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The ongoing COVID-19 pandemic caused by severe acute respiratory

syndrome coronavirus-2 (SARS-CoV-2) poses a never before seen challenge

to human health and the world economy. However, it is difficult to widely use

conventional animal and cell culture models in understanding the underlying

pathological mechanisms of COVID-19, which in turn hinders the development

of relevant therapeutic treatments, including drugs. To overcome this

challenge, various three-dimensional (3D) pulmonary cell culture models

such as organoids are emerging as an innovative toolset for simulating the

pathophysiology occurring in the respiratory system, including bronchial

airways, alveoli, capillary network, and pulmonary interstitium, which provide

a robust and powerful platform for studying the process and underlying

mechanisms of SARS-CoV-2 infection among the potential primary targets

in the lung. This review introduces the key features of some of these recently

developed tools, including organoid, lung-on-a-chip, and 3D bioprinting,

which can recapitulate different structural compartments of the lung and

lung function, in particular, accurately resembling the human-relevant

pathophysiology of SARS-CoV-2 infection in vivo. In addition, the recent

progress in developing organoids for alveolar and airway disease modeling

and their applications for discovering drugs against SARS-CoV-2 infection are

highlighted. These innovative 3D cell culture models together may hold the

promise to fully understand the pathogenesis and eventually eradicate the

pandemic of COVID-19.
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1 Introduction

The world has been facing coronavirus 2019 (COVID-19)

pandemic for 3 years, caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) (Wang C. et al., 2020;

Castiello et al., 2022; Luo et al., 2022). Although most COVID-19

patients present mild or moderate symptoms including cough,

fever, fatigue, shortness of breath, and pharyngodynia, critically

ill patients of COVID-19 always present severe respiratory

complications such as pulmonary edema, acute respiratory

distress syndrome (ARDS), and even death (Chen et al., 2020;

Guan et al., 2020; Huang et al., 2020). Therefore, COVID-19

which has led to such a global health crisis with huge economic

and social impact requires urgent and thorough investigations to

elucidate its mechanisms of pathogenesis and explore

corresponding therapeutic treatments as well as potential

post-disease implications.

However, these investigations so far have been limited by the

scarcity of suitable models to mimic the pathophysiological

processes of SARS-CoV-2 infection that occur during

COVID-19 in vivo. Conventional models used to

experimentally investigate pathophysiology of human diseases

include animal-based models (de Oliveira et al., 2021; Lee and

Lowen, 2021). Several kinds of animals including mice (Dinnon

et al., 2020), hamsters (Tostanoski et al., 2020), ferrets (Cox et al.,

2021), and non-human primates (NHPs) (Corbett et al., 2020;

Maisonnasse et al., 2020) have been used to study pathogenesis

and host responses associated with COVID-19. It is however

difficult to use animal models to recapitulate human physiology

and at the same time decipher fundamental molecular

mechanisms of host-pathogen interactions, viral replication

kinetics, and virus tropism. These animal models are also not

very suitable for early-stage drug screening since they are time-

consuming and often fail to translate to human trials due to the

species difference (Knight, 2008; Konar et al., 2016).

Alternatively, two-dimensional (2D) cell culture systems can be

used as experimental models in the study of COVID-19, which are

both relatively inexpensive and highly efficient (Duval et al., 2017).

But increasing evidence suggests that 2D cell culture systems have

inherent drawbacks. For example, 2D cell culture cannot correctly

mimic the organ’s in vivo architecture and microenvironments

(Elsdale and Bard, 1972; Korff and Augustin, 1999; Ghajar et al.,

2008). More specifically, the lung is a complex organ including

23 generations of branching airways, multiple cell types, specified

tubular three-dimensional (3D) geometry, and cyclic stretch

stimulation, which limit the simulating effect using 2D cell

culture (Weibel and Gomez, 1962). A recent report has shown

that SARS-CoV-2 infection arises from the proximal airways

(containing basal, secretory, and ciliated cells) and induces

associated inflammation in distal alveoli (containing type I and

type II cells) (Morrisey and Hogan, 2010; Borczuk et al., 2020; Tay

et al., 2020), which are largely infeasible to be recapitulated by the

traditional 2D cell culture systems.

Fortunately, many novel 3D cell culture toolsets such as

organoid, lung-on-a-chip, and 3D bioprinting have been

developed during the past decade, which provide new

platforms for exploring complex pathophysiology of lung

diseases such as COVID-19 (de Melo et al., 2021). These 3D

cell culture models are indeed gaining increasing momentum to

be the primary choice of experimental methods due to their

physiological relevance and operational flexibility as well as high-

throughput adaptability (Bircsak et al., 2021). Cells cultured in

these 3D models exhibit features close to the complex lung

conditions in vivo, mimic cell-cell and cell-matrix interactions,

and reproduce the morphology and function of the lung (Baker

and Chen, 2012). Thus, it is evident that 3D cell culture models

are advantageous in the investigation of COVID-19 pathogenesis

and the development of therapeutic agents to combat the

pandemic disease.

In this review, we first describe the characteristics of SARS-

CoV-2 and immuno-inflammatory responses related to the viral

infection and pathogenesis of COVID-19, and then summarize

the 3D cell culture models including the traditional air-liquid

interface (ALI) culture and spheroid, and the emerging organoid,

lung-on-a-chip (containing organoplate), and 3D bioprinting

which may be suitable ex vivo models to mimic various vital

lung functions in a cell culture dish. We also highlight the

possibility of building new robust models to recapitulate

different structural compartments of the lung and lung

function, in particular, accurately resembling the

pathophysiology of COVID-19 in vivo. This information may

hopefully help investigators to select and/or develop suitable 3D

cell culture models for the pursuit of mechanistic understanding

and therapeutic treatment of COVID-19.

2 Characteristics and immuno-
inflammatory responses of
SARS-CoV-2

SARS-CoV-2 is a virus with a genome of nearly 30 kb, with

11 open reading frames (ORFs) and 27 viral encoding proteins

(Lu et al., 2020). Among them, an array of ORFs, i.e., ORF 3, 6, 7a,

7b, 8, and 10 are the accessory proteins, and the main structural

viral proteins include spike glycoprotein (S), envelope

glycoprotein (E), membrane glycoprotein (M), and

nucleocapsid proteins (N) (Zhou P. et al., 2020; Wu et al.,

2020). SARS-CoV-2 enters host cells (ciliated, club, alveolar

epithelial type 2 (AT2) cells, vascular endothelial cells, and

alveolar macrophages) by endocytosis mediated by the

interaction of the S proteins with host receptors such as

angiotensin-converting enzyme 2 (ACE2). The S proteins on

the envelope of SARS-CoV-2 are cleaved into S1 and S2 subunits

(Ke et al., 2020). But only S1 consists of the receptor-binding

domain (RBD), which directly binds to the peptidase domain

(PD) of ACE2 to gain entry into host cells (Yan et al., 2020).
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Therefore, the S1 protein/receptor interaction is the critical

determinant for the virus to infect host cells. According to

various mutation sites in the S protein, six main variants of

SARS-CoV-2 viruses have been identified including Alpha, Beta,

Gamma, Delta, Lambda, and Omicron. Some variants are more

transmissible or easier to escape from immunity than others,

which leads to increased transmissibility and a higher viral load

in the human body. Garrett and others (Garrett et al., 2022)

evaluated asymptomatic carriage in a sub-study of the Sisonke

vaccine trial and found that 2.6% of the asymptomatic carriage

during the Beta and Delta outbreaks rose to 16% during the

Omicron period.

Additionally, some host factors can enable and/or facilitate

viral entry. For example, transmembrane protease serine 2

(TMPRSS2) is widely expressed in epithelial cells of the

respiratory tract and could activate SARS-CoV-2 in Calu-3

cells (Bugge et al., 2009; Bestle et al., 2020). Furin also plays a

critical role in the cleavage activation of SARS-CoV-2 spike

proteins (Johnson et al., 2021). Neuropilin-1 (NRP1), which

regulates pleiotropic biological processes, facilitates SARS-

CoV-2 cell entry and infectivity (Cantuti-Castelvetri et al.,

2020; Daly et al., 2020). In brief, these host factors provide an

essential mechanism for SARS-CoV-2 infectivity and a scientific

basis for targeting infected cells to develop antiviral drugs.

