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While synergistic drug combinations are more effective at fighting tumors with

complex pathophysiology, preference compensating mechanisms, and drug

resistance, the identification of novel synergistic drug combinations, especially

complex higher-order combinations, remains challenging due to the size of

combination space. Even though certain computational methods have been

used to identify synergistic drug combinations in lieu of traditional in vitro and in

vivo screening tests, the majority of previously published work has focused on

predicting synergistic drug pairs for specific types of cancer and paid little

attention to the sophisticated high-order combinations. The main objective of

this study is to develop a deep learning-based approach that integrated multi-

omics data to predict novel synergistic multi-drug combinations (DeepMDS) in

a given cell line. To develop this approach, we firstly created a dataset

comprising of gene expression profiles of cancer cell lines, target

information of anti-cancer drugs, and drug response against a large variety

of cancer cell lines. Based on the principle of a fully connected feed forward

Deep Neural Network, the proposed model was constructed using this dataset,

which achieved a high performance with a Mean Square Error (MSE) of 2.50 and

a Root Mean Squared Error (RMSE) of 1.58 in the regression task, and gave the

best classification accuracy of 0.94, an area under the Receiver Operating

Characteristic curve (AUC) of 0.97, a sensitivity of 0.95, and a specificity of 0.93.

Furthermore, we utilized three breast cancer cell subtypes (MCF-7, MDA-MD-

468 and MDA-MB-231) and one lung cancer cell line A549 to validate the

predicted results of our model, showing that the predicted top-ranked multi-

drug combinations had superior anti-cancer effects to other combinations,

particularly those that were widely used in clinical treatment. Our model has the

potential to increase the practicality of expanding the drug combinational space

and to leverage its capacity to prioritize the most effective multi-drug

combinational therapy for precision oncology applications.
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1 Introduction

Various carcinogenic factors and pathogenesis have been

linked to cancer, which has been identified as a collection of

complex diseases (Tolomeo and Simoni, 2002). This complicates

the application of a single treatment for a single target, as it

activates redundant activities in cancer cells such as various

downstream factors and parallel pathways due to

compensatory mechanisms (Alexander and Friedl, 2012).

Inter-tumor and intra-tumor heterogeneity are a major

contributor to drug resistance and disease progression in

clinical cancer treatment, ultimately leading to disease relapse

(Holohan et al., 2013). Combination therapy has been shown to

be a well-established and superior solution to these problems

because of its improved clinical efficacy and lack of development

of drug resistance. Since the dose of each drug is smaller than

what is used in monotherapy, it is possible that the side effects

will be minimized (Mahase, 2019). So far, significant efforts have

been undertaken to systematically evaluate the synergistic

combinations from a large pool of chemical compounds

(MacGowan et al., 1990; Wiesner et al., 2002; Sopirala et al.,

2010). Finding successful drug combinations is still incredibly

difficult, especially with today’s high-throughput screening

technologies (Sun et al., 2013). Furthermore, high-order

combinations have the potential to regulate biological systems

more powerfully than drug pairs because they favor

compensatory mechanisms, which tumors greatly exploit;

however, the number of experiments run to identify

promising high-order combinations would explode by several

orders of magnitude, which is far beyond the current exploration

ability. There is a pressing need for systemic methodologies, and

an urgent need to make it feasible to find new therapeutic

combinations of more than two agents, including synthetic

chemicals, biological molecules and natural products.

