investigators

predicted miR-615-5p would interact with circZNF609.

CircZNF609 was verified to act as a miR-615-5p sponge in

H2O2-treated HUVECs. Subsequently, the downstream target

of miR-615-5p, Myocyte Enhancer Factor 2A (MEF2A), was

predicted using a bioinformatic database. Overexpression of

MEF2A reduced cell migration and tube formation promoted

by inhibition of circZNF609. Therefore, circZNF609/miR-615-

5p/MEF2A axis was revealed to regulate vascular endothelial cell

function.

CircRNA profiles of retinas from OIR and normal mice

were analyzed by Zhou et al., 2019. They revealed

differentially expressed circRNA, miRNA, and mRNA in

the OIR mice model. Based on gene ontology analysis,

angiogenesis was found to be one of the more prevalent

biological processes. The potential of circRNA acting as

competing endogenous RNA (ceRNA) was predicted using

a bioinformatics database, miRanda. The levels of expression

of selected circRNA, miRNA, and mRNAs were verified

using RT-qPCR, suggesting that various circRNA-miRNA-

mRNA regulatory axes may be involved in the progression

of ROP.

Strategies to modulate ncRNAs

By overexpressing or inhibiting ncRNAs, the progression

and severity of ROP can be modulated. miRNA can be

overexpressed by using miRNA mimics or microRNA

expression vectors. miRNA mimic, a synthetic miRNA

with the identical sequence as an endogenous miRNA, can

be used to upregulate expression of miRNA. Double-stranded

miRNA mimic is processed to single-stranded miRNA inside

RNA-induced silencing complex (RISC) and subsequently

inhibit target mRNA (van Rooij and Kauppinen, 2014).

Several miRNA mimics have been investigated in clinical

trials. For example, MRX34, the miR-34a mimic, was

investigated in phase 1 clinical trials with liver cancer (Beg

et al., 2017; Hong et al., 2020). miRNA expression vectors are

promoter-containing vectors designed to express miRNAs of

interest (Ling et al., 2013). For instance, miR-26a expression

vector was used to inhibit the progression of cancer in the

in vitro and in vivo hepatocellular carcinoma model (Kota

et al., 2009). On the other hand, miRNAs can be suppressed

by anti-miR or miRNA sponge (Ling et al., 2013). Anti-miR is

an antisense oligonucleotide that inhibit target miRNAs and

has a partially or fully complementary sequence to its target

endogenous miRNA. Miravirsen, miR-122 anti-miR, was

tested for the treatment of hepatitis C virus infection in

phase 2 clinical trial (Janssen et al., 2013). miRNA sponge

vectors are designed to contain multiple complementary

sequence sites of single or multiple miRNAs of interest

(Ebert et al., 2007; Chang, 2018). For instance, the miR-

122 sponge vector reduced miR-122 in liver and effectively

inhibited cholesterol level for 25 weeks in miR-122 sponge

vector-injected mice (Xie et al., 2012). Furthermore,

backbone or sugars of miRNA mimics or miRNA

inhibitors can be modified to enhance stability (Baumann

and Winkler, 2014).

LncRNAs can be overexpressed by constructing lncRNA

overexpression plasmids. For instance, promoter region of

lncRNAs can be combined with CRISPR activator complex to

upregulate transcription of lncRNA (Dominguez et al., 2016;

Lim et al., 2020). Strategies to inhibit lncRNA vary depending

on localization. Nuclear lncRNAs can be suppressed by

antisense oligonucleotides via degradation through RNase

H. On the other hand, cytoplasmic lncRNAs can be

suppressed by siRNAs via RNA interference (Lennox and

Behlke, 2016). In addition, CRISPR-Cas 13 system can be

used to inhibit or degrade lncRNA (Cox et al., 2017; Zhang

et al., 2020). CircRNA can be upregulated using the circRNA

overexpression vector through induction of backsplicing

(Kramer et al., 2015). On the contrary, circRNAs can be

downregulated by siRNAs, given that most circRNAs are

enriched in the cytoplasm (Jeck et al., 2013).

Future perspective on ncRNA therapy

Recently, RNA therapies have received attention, and

several ncRNA therapeutics are under clinical trials

(Huang et al., 2020; Winkle et al., 2021). Various ncRNAs

have been investigated for their uses in diagnosis and

treatment. To date, miRNA therapeutics have been

explored in various diseases, including hepatitis C virus

infection and cancer, and have undergone clinical trials

(Janssen et al., 2013; Beg et al., 2017; van der Ree et al.,

2017). Currently, there are few pharmacological options for

the treatment of ROP, and laser therapy can be invasive and

increase the risk of myopia and other undesirable ocular

outcomes; thus, it is worth finding novel therapeutic targets

(Ryu, 2022). Compared to conventional therapy, ncRNA

therapy can be effective against targets that have been

unresponsive to the currently available drugs and the

stability of RNA therapy can be enhanced by using

carriers, such as liposomes (Ozpolat et al., 2014; Damase

et al., 2021). Additionally, RNA therapy does not cause gene

alteration. Because ROP occurs in preterm infants, the

incidence is low compared to other retinal diseases such as

diabetic retinopathy, it may not be a promising research and

development target for pharmaceutical companies. Thus,

RNA therapy is a reasonable treatment option in ROP,

especially given that it is less expensive to develop than

conventional therapy.
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Conclusion

Although laser therapy and anti-VEGF agents have been used

to treat ROP, the ROP incidence has increased and current

therapies pose risks due to invasive methods and lack of data

on long-term safety issues and dosage. Recently, RNA therapy has

been extensively investigated in diverse diseases and has shown

potential as a novel therapy. Among the different types of RNAs,

ncRNAs have been investigated as emerging therapeutics in many

diseases. In this article, we discussed the role of ncRNAs, including

miRNAs, lncRNAs, and circRNAs, that have been investigated in

the context of ROP. Because ROP can be regulated through

overexpression or inhibition of ncRNAs, modulation of ncRNA

can be a novel therapeutic approach to treat ROP.
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