Therefore, these host factors’ expression levels in 3D cell

culture models may be an important indicator for selecting

suitable models for SARS-CoV-2 infection study.

Once SARS-CoV-2 infects the host, both innate and adaptive

immune systems initiate to counteract the virus infection. The

innate immune response provides the first line of defense against

SARS-CoV-2 infection in the airways, via various mechanisms

for rapid sensing and suppressing of the viral infection. For

example, the viral infection is detected by endosomal Toll-like

receptor 3&7 (TLR3, TLR7), and melanoma differentiation-

associated gene 5 (MDA5) of the innate immune cells in the

airways (Totura et al., 2015; Zhou et al., 2021). This subsequently

triggers the release of a series of pro-inflammatory factors such as

tumor necrosis factor-alpha (TNF-α), and interleukin 1&6 (IL-1,

IL-6), which together facilitate the early controlling of the viral

infection.

On the other hand, the adaptive immune response provides the

second line of defense against SARS-CoV-2 infection, which is

enabled by a broader and more finely tuned repertoire of

recognition mechanisms for viral infection, involving antigen

presenting cells (APCs), CD4+ T cells, CD8+ T cells and B cells

(Sette and Crotty, 2021). More specifically, following SARS-CoV-

2 infection, the APCs present viral particles to CD8+/CD4+ T cells

via interaction of TCR-MHC I or II, respectively. When exposed to

antigens, CD8+ T cells release cytotoxic granules that are critical for

clearance of virus-infected cells, and CD4+ T cells polarize towards

Th1 and Th2 cells. Then Th1 cells release IFN-γ to eliminate the

virus, and Th2 cells activate humoral immunity (such as B cells) to

generate antibodies that neutralize SARS-CoV-2 (Toor et al., 2021).

Unfortunately, in severe cases of COVID-19 the potential of this

mechanism is significantly limited because the number of APCs is

largely reduced (Zhou R. et al., 2020; Qin et al., 2021).

It is obvious that a deficiency of the immune responses would

give an opportunity for viruses such as SARS-CoV-2 to freely

complete their RNA replication process and subsequent release

of the genetic materials, and ultimately result in reassembling and

release of large amounts viruses (Jiang et al., 2021). However, an

excessive immune response may also trigger excessive

production of inflammatory cytokines, a phenomenon known

as the cytokine storm. For example, in critically ill patients of

COVID-19 the expression of inflammatory cytokines including

IL-2, IL-6, IL-7, IL-10, IP-10, MCP-1, TNF-α, and IFN-γ has

been shown to be excessively elevated, and this kind of cytokine

storm is thought as the main cause of multi-organ failure and

death in COVID-19 patients (Castelli et al., 2020; Hu et al., 2021;

Luo et al., 2022).

3 3D cell culture models to mimic
lung in study of SARS-CoV-
2 infection

With increasing studies of COVID-19, the importance is

acknowledged that different lung regions (airway, alveolus, a thin

epithelial-endothelial barrier, and pulmonary interstitium) play

different essential roles in the pathogenesis and development of

COVID-19. Therefore, 3D cell culture models (ALI culture,

spheroid, organoid, organ-on-a-chip including organoplate,

and 3D bioprinting) which could mimic different structural

compartments of the lung and lung function may be more

suitable for studying different physiopathological processes of

COVID-19 (Figure 1). In addition, these 3D cell culture models

have different advantages in mimicking the physiology and

pathology of diseases (Table 1). For example, the ALI

approach is primarily used to mimic the epithelial air-liquid

interface environment of respiratory tract in the lung. Spheroids

are mainly used in study of tumor growth such as in lung cancer.

Organoids are self-assembled constructs that can “freely” grow in

resemblance to natural development. Organ-on-a-chip has

bridged microfluidic technology and living cells, resulting in a

dynamic biomimetic device (de Oliveira et al., 2021). 3D

bioprinting models can print more complex constructs and

mimic complex anatomical structures.

3.1 3D cell culture to mimic ALI of the lung

The respiratory system provides an ALI interface to protect

the body from invasion by inhaled pathogens that are commonly

encountered in the environments. This interface can not be

mimicked by the submerged 2D cell culture models, until the

development of 3D ALI culture models (Whitcutt et al., 1988).
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3D ALI culture mainly consists of an outer plastic culture dish

and an inner porous membrane insert (usually in a 6-well plate

format with a pore size of 0.4 μm). Cells are cultured on the

insert, and once confluent (often in 2–4 days), the medium is

removed from the apical aspect of the insert, forming an ALI.

Consequently, this cell culture method has been used to mimic

ALI in the lung with different types of airway epithelial cells,

including ciliated cells, club cells, goblet cells, and basal cells, to

self-assemble into a pseudo-stratified columnar epithelium (Ghio

et al., 2013). These functional epithelia provide crucial functions

for maintaining airway tissue integrity and homeostasis by

secreting inflammatory mediators and antimicrobial peptides

(Tam et al., 2011).

By using this traditional 3D cell culture, Mulay et al. (Mulay

et al., 2021) discovered that SARS-CoV-2 infected ciliated cells at

a significantly higher rate than goblet cells in the proximal airway

epithelium. In addition, Mullen and others (Mullen et al., 2021)

found in ALI cultures that SARS-CoV-2 infection increased

pyruvate carboxylase (PC) and mTORC1 activity and

inhibition of mTORC1 could reduce SARS-CoV-2 replication.

These studies collectively demonstrate that ALI culture system is

an important platform for screening therapeutics targeting

airway cells of SARS-CoV-2 and related antivirals for

COVID-19.

3.2 Spheroids culture to mimic alveoli of
the lung

Spheroids allow cell colonies to self-assemble and form

aggregates of 3D microtissues (Ryu et al., 2019). The process

of spheroid formation is affected by adhesion and differentiation

of cells and various factors, including gradients of nutrients,

oxygen, and growth factors in cell culture medium.

Spheroids are mainly used for cancer studies because it shows

some characteristics similar to tumormicroenvironments such as

hypoxia and tumoral cell-to-cell interaction (Nigjeh et al., 2018).

But it has also been used as 3D cell cultures for recapitulating the

FIGURE 1
Schematic representation of novel 3D models to mimic in vivo the physiology and pathophysiology of different lung regions. Different 3D cell
culture models (organoid, organ-on-a-chip, and 3D bioprinting) have their own advantages which could mimic the structure and function of
different lung regions (airway, alveoli, a thin epithelial-endothelial barrier, and pulmonary interstitium).
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anti-viral drug responses in airway cells. For example, Ebisudani

et al. (Ebisudani et al., 2021) established and validated a long-

term culture of alveolospheres that could be used as an efficient

drug testing platform for the development of therapeutic agents

to combat viruses such as SARS-CoV-2.

3.3 Organoids to mimic different regions
of the lung

Novel 3D cell culture systems such as organoids have

emerged recently with great potential in biomedical research.

Organoids are 3D structures derived from stem/progenitor cells

in specific biomaterials that can be differentiated to generate 3D

structures containing multiple cell types and assembles that

resemble the organization and functions of specific tissue/

organs. Therefore, the development of stem cell technology

has been central to the formation and progression of

organoids. For example, Takahashi and Yamanaka (Takahashi

and Yamanaka, 2006) demonstrated the creation of pluripotent

cells directly from mouse embryonic or adult fibroblasts by

introducing four transcription factors. Soon afterward, Sato

et al. (Sato et al., 2009) reported the formation of 3D

structures of single-sorted Lgr5+ stem cells in Matrigel. Ever

since, there have been many organoids successfully generated

and used in different fields.