An extensive range of computational methods spanning a

large area of methodologies (Bansal et al., 2014; Gayvert et al.,

2017; Chen et al., 2018; Huang et al., 2019) has tremendously

aided research into anti-cancer drug combinations in the recent

years. Different machine learning models and the burgeoning

field of deep learning are examples of possible approaches. A

machine learning based classification model could extract

features from multiple drug profiles including drug targeted

proteins and Anatomical Therapeutic Chemical Classification

System (ATC) codes, and, as a result, it enabled the prediction of

potential synergistic drug pairs (Iwata et al., 2015). But ATC code

is available only for marketed drugs, suggesting that the

processing of uncharacterized drugs or new candidate

compounds is considerably beyond the power of this

approach. In another method, two machine learning

algorithms, random forest (RF) and extreme gradient boosting

(XGBoost), were applied to establish models for drug

combination prediction, indicating that XGBoost resulted in a

better perform than the RF model (Sidorov et al., 2019). As

trained on a pre-cell line, these two models should be rebuilt

when applying for another cell line. Recent impressive

breakthroughs of deep neural networks, which profit from the

explosion of big data and the ability to automatically extract key

features, have produced greatly enhanced performance in

biomedical research. A deep learning approach, DeepSynergy,

proposed by Preuer et al., integrated the chemical descriptors of

drugs and genomic data of cell lines of interest for predicting

synergistic drug combinations (Preuer et al., 2018). Following

this, numerous techniques based on deep learning framework,

such as AuDNNsynergy (Zhang T. et al., 2021), MatchMaker

(Kuru et al., 2021) and Deep Signaling Synergy (Zhang H. et al.,

2021), have been suggested with multi-omics data to prioritize

drug combinations, revealing their benefits on the prediction of

paired drug combination. However, the existing deep learning

models mainly focused on predicting drug pairs which might not

be efficient to inhibit the aggressive growth of tumors driven by

complex mechanisms (Holohan et al., 2013; Dry et al., 2016).

With the approval of multi-drug combinations for a variety

of diseases such as cancers and tuberculosis (Gotwals et al., 2017;

Davies et al., 2019), the focus of the search for combinational

therapies has shifted partially away from pairwise combinations

and toward high-order ones containing three or more drugs. Yet

there are limited tools to predict multi-drug synergy in diseases.

A recent web application, Synergy Finder 2.0, is developed to

analyze the drug combination screen data and provide the best

multi-drug synergy patterns (Ianevski et al., 2020). However, this

tool is based on the dose-response data collected by a huge

number of multi-drug screening activities, which make it

infeasible to find prospective high-order combinations in a

labor- and time-saving manner. So far, we lack deep learning-

based approaches to predict the synergy of high-order

combinations by integrating multi-omics data, and this is a

problem.

The methodological advances of deep learning-based models

have made it easier to investigate the best possible high-order

combinations within the defined disease module. In this study,

we developed a deep learning-based model for the prediction of

synergistic multi-drug combinations (DeepMDS) through using

a large-scale dataset that integrated by targets information, drug

response data and large-scale genomic profile of cancer cell lines

from varied tissues. DeepMDS can generate predicted pseudo-

IC50 values, which can be used to quantify and, by extension,

rank the synergistic anti-cancer effect of drug combinations. As a

comparison, we used some of the most advanced machine

learning algorithms as reference models, including K Nearest

Neighbor (KNN), Random Forest (RF), Support Vector Machine

(SVM) and Gradient Boosting Machine (GBM). These

algorithms have all been succeeded in modeling drug synergy

and were among the top winning methods of the

2019 AstraZeneca-Sanger drug combination prediction

DREAM Challenge (Menden et al., 2019). More importantly,

the performance of our DeepMDS were further extensively
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validated by published literatures and rigorous studies based on

biologically heterogeneous breast cancer cell subtypes (MCF-7,

MDA-MD-468 and MDA-MB-231) as well as lung cancer cell

line A549.

2 Materials and methods

2.1 Data collection

In this work, we collected, pre-processed, and combined gene

expression profiles of cancer cell lines and target information of

anti-cancer drugs to generate modeling dataset. Then, data on

drug response against a large variety of cancer cell lines were also

collected for the purpose of labeling modeling samples. Herein,

the precise process of datasets construction was described in

detail in this section.