Lung organoids can be established from induced pluripotent

stem cells (iPSCs) or airway epithelial progenitor cells such as

AT2 cells or basal cells under optimal conditions. The processes

of different cell sources to generate lung organoids are described

in Table 2. iPSCs-derived organoids contain AT1, AT2, and

epithelial cells, and recapitulate the structure and function of the

alveolus or airway when exposed to suitable induction signals

(Takahashi et al., 2007; Leibel et al., 2020).

AT2 cells reside in the alveoli which are characterized by the

production of pulmonary surfactant proteins and can behave as

alveolar stem cells during repair after injury, repopulating both

AT1 and AT2 cells (Diem et al., 2020). Basal cells, characterized

by the marker of the transcription factor Trp63, the cytokeratin

Krt5, and integrin alpha 6, are one type of proximal airway

TABLE 1 Summary of the different in vitro models with advantages and disadvantages.

Culture model Advantages Disadvantages

Animals Long-term effects of drugs Time consuming

Whole living organism Limited high-throughput experiment

Complex heterotypic microenvironment Prominent differences between animals and human

2D cultures Simple Limited ECM production

Low-cost High stiffness of surface

Commercially available 2D flat culture

ALI cell culture Co-culture with epithelial and stromal cells Cell-matrix interactions

Achieve airway complete epithelium Dynamic physical factors

Spheroids Maintain intrinsic phenotypic properties Diffusion gradient and lack of nutrients in the core

Organotypic model for cancer study Uniform size

Organoids Cell-cell and cell-matrix interactions Establishment can take long

Follows developmental stages similar to actual organs No control on cellular arrangement and growth

Highly relevant morphology and phenotype Limited in size

Lung-on-chip Physiologically relevant air and liquid flows Commonly used material for chips (PDMS) is hydrophobic and can absorb drugs

Small volumes required Limited throughput, especially when combined with flow

Very controlled environment Requires special equipment and, depending on design, access to special facilities

3D bioprinting Accurately arranges the cells Cell viability varies based on cross-linking and the shear stress of passing through the
nozzle

Enhances cell viability, function, migration and self-
assembly

Expensive material of limited availability

Different printing strategies available Time-consuming, limited throughput

Abbreviations: ECM, extracellular matrix; PDMS, polydimethylsiloxane.
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TABLE 2 The process of different cell source to generate lung organoids.

Cell source Medium Treatment
period

Matrigel
concentration

Results/Application Refs

iPSCs DE CHIR99021 and Activin A in
RPMI1640

Day 1 100% matrigel mixed with
LPs (Corning, #354234)

hAWOs contain goblet cells
(MUC5AC+), basal cells (P63+),
ciliated-like cells (FOXJ1+), and

proliferating cells (CDK1+TOP2A+)/
Serve as a platform to perform a high
content screen for blocking SARS-

CoV-2 infection

Duan
et al.
(2021)

Activin A and 2% FBS in
RPMI1640

Day 2–3

AFE Dorsomorphin dihydrochloride,
SB431542, IWP2

Day 4–5

LPs CHIR99021, human BMP4, all-
trans retinoic acid

Day 6–14

hAWOs FGF10, FGF2, dexamethasone, 8-
bromo-cAMP, IBMX

D15-

ESCs DE CHIR99021 and Activin A in
RPMI1640

Day 1–3 100% Matrigel mixed with
AFE (BD Biosciences,

#356237)

hAWOs contain basal cells (P63+),
ciliated cells (acetylated TUBULIN,
a-TUB+), club cells (CC10+), and
goblet cells (MUC5AC+) hALOs
contained AT2 cells (SPC+) and
AT1 cells (PDPN+)/Serve as a
pathophysiological model to
investigate the underlying
mechanism of SARS-CoV-

2 infection

Pei et al.
(2021)

AFE Noggin, FGF4, CHIR99021 and
SB431542 in Advanced

DMEM/F12

Day 3–7

VAFE Human BMP4, all-trans retinoic
acid, CHIR and 1% Glutamax in

DMEM/F12

Day 8–14

LPs CHIR99021, FGF10, KGF, DAPT Day 15–21

hAWOs Dexamethasone, 8-Br-cAMP, 3-
isobutyl-1-methylxanthine, KGF,
B-27 supplement, BSA and 0.1%

ITS premix in Ham’s F12

Day 22–28

hALOs CHIR99021, SB431542,
Dexamethasone, 8-Br-cAMP, 3-
isobutyl-1-methylxanthine, KGF,
B-27 supplement, BSA and 0.1%

ITS premix in Ham’s F12

Day 22–28

HBECs derived
from airways

tissue

hAWOs R-Spondin 1, FGF 7, FGF 10,
Noggin, A83-01, Y-27632,
SB202190, B27 supplement,

N-Acetylcysteine, Nicotinamide,
GlutaMax and HEPES in Advanced

DMEM/F12

Cultured for
21 days

50% growth factor reduced
Matrigel mixed with
HBECs (Corning)

hAWOs contain basal cells (KRT5+)
and goblet cells (MUC5AC+)/Serve
as a physiologically relevant airway

epithelial model to investigate
SARS-CoV-2 therapeutics

Chen
et al.
(2022)

AT2s derived
from primary
lung tissue

hALOs CHIR99021, BIRB796, Y-27632,
SB431542, EGF, EGF10,

B27 supplement, N-Acetyl-L-
cysteine, Heparin, Antibiotic-
Antimycotic, GlutaMax and

HEPES

Cultured for
10–14 days

50% Matrigel mixed with
AT2s (Corning, #354230)

hALOs contained AT2 cells
(SFTPC) and AT1 cells (AGER)/
Serve as an alveolar epithelium
model for understanding human

respiratory diseases

Katsura
et al.
(2020)

Tracheal
epithelial cells
derived from
mouse trachea

AWOs Insulin, transferrin, cholera toxin,
EGF, bovine pituitary extract, 5%

FBS and retinoic acid in
DMEM/F12

Cultured for
10–14 days

100% growth factor-
reduced Matrigel mixed
with cells (Corning)

AWOs fused and formed
interconnected lumina in a free-
floating condition/Serve as ideal

modular units for the biofabrication
of biomimetic organs

Liu et al.
(2021)

HBECs
purchased from

company

hAWOs PneumaCult-ALI Maintenance
Medium (Stemcell Technologies)

Cultured for
21 days

40% on the bottom, 5%
mixed with cells

hAWOs are able to self-organize and
mature toward lung tissue-like

structures/Serve as a novel tool for
studying disease-relevant cellular

and molecular function and ectopic
transplantation

Tan
et al.
(2017)

Abbreviations: DE, definitive endoderm; AFE, anterior foregut endoderm; VAFE, ventralized anterior foregut endoderm; LPs, lung progenitors; hAWOs, human airway organoids; hALOs,

human alveolar organoids; AT2s, human alveolar epithelial type-2 cells; EGF, epidermal growth factor.
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epithelium (accounting for ~30%), which can differentiate into

secretory and ciliated cells (Lambrecht and Hammad, 2012;

Barkauskas et al., 2017; Bilodeau et al., 2021). Compared to

iPSCs, alveolar or airway organoids based on AT2 cells and basal

cells from adults present the physiological dynamic consistent

with normal in vivo or human patients, especially for COVID-19

(Wang et al., 2021).

Due to the need to mimic the effects in different lung regions,

alveolar and airway organoids have been developed to mimic the

airway and alveoli, respectively. And a simplified visual

description of the main steps to generate lung organoids of

different origin cells is in Figure 2.

3.3.1 Alveolar organoids
Though the SARS-CoV-2 virus typically initiates in the

proximal airways, severe symptoms of COVID-19 arise from

infection and associated inflammation in the distal alveoli, which

has strikingly different physiology from that of the proximal

airways (Katsura et al., 2020; Mulay et al., 2021). Previous studies

have demonstrated that ACE2 is essential for SARS-CoV-2 entry,

indicating that AT2 cells with a high expression of ACE2 proteins

are significant targets of SARS-CoV-2 infection (Zhao B. et al.,

2020). To explore the response of lung cells (particularly

AT2 cells) to the SARS-CoV-2 infection, Han and

collaborators (Han et al., 2021) developed an alveolar

organoid model derived from iPSCs. Similar to what is seen

in COVID-19 patients’ lung autopsy tissues (Blanco-Melo et al.,

2020), their results revealed that robust induction of chemokines

(such as rheumatoid arthritis, TNF signaling, and IL-17

signaling) upon SARS-CoV-2 infection. Also, these AT2-

derived organoids were able to differentiate into AT1 cells and

could facilitate diverse investigations of pulmonary pathogens,

including SARS-CoV-2 infection (Salahudeen et al., 2020).

In addition, the expression of ACE2 could be modulated by

the activation of different pathways. When treated with

particulate matter (PM2.5), Kim et al. (Kim et al., 2020)

proved that ACE2 significantly upregulated in alveolar

organoids. On the contrary, androgen signaling inhibition

FIGURE 2
Schematic representation of human airway and alveoli organoids developed from different origin cells and cultivation include particular steps.
For iPSCs, they first generate definitive endoderm (DE), then anterior foregut endoderm (AFE) and lung progenitors (LPs) with different additives,
finally yield lung organoids via 3D culture usingMatrigel (Barkauskas et al., 2017). For basal cells and AT2 cells, theymaintain under suitable conditions
and self-organize in a more natural manner with Matrigel.
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reduced ACE2 expression and protected lung organoids against

SARS-CoV-2 infection (Samuel et al., 2020).

3.3.2 Airway organoids
Since the proximal airway regions are the first target of SARS-

CoV-2 infection, airway organoids are suitable for exploring the

interaction of SARS-CoV-2 with proximal airway cells. To

accurately mimic proximal airway physiological conditions

during SARS-CoV-2 infection, (Chen et al., 2022) used

human airway basal cells to generate airway organoids, in

which basal cells differentiate into ciliated cells, goblet cells,

and club cells. Furthermore, they compared ALI cultures and

airway organoid cultures and acknowledged that the latter

expressed high levels of ACE2 and TMPRSS2, which are

highly susceptible to SARS-CoV-2 infection and promote

inflammatory cytokine responses (Marescotti et al., 2019;

Wang J. et al., 2020; Chen et al., 2022).

Furthermore, to observe cellular dynamic changes similar to

clinical features in COVID-19 patients, (Xu et al., 2021)

developed airway organoids derived from patient biopsy

residues. Therefore, these airway organoids can be used to

investigate the tissue-specific SARS-CoV-2 infection, host

responses, and viral infection inhibitors.

To investigate whether multibasic cleavage site (MBCS) can

alter protease usage during entry and which entry pathway is

taken by SARS-CoV-2, (Mykytyn et al., 2021) found that SARS-

CoV-2 spike MBCS increases infectivity and serine protease

usage on human airway organoids based on collagen-coated

transwell inserts. In addition, (Kastenhuber et al., 2022)

demonstrated that coagulation factors, including factor Xa and

thrombin, increase SARS-CoV-2 infection in human lung

organoids derived from iPSCs. These data indicate that these

hose factors can directly cleave SARS-CoV-2 spike, which is

important to promote viral entry into airway epithelia.

Together, these data demonstrate that organoidmodels could

accurately mimic alveolar and airway cellular composition to

provide a valuable platform for screening new drugs to identify

candidate COVID-19 therapeutics.

3.3.3 Lung organoids
iPSCs-derived lung organoids are indisputably a fast-

moving field due to the unique property of unlimited self-

renewal capacity (Kolagar et al., 2020; Sharma et al., 2020). To

date, the most classical differentiation protocols first generate

definitive endoderm (DE), then anterior foregut endoderm

(AFE) and lung progenitors (LPs), and finally yield lung

organoids using 3D Matrigel. Tiwari et al. (2021) developed

human lung organoids derived from iPSCs to investigate viral

pathogenesis. iPSCs were differentiated into definitive

endoderm, lung progenitor cells, then an epithelial-like

structure with surrounding mesenchymal cells (labeled with

smooth muscle actin and acetylated tubulin) by day 60, and

subsequently a pseudostratified epithelial structure with P63+

basal-like cells, FOXJ1+ ciliated cells, and structural alveolar

type 1 & 2 cells.

In addition, 3D cell culture models such as organoids are

suitable for further understanding immuno-inflammatory

responses associated with SARS-CoV-2 infection, which is

crucial for effective control and clearance of the virus. For

example, iPSCs-derived lung organoids have been used to

determine the early cellular response to SARS-CoV-

2 infection, particularly the change in the expression level of

inflammatory factors with 48 h infection (Pei et al., 2021). The

results of RNA-sequencing analysis show that several

inflammatory factors, including IL-6, TNF, CXCL8, CXCL2,

CXCL3, CXCL10, CXCL11, and NF-κB were upregulated,

which is consistent with the clinically observed phenomenon

in COVID-19 patients (Huang et al., 2020; Wilk et al., 2020).

Therefore, iPSCs-derived lung organoids containing the

component and structure of proximal airways and distal

alveoli, can be used for revealing cell/tissue-specific SARS-

CoV-2 Infection and host responses in the whole lung (Dye

et al., 2015).

3.4 Lung-on-a-chip models to mimic
epithelium-endothelium interface

Although lung organoids are promising tools to elucidate the

pathophysiological mechanisms of COVID-19, a significant

limitation of them is the absence of vasculature, and could

not mimic the interaction of alveoli-capillary networks and

related gas exchange in the lung (Barkauskas et al., 2017). The

gas exchange process in the human body depends on the direct

interaction between a monolayer alveolar epithelia lining the

alveoli and a monolayer endothelial cell lining the capillary

network, which allows for diffusive gas exchange and prevents

plasma fluid entry into the alveoli (Weibel, 2017; Bernard et al.,

2020). With growing interest in COVID-19, the importance of

crosstalk between alveolar epithelial cells and the capillary

network gets more attention. Fortunately, the lung-on-a-chip

model could replicate this alveolar-capillary interaction by

integrating tissue–tissue interfaces and may be crucial for the

systemic understanding of COVID-19.

Organ-on-a-chip is a novel 3D cell culture tool based on the

integration of the techniques of bioengineering and microfluidics

disciplines (Shrestha et al., 2020). It always consists of upper and

lower microchannels separated by a thin, flexible, extracellular

matrix (ECM)-coated membrane, which is very suitable for

mimicking the alveolar-capillary interface (Huh et al., 2010;

Kızılkurtlu et al., 2018). For example, when human alveolar

epithelial cells and pulmonary microvascular endothelial cells

are cultured on the opposite sides of the membrane and grown to

confluence, the upper channel is introduced into the air to create

an air-liquid interface. In addition, a computer-controlled

vacuum in these chambers can be used to produce cyclic
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strain ranging from 5% to 15% tomatch normal levels of strain to

mimic physiopathological breathing movements (Birukov et al.,

2003). Therefore, organ-on-a-chip can manipulate not only

biochemical factors (such as cytokines, oxygen, and nutrients)

but also dynamic physical factors (such as shear stress and cyclic

strain), both of which are critical in understanding lung organ-

level functions and permit researchers to mimic disease

pathogenesis of COVID-19 (Huh et al., 2010; Benam et al.,

2016; Novak et al., 2021; Wang et al., 2022).

In addition to dynamic mechanical distortion of the alveolar-

capillary interface, there is increasing evidence that the

microscale curved surfaces affect the spatiotemporal

organization and behaviors of cells (Callens et al., 2020; Jin

et al., 2021). To recreate the mainly spherical geometry of the

cells’ native microenvironment, Baptista et al. (2022) made the

membranes the shape of hexagonally arrayed hemispherical

microwells by using a combination of 3D microfilm forming

and ion track technology. Each microwell has a little bit more

than 200 μm maximum inner diameter and an average

maximum depth of 100.6 ± 3.0 μm. With integration in

microfluidic chips, the microcurved membranes were seeded

with Calu-3 lung epithelial cell line and human lung

microvascular endothelial cells, respectively. Also, Huang et al.