2.1.1 Gene expression features
Based on Affymetrix Human Genome U219 Array plates,

basal gene expression profiles of 1,000 human cancer cell lines

were measured and identified utilizing a wide variety of anti-

cancer therapeutics in the Genomics of Drug Sensitivity in

Cancer (GDSC) project (Iorio et al., 2016). The gene

expression data of cancer cell lines were demonstrated to be

useful information, which faithfully recapitulated cancer-driven

alterations in 11,289 tumors from 29 tissues. Meanwhile, many of

the genomic information were highly associated with drug

sensitivity or resistance and thus it could be efficiently applied

to predict drug response as sample features. The public available

transcriptional profiles of 1,000 human cancer cell lines were

carefully retrieved from the ArrayExpress database (Parkinson

et al., 2005) and then the data pre-processing was conducted

based on the platform R v3.5.0. To begin, oligo-package was

applied to convert the downloaded raw data (CEL files) into

standard genomic profiles. Then missing and invalid values were

filled and replaced using the impute 1.52.0 package from

Bioconductor Library (Gentleman et al., 2004). In further,

Robust Multichip Average (RMA) algorithm was used to

normalize the refilled datasets, preventing erroneous results

generated by maxima and minima as well as decreasing

computing burden. Next, based on the annotation file of gene

chip, each probe ID was matched with its corresponding gene

symbol and the mean expression value of the multiple probe IDs

matched the same official gene symbol was computed to reflect

the expression intensity. A phenomenon known as the “curse of

dimensionality” may cause prediction models to perform poorly

due to the large number of genes covered by the expression

profiles (Aliper et al., 2016). To avoid this difficulty, genes in

cancer-related pathways were selected to lower the size of gene

expression features. In practice, 14 gene sets, which were defined

by cBioPortal, consisted of cancer-related pathways (Cerami

et al., 2012), such as DNA damage response or RTK signaling

pathways (Jeon et al., 2018). Finally, a total number of 215 genes

were selected as genomic features and their corresponding gene

expression data were used as the feature representations of cancer

cell lines (Supplementary Data Sheet S1).

2.1.2 Target information
Along with gene expression features, this study gathered

information on the targets of anti-cancer drugs. To begin, we

obtained target information for 265 chemical compounds from

DrugBank (Wishart et al., 2018) and PubChem (Wang et al.,

2009). This information was merged with determined drug

sensitivity of cancer cell lines from the GDSC project. On the

other hand, 1,574 naturally occurring anticancer compounds

were obtained from the Naturally occurring Plant based

Anticancerous Compound-Activity-Target DataBase

(NPACT), and the related target information for each

compound was retrieved from TCMSP (Ru et al., 2014),

DrugBank and PubChem. Finally, a total of 1,093 targets were

obtained as target features of compounds. The target information

of each compound was used to generate the feature

representation of the compound. More specifically, the target

feature values corresponding to the targets of the compound were

encoded as “1” and the others were encoded as “0”

(Supplementary Data Sheet S2).

2.1.3 Drug response information
Drug response information, also called as monotherapy

information, assessed drug effects on cell lines and was used in

this study to label samples. The GDSC project experimentally

determined and quantified the drug responses of over

265 chemical compounds to 1,000 cancer cell lines using

the half maximum inhibitory concentration (IC50) (Iorio

et al., 2016). Additionally, we gathered equivalent data for

1,574 natural chemicals in response to distinct cell lines from

NPACT, PubChem and related literatures. In total, the drug

responses of 201,405 drug-cancer cell line pairs were collected

and used as the labels (IC50 in the regression task and binary

value in the classification task) (Supplementary Data

Sheet S3).

2.1.4 Data integration
Gene expression profiles of cancer cell lines, target

information of anti-cancer compounds and drug responses

against a large variety of cancer cell lines were integrated into

201405 modeling samples (Figure 1). Specifically, each sample

was represented as a vector consisting of a 215-dimensional

genomic feature representation of cancer cell line and a 1093-

dimensional target feature representation of compound.

Following that, the drug response was used to label the

sample. Due to the considerable dimension disparity between

gene expression features and target information, all samples’ data

were adjusted