(2021) successfully designed an alveolar lung-on-a-chip platform

with the alveoli-like 3D gelatin methacryloyl (GelMA) inverse

opal structure. Significantly, this device also provided an air-

liquid interface and cyclic strain, which was better able to

maintain the functions of human alveolar epithelial cells. A

list of characteristics and applications of current lung-on-a-

chip devices is given in Table 3. A visual representation of

these classifications is found in Figure 3.

Multiple clinical trials have found that microvascular

thrombotic and inflammatory processes may be crucial in

exacerbating ARDS and increasing lung damage (Ackermann

et al., 2020; Jung et al., 2020; Sardu et al., 2020). The vascular

damage, and whether it is a direct consequence of endothelial

infection or an indirect consequence of immune cells-mediated

cytokine storm remain unclear. By using a vascularized lung-on-

a-chip model, Thacker et al. (2021) found that infection of

alveolar epithelial cells leads to the limited apical release of

virions, and viral RNA and proteins are rapidly detected in

underlying endothelial cells, which are themselves refractory

to apical infection in monocultures. In addition, endothelial

cells infected by SARS-CoV-2 lose expression of tight junction

markers and adopt a pro-coagulatory phenotype. These results

indicate that the dynamics of vascular damage are a direct

consequence of endothelial infection independently of a

cytokine storm.

To accurately resemble human-relevant responses to viral

infection, ZhangM. et al. (2020) also created an alveoli-on-a-chip

TABLE 3 List for characteristics and application of current lung-on-a-chip devices.

Devices Structures and seeding
cells

Fabrication materials/
Techniques

Characteristics Aplication Refs

Lung-on-a-
chip

Two microchannels; the upper:
human alveolar epithelial cells
and the lower: microvascular

endothelial cells

PDMS/soft lithography Cyclic stretching: computer-
controlled two larger, lateral
vacuum microchambers to

produce cyclic stretching (5 ~ 15%)

Replicates dynamic
mechanical distortion of the
alveolar-capillary interface

caused by breathing
movements

Huh et al.
(2010)

Lung-on-a-
chip

Two microchannels; the upper:
Calu-3 lung epithelial cell and

the lower: microvascular
endothelial cells

PC film/three-dimensional (3D)
microfilm forming and ion track

technology

The membranes with the shape of
hexagonally arrayed hemispherical

microwells (inner diameter:
200 μm, depth: 100.6 ± 3.0 μm)

Set the stage for other
(micro) anatomically

inspired membrane-based
lung-on-a-chip models

Baptista
et al.
(2022)

Alveolar
lung-on-a-

chip

A three-dimensional porous
hydrogel made of gelatin

methacryloyl with an inverse
opal structure; human alveolar

epithelial cells

7% (wt/wt) GelMA/assemble
alginate microbeads into a cubic
close-packed lattice, infiltrate
GelMA, remove alginate

microbeads

Possess both the sac-like pores and
the interconnecting windows

between the sacs, in addition to a
stiffness close to the native human

lung

Investigates the effects of
cigarette smoke and SARS-
CoV-2 pseudoviral infection

Huang
et al.
(2021)

Airway-on-a-
chip

Two microchannels; the upper:
airway epithelial cells and the
lower: airway smooth muscle

cells

PMMA/Micromilling Suspended hydrogels (type I
collagen and Matrigel) as a middle
layer to allow disassembly for

downstream analyses

Significantly advance the
understanding of smooth
muscle cells–epithelial
cells–matrix interactions

Humayun
et al.
(2018)

Airways-on-
Chip

Three individual chips; nasal:
RPMI-2650 cells, bronchial:

Calu-3 cells, and acinar airways:
hAELVi cell

PDMS/microfabrication and 3D
printing

Mimics key elements of the
respiratory system spanning (i)
nasal passages, (ii) the mid-

bronchial airway region and (iii)
the deep acinar region, distinct

with alveolated airways

Serve as a preclinical in vitro
benchmark underlining

regional lung crosstalk for
viral infection pathways

Nof et al.
(2022)

Abbreviations: PDMS, polydimethylsiloxane; PC, polycarbonate; GelMA, gelatin methacryloyl; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; PMMA,

polymethylmethacrylate.
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consisting of the upper human alveolar epithelium channel,

lower microvascular endothelium, and circulating immune

cells channel. They found a higher susceptibility to SARS-

CoV-2 infection in the epithelium than in endothelium upon

SARS-CoV-2 infection. Furthermore, they used RNA-seq

analysis of immune responses to SARS-CoV-2 infection in

this alveolus chip, and the results suggested the crucial role of

immune cells involved in alveolar barrier injury and exacerbated

inflammation. These results might explain the pathogenesis of

the lung microvascular thrombosis and endotheliitis that existed

in severe cases of SARS-CoV-2 infection.

With the advances in microfabrication technology,

microfluidics, and tissue engineering (Jin et al., 2021), new

approaches to the development of lung-on-a-chip models

enable the production of more robust and high-throughput

human in vitro respiratory tract models. The organoplate is

an organ-on-a-chip platform comprising 96 microchambers

that can be used for 3D cell culture (Trietsch et al., 2013).

These microchambers are incorporated into a standard 384-

well microtiter plate that is pipette-operatable and fully

compatible with industrial readout and liquid handling

equipment. Each microchamber consists of adjacent

microchannels separated by phase-guides and four wells are

linked together by microfluidic channels (Junaid and

Hankemeier, 2021). van Duinen et al. (2017) used such

organoplate to assess the vascular barrier function of

96 perfusable blood vessels which have a size-selective

permeability with data from in vivo studies, and found that

cytokines such VEGF and TNFα have dose-dependent effects on

the vascular permeability.

In short, these studies show that lung-on-a-chip contributes

to the exploration of the intricate cross-talk between vascular

networks and alveolar epithelial cells.

3.5 3D bioprinting to mimic pulmonary
interstitium

Although organoid and lung-on-a-chip models are suitable

for mimicking the 3D structure and function of alveoli and

airway as well as the interaction of alveoli and capillary

networks, they cannot mimic the heterogenic pulmonary

interstitium structures with complex components (consisting

of collagen, elastin, fibronectin, glycoproteins, proteoglycans,

FIGURE 3
Schematic representation of functional lung-on-a-chip based on epithelium-endothelium interface physiology characteristic. During normal
inspiration, pressure pulls air into the lungs, resulting in stretching of the alveolar epithelium. For mimicking this phenomenon, pressure-driven
stretching by incorporating two larger, lateral microchambers into the device design (Huh et al., 2010). Also, microscale curved surfaces affect the
spatiotemporal organization and behaviors of cells. The membrane was given the shape of hexagonally arrayed hemispherical microwells into
the device design (Baptista et al., 2022).
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60 different kinds of cells) and certain arrangement (airways tree,

alveoli network, and the vascular tree), which play an important

role in controlling and guiding cellular behaviors to ultimately

define tissue architecture (Suki et al., 2011; Barreiro Carpio et al.,

2021; Novak et al., 2021).

3D bioprinting, an emerging novel 3D cell culture tool,

deposits layer-by-layer cells and biomaterials in an organized

and automatized manner (Zhang et al., 2017). Due to the

capability of delivering cells and biomaterials with precise

control over spatial distributions, it is possible to rapidly

recreate engineered constructs with accurate architecture and

composition of targeting tissues such as lungs, which are suitable

for drug testing and virus infection (Malda et al., 2013; Murphy

and Atala, 2014; Matai et al., 2020).

The general process of 3D bioprinting contains three steps:

acquisition of a 3D computer-aided design (CAD) model,

automated deposition of biomaterials (referred to biomaterial

inks) or the mixture of cells and biomaterials (referred to

bioinks), and maturation of cell-laden constructs to reinforce

the development of desired tissue constructs (Figure 4) (Mironov

et al., 2003; Mironov et al., 2008; Zhang et al., 2017; Barreiro

Carpio et al., 2021). There are different 3D printing strategies

including extrusion-based bioprinting, inkjet/drop-on-demand,

laser-assisted, stereolithography, and electronspinning-based

bioprinting (Table 4). The most commonly used bioprinting is

the extrusion-based technique, due to its ease of handling and

low cost. The success of 3D bioprinting chiefly depends on the

ability to formulate complex, cell-laden 3D structures. To date,

there is no single bioprinting technique that enables the

production of all scales and complexities of synthetic tissues

and organs (Matai et al., 2020).

To get high mm-sized high-precision scaffolds, Erben and

co-workers (Erben et al., 2020) adopted two-photon

stereolithography to print 3D cell scaffolds with varying

Young’s moduli ranging from 7–300 kPa. The dynamics of

colonizing primary human lung fibroblast cells are observed

by modifying scaffold geometry. Also, Jing et al. (2021)

successfully fabricated fibrous scaffolds via

electrohydrodynamic printing. Based on drop-on-demand

inkjet-printing, high-resolution deposition of alveolar cells

enables to fabricate a three-layered alveolar barrier model

with an unprecedented thickness of ≈10 μm, which better

recapitulates the structure, morphologies, and functions of

the lung tissue and could reproduce practical tissue-level

responses to influenza infection (Kang et al., 2021).

Nowadays, more than 100 types of biomaterials are

currently being used as bioinks for 3D bioprinting. The

most important features of bioinks are bioactivity,

biocompatibility, biodegradability, and mechanical

properties which provide mechanical strength, physical

FIGURE 4
Schematic representation of the 3D lung bioprinting process. The general process of 3D bioprinting contains three steps: acquisition of a 3D
CAD model, automated deposition of biomaterials (referred to biomaterial inks) or the mixture of cells and biomaterials (referred to bioinks), and
maturation of cell-laden constructs to mimic desired tissue constructs (Barreiro Carpio et al., 2021).
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stability, and biological features (Petersen et al., 2010; O’Brien,

2011; Nichols et al., 2014). Therefore, these bioinks are

composed of many types of biocompatible materials from

either natural or synthetic materials. Hydrogels such as

collagen and GelMA are the most common scaffold to

encapsulate cells since they are akin to the native ECM to

enable cell differentiation and proper function (Zhao Z. et al.,

2020). Studies suggested that some patients with severe

COVID-19 develop fibrotic lung disease, an interstitial lung

disease characterized by the excessive deposition of ECM

proteins in the lung (Bharat et al., 2020; Tale et al., 2020).

When the virus binds to the ECM components, it may

significantly affect cellular responses to assist its infection

in the host (de Melo et al., 2021). A good selection of bioink is

of great significance for cell growth and the establishment of

disease models. For example, Falcones et al. (2021)

successfully designed a new bioink with tunable stiffness

based on decellularized porcine lung ECM hydrogels for 3D

culturing of lung-resident MSCs. This bioink doesn’t need

additional chemical or physical crosslinking and improves

preconditioning MSCs for therapeutic purposes.

These elements provide a basis for mimicking the

heterogenic pulmonary interstitium structures. Horvath

et al. (2015) reported the 3D bioprinting of an alveolar

barrier by using a micro-extrusion bioprinter. The

biofabricated structure was morphologically similar to the

native tissue, being highly organized in a thin layer. On the

other hand, cells manually mixed to Matrigel formed multi-

layered clusters with tick ECM between the epithelial and

endothelial cells, which can affect the permeability of

biomolecules. Using 3D bioprinting via

photopolymerizable hydrogels, Grigoryan et al. (2019)

successfully designed the most complex alveolar models,

which contain elaborate entangled vascular networks from

space-filling mathematical topologies and can be used to

explore the oxygenation and flow of human red blood

cells during tidal ventilation and distension of a proximate

airway.

To study the mechanisms of SARS-CoV-2 infection in the

lung, the alveolar tissue can be mimicked using a 3D

bioprinting model with high repeatability and reliability.

Ng et al. (2021) reported the fabrication of human triple-

layered alveolar lung models using the drop-on-demand 3D

bioprinting. These 3D bioprinted human triple-layered

alveolar lung models consisted of human lung epithelial

cells, human endothelial cells, and human lung fibroblasts

and showed high survivability rates over a long-term period of

at least 14 days. This would help to address the demand for

highly repeatable and scalable fabrication of 3D in-vitro

alveolar lung models for studying global respiratory

diseases caused by infectious pathogens. Also, in order to

clarify virus detection and characterization, Koban et al.

(2020) designed easy-to-handle 3D bioprinting platforms

based on Wellbrick matrix containing gelatin and collagen

additives. This will provide a promising way for the

characterization of virus infections due to sensitive

monitoring virus-host interactions and replication of

different viruses under physiologically relevant conditions.

TABLE 4 List of some 3D bioprinting examples of different printing strategies.

Printing strategy Cells/Bioink Results Application Refs

Inkjet bioprinting A549, EA.hy926 cells/Matrigel Print the biofabrication of the human air-
blood tissue barrier analogue composed of
an endothelial cell, basement membrane

and epithelial cell layer

An advanced 3D lung model for high-
throughput screening for safety

assessment and drug efficacy testing

Horvath
et al. (2015)

Drop-on-demand Human lung epithelial cells,
human endothelial cells, and

human lung fibroblasts/2.5% PVP

Cultured over a period of 14 days with high
survivability rates

Fabricate 3D in-vitro alveolar lung models
in an automated manner with high

repeatability and reliability for studying
respiratory diseases caused by infectious

pathogens

Ng et al.
(2021)

Two-photon
stereolithography

phLFs/protein-based resins, such
as bovine serum albumin or gelatin

methacryloyl

Print up to mm-sized high-precision 3D
cell scaffolds at micrometer with varying
Young’s moduli ranging from 7–300 kPa

Allow for a systematic investigation
ofsingle-cell and tissue dynamics in

response to defined mechanical and bio-
molecular cues

Erben et al.
(2020)

Electrohydrodynamic
printing

Mouse embryonic fibroblast cells
and human non-small cell lung
cancer cells/PCL/gliadin inks

The microstructure and the surface
nanotopography of the printed scaffolds
could be precisely controlled and turned

Provide the potential of cancer cell-seeded
scaffolds as 3D in vitro tumor models for

cancer research and drug screening

Jing et al.
(2021)

Laser-assisted
bioprinting

AR42J-B-13 rat acinar cell line/
GELMA

Generate 3D pancreatic cell spheroid arrays Provide a platform for the study of the
internal and external factors that

contribute to the formation of precursor
PDAC lesions and to cancer progression

Hakobyan
et al. (2020)

Abbreviations: A549, human alveolar epithelial type II cell line; EA.hy926, endothelial cells; PVP, polyvinylpyrrolidone; phLFs, primary human lung fibroblasts; PCL, poly-ε-caprolactone;
GELMA, methacrylated gelatin; PDAC, pancreatic ductal adenocarcinoma.

Frontiers in Pharmacology frontiersin.org12

Ni et al. 10.3389/fphar.2022.1033043

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1033043


4 Application of 3D cell culture
models in study of COVID-19
treatments

3D cell culture models can provide robust support to

simulate SARS-CoV-2 infection, replication, and related

immuno-inflammatory responses in humans, which is crucial

to understanding the virus’s biology and developing antiviral

drugs. For example, in addition to investigating viral effects on

human pulmonary tissue, lung organoids are very helpful for

high-throughput assays to screen therapeutic drugs, such as

RNA-seq analyses, proteomics, phosphoproteomics,

transcriptomics, and molecular docking analysis (Elbadawi

and Efferth, 2020; Hekman et al., 2020). Moreover, organoids

derived from patient lung tissue may lead to a promising resource

of potentially effective drugs for treating and managing the

disease (Xu et al., 2021). This process from the organoid

establishment to drug testing is concise so that the organoid

models will be a valuable platform for screening patient-specific

drugs (Zhou et al., 2018; Sachs et al., 2019). Apart from organoid,

a spheroid culture system for human alveolus was established

and this platform has been used for accurate pre-clinical testing

of candidate drugs for the treatment of COVID-19 (Ebisudani

et al., 2021).

ACE2 is the canonical entry receptor used by SARS-CoV-

2 yet is expressed in only a small fraction of airway epithelial cells,

predominantly AT2 (Zhao B. et al., 2020). For example, by using

hESC-derived cardiac and lung organoids, 1,443 FDA-approved

drugs were used to search for modulators of ACE2 levels and

identified that inhibitors of 5 alpha reductases, which inhibit

androgen signaling, can reduce ACE2 levels in the target cells and

thereby decrease SARS-CoV-2 infectivity (Samuel et al., 2020).

However, ACE2 alone cannot explain the multi-organ

tropism of SARS-CoV-2, and some analyses of patients with

COVID-19 revealed many virus-positive cells without

ACE2 expression (Chua et al., 2020; Hikmet et al., 2020; Ren

et al., 2021). This evidence indicates other receptors involved in

SARS-CoV-2 host interactions. By using lung organoids that

provide more physiological conditions, KREMEN1/ASGR1 and

Tetraspanin 8 (TSPAN8) were identified as alternative functional

receptors of SARS-CoV-2 (Hysenaj et al., 2021; Gu et al., 2022).

Adult human stem cell-derived alveolosphere has been developed

to provide long-term expansion and differentiation of human

alveolar type 2 cells/pneumocytes, which express ACE2 and

TMPRSS2. These organoids respond to SARS-CoV-2 infection

with upregulation of IFN and downregulation of surfactant, and

low-dose IFN blocks SARS-CoV-2 replication, which mimics the

features of COVID-19 lungs (Katsura et al., 2020). These newly

discovered host receptors play essential roles in ACE2-

independent virus entry and potential therapeutic targets for

COVID-19.

COVID-19 patients who are hospitalized frequently manifest

lymphopenia, which suggests suppression of cellular immune

responses (Zhang J. J. et al., 2020; Wang D. et al., 2020). 3D

models mimicking the lung structure and function have great

advantages to investigate airway immune responses to viral

infection. For example, Nelli et al. (2016) developed an ALI

culture system that closely mimics the natural airway epithelium

to characterize the innate immune response of feline herpesvirus-

1 (FHV-1). In addition, Purwada et al. (2015) described a B cell

follicle organoid to control the rate of immune reaction through

tunable design parameters. The next major development may be

organoids of the thymus and lymph node because the thymus

and bone marrow are the central immune organs for

development, differentiation, and maturation of human

immune cells.

COVID-19 patients in severe cases may also develop

complications such as hypercoagulopathy, systemic

endotheliitis, and even multi-organ failure, which are

concomitant with a sustained release of inflammatory factors

caused by an excessive inflammatory response. Such

phenomenon of elevated levels of inflammatory factors has

been detected in organoid models following SARS-CoV-

2 infection (Mills et al., 2021; Pei et al., 2021). SARS-CoV-2 is

also likely to enter vascular endothelial cells through infected

airway epithelial cells, which may lead to endothelial dysfunction

(Harrison et al., 2020). More recently, Hashimoto et al. (2022)

used a lung-on-a-chip model consisting of two microchannels to

mimic the interactions between epithelial, endothelial, and

immune cells, and they demonstrated in this model that

Claudin-5 is a key factor in disrupting vascular endothelial

cadherin-mediated adherent junctions.

In clinical trials different strategies have been adopted to deal

with an excessive inflammatory response. They either boost the

early type I or III interferon responses in order to help patient get

rid of the virus before it causes hyper-inflammation, or suppress

immune response by inhibiting specific pro-inflammatory

pathways such as IL-6. However, it is still in question how to

balance the immune status so that the viral replication can be

effectively suppressed without cytokine storm to cause organ

failure. Correct use of 3Dmodels may help better understand this

question and thus accelerate optimization of the immune

therapeutic approach for SARS-CoV-2 infection.

Furthermore, 3D lung models serve as a powerful platform

for drug screening and safety assays against SARS-CoV-2,

targeting host cells factors (ACE2, TMPRSS2, ACAT and

HIF1α) and the virus itself (Tiwari et al., 2021; Kastenhuber

et al., 2022). By combining iPSCs-derived lung organoids and

high-throughput screening techniques from United States Food

and Drug Administration (FDA)-approved drugs, GW6471 has

been identified to block SARS-CoV-2 infection (Duan et al.,

2021) and imatinib, mycophenolic acid (MPA), and quinacrine

dihydrochloride (QNHC) have been identified to block SARS-

CoV-2 entry (Han et al., 2021). Combining iPSCs-derived lung

organoids with differentiated AT2 cells and a connectivity

mapping approach, atorvastatin was predicted to be the most
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promising candidate from 20,000 small compounds for blocking

SARS-CoV-2 (Duarte et al., 2021).

Remdesivir has been recently recognized as a promising

antiviral drug against many RNA viruses (e.g., SARS, MERS-

CoV), including SARS-CoV-2 (Wang M. et al., 2020). By using

an air-liquid interface model, remdesivir has been reported to

decrease the colony-forming efficiency (CFE) of club cells, but

promote the growth of club organoids (Wang J. et al., 2020). Also,

by using an alveolar chip, remdesivir has been proven to inhibit

viral replication and alleviate the disruption of the alveolar-

capillary barrier (Zhang M. et al., 2020).

A systematic example of 3D cell culture models with some

fast-track approaches used in screening drugs against COVID-19

is listed in Figure 5. A summary of the aforementioned drugs

suitable for COVID-19 treatment can be seen in Table 5.

5 Future direction and perspectives

Since the complexity of SARS-CoV-2 infection and the

pathogenesis of COVID-19 and the timeliness for high-

throughput of drug screening for therapeutic treatment, the

use of 3D cell culture toolsets provides increasing similarity to

the in vivo pathophysiology and may give us valuable insights

and more reliable tools for drug development and testing in the

treatments of COVID-19 (Ravi et al., 2015).

FIGURE 5
An overview of assays for screening agents to combat SARS-CoV-2 with 3D models.
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Recent advances in organoids have enabled the modeling of

SARS-CoV-2 infection using human airway epithelial and

alveolar cells. These culture models, however, lack airway

smooth muscle cells (ASMCs). ASMCs are known to switch

between contractile and proliferative phenotypes in response to

various physical and chemical cues, which play essential roles in

lung development and respiratory diseases (Kim et al., 2015).

Therefore, organoids containing ASMCs may better recapitulate

the airway structure and function in vivo, and if co-cultured with

immune cells, could be used to reveal more detailed mechanisms

of the COVID-19-associated immunology.

Appropriate culture media should also be developed for

efficient generation and maintenance of lung organoids. Such

media should contain not only basal medium, but also a variety of

growth factors and small-molecules. For example, TGF-β has an

anti-inflammatory effect on cell response induced by influenza

H1N1 virus (BustosRivera-Bahena et al., 2021). TGF-β also

inhibits cell proliferation and promotes apoptosis and

differentiation. So far, effect of TGF-β in the culture medium

on efficiency of organoid formation has been evaluated (Shi and

Massague, 2003), and evaluation may be required of other

signaling pathways such as Wnt/β regarding their effects on

organoid culture medium.

Lung-on-a-chip is always restricted to mimic the alveolar-

capillary barrier and cannot be used to resemble the airway

tubular structure. In addition, lung-on-a-chip is typically limited

by the number of cells as compared to that in vivo, whichmay lead to

altered cellular function such as the metabolic rate. Such issues need

to be addressed in the development of next-generation lung-on-a-

chip systems.

3D bioprinting airway or alveoli is always expensive,

which leads that it is almost impossible to set up high-

throughput approaches for drug screening using these 3D

cell culture models. In addition, despite the extensive use of

3D cell culture models in basic research, their translational

biomedical application is restricted since the lack of robust,

reproducible, and scalable methods of production in

compliance with current pharmaceutical standards. The

reproducibility, accuracy, and scalability of the

methodologies proposed still need to be improved (Vives

and Batlle-Morera, 2020). Therefore, easy-to-use, rapid, and

low-cost strategies in the fabrication of 3D cell culture models

TABLE 5 Drugs against SARS-CoV-2 discovered/tested by human lung organoids.

Names Combined with
screening/Sources of

drugs

Objective
targets

Mechanism Concentration Cells for
construct
organoids

Refs

Antiandrogenic
drugs

A Selleckchem small
molecule library

ACE2 Reduce ACE2 expression 1 μM, 2 μM or 5 μM hESCs Samuel
et al.
(2020)

25HC A natural product ACAT Block membrane fusion 5 μM iPSCs Wang
et al.

(2020e)

GW6471 Agonists and antagonists and
FDA-approved drugs

HIF1α Inhibit the HIF1a-glycolysis
axis

EC50 = 2.1 μM hESCs Duan
et al.
(2021)

Atorvastatin A connectivity mapping
approach in combination
with chemoinformatic

analyses

Bind to SARS-CoV-2’s
main protease and RNA-
dependent RNA polymerase

IC50 values of 31.65 μM hESCs Duarte
et al.
(2021)

K-874A VHH-cDNA display SARS-CoV-
2 S1 proteins

Block the virus membrane
from fusing with the host

cell membrane

IC50 values of 5.74 ±
2.6 μg/ml

Normal lung
tissues

Haga et al.
(2021)

Ciclesonide,
nelfinavir, and

camostat

FDA-approved drugs,
bioactives kinase inhibitors,

and natural products

iPSCs Ko et al.
(2021)

Lead E24 Medicinal chemistry and
rational drug design

strategies

SARS-CoV-
2 main protease

Bind SARS-CoV-2 Mpro and
inhibit proteolytic activity

EC50 values of 844 nM iPSCs Huff et al.
(2022)

DPP4 peptide;
Ab15033-7

DPP4 receptor;
Spike protein

DPP4 peptide (200 µg)
or Ab15033-7
(200 ng/ml)

iPSCs Spitalieri
et al.
(2022)

Abbreviations: SARS-CoV-2, Severe Acute Respiratory Syndrome-CoronaVirus-2; ACAT, activating acyl-CoA, cholesterol acyltransferase; DPP4, dipeptidyl peptidase-4; 25HC, 25-

hydrocholesterol; BALF, bronchoalveolar lavage fluid; ACE2, angiotensinconverting enzyme 2; FDA, US food and drug administration; HIF1a, hypoxia-inducible factor 1 subunit alpha;

iPSCs, induced pluripotent stem cells; AT2s, alveolar epithelial type-2 cells; ESCs, embryonic stem cells.
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with more complex cytoarchitecture and a more physiological

microenvironment still need to develop.

Despite of their potential, 3D models still entail considerable

technical problems that may compromise their application,

which include but are not limited to sample collection, high-

quality imaging, and cost of substrate materials such as Matrigel.

For example, it is technically challenging to directly collect

samples from Matrigel-based 3D models such as organoids or

3D bioprinting because direct sample collection would disrupt

the integrity of Matrigel and thus the structure of the 3D model,

leading to inaccurate results. It is also difficult to obtain high-

quality imaging of these 3D cultures by using traditional imaging

techniques such as paraffin embedding and tissue slicing (Rios

and Clevers, 2018). Although non-invasive microscopy methods

such as multi-photon and light-sheet microscopy can be used to

visualize cellular details of 3D cultures, the thick sample can

cause light scattering because of mismatched refractive indices.

To reduce scattering within the sample, various optical clearing

methods have been developed. For example, Dekkers et al. (2019)

successfully designed a simple optical clearing method utilizing a

homemade fructose-glycerol clearing agent to improve the light

penetration through fixed organoids, whereas Boothe et al.

(2017) used another agent named Iodixanol for the same

purpose.

3D models commonly use Matrigel (Corning) or Cultrex

BME (Trevigen) as substrate materials. These materials are too

expensive to be used in large-scale studies such as high-

throughput screening, regenerative medicine and diagnostics

(Curvello et al., 2020). This high cost may be reduced by

replacing Matrigel/Cultrex BME with an alternative in the 3D

models. For example, gels made of decellularized porcine small

intestine mucosa/submucosa were used to generate human

gastric organoids (Giobbe et al., 2019). Recently, a novel

engineered plant-based nanocellulose hydrogel was developed

to provide the required microenvironment for small intestinal

organoid growth and budding (Curvello et al., 2020).

Materials properties and fluid dynamics are also important

issues to consider in developing 3D cultures. For example,

Matrigel needs to be mixed with agarose to achieve proper

mechanical properties for long time maintenance of a tubular

organoid structure (Güney et al., 2021). In order to provide the

low shear environment suitable for iPSCs differentiation,

organoids can be cultured in spinner flasks, which can be

further combined with microfluidic design to achieve both

chemical and mechanical stimulation in tunable fashions.

Last but not least, each of the 3D models has its own

advantages and disadvantages, and it may be feasible to

combine some of these models as a novel platform with

enhanced functionality. For example, although lung organoids

always automatedly generate target tissue structure and function,

they lack typical epithelium-endothelium tissue interfaces in vivo

and are time-consuming to fabricate. On the other hand, the

advantage of 3D bioprinting is the possibility to precisely define

the composition and arrangement of a culture which can be

realized rapidly. Combining the organoid and 3D bioprinting

techniques may establish a new cell culture model to reflect the

near-physiological cross-talk among airway and vascular vessels

after SARS-CoV-2 infection. Advances in bioink preparation

including the incorporation of bioactive matrices, and induced

pluripotent stem cells, and suitable induction factors may open

up broad applications for 3D cell culture models in disease

diagnostics, and regenerative medicine.

6 Conclusion

The COVID-19 pandemic has resulted in global health and

economic burden, but the underlying pathogenesis and therapeutic

treatments remain to be further explored. Novel 3D cell culture

models representing the lung structure and function in a dish that is

in good agreement with reports from animal models and clinical

disease are undoubtedly a valuable toolset for these studies, which

may provide a promising alternative for animal models and 2D cell

culture models. This review of the strategies to fabricate useful 3D

pulmonary cell culture models including organoids, lab-on-a-chip,

and bioprinting, although by no means comprehensive, indeed

provide new insights for understanding how SARS-CoV-2 infects

human lung cells, which is essential for elaborating the virus-

induced human responses and helping further development of

novel therapeutics and prophylactics for COVID-19.
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Glossary

2D Two-dimensional

3D Three-dimensional

ACE2 Angiotensin-converting enzyme 2

AFE Anterior foregut endoderm

ALI Air liquid interface

APCs Antigen presenting cells

ARDS Acute respiratory distress syndrome

ASMCs Airway smooth muscle cells

AT2 Alveolar epithelial type 2

CAD Computer-aided design

CFE Colony-forming efficiency

COVID-19 Coronavirus disease 2019

DE Definitive endoderm

ECM Extracellular matrix

ESCs Embryonic stem cells

FDA Food and Drug Administration

FHV-1 Feline herpesvirus-1

GelMA Gelatin methacryloyl

IL Interleukin

iPSCs Induced pluripotent stem cells

LPs Lung progenitors

MDA5 Melanoma differentiation-associated gene 5

MBCS Multibasic cleavage site

MPA Mycophenolic acid

NHPs Non-human primates

NRP1 Neuropilin-1

ORFs Open reading frames

PC Pyruvate carboxylase

PD Peptidase domain

PM2.5 Fine particulate matter

QNHC Quinacrine dihydrochloride

RBD Receptor-binding domain

SARS-CoV-2 Severe acute respiratory syndrome coronavirus-2

TLR3 Toll-like receptor 3

TLR7 Toll-like receptor 7

TMPRSS2 Transmembrane protease serine 2

TNF-a Tumor necrosis factor alpha

TSPAN8 Tetraspanin 8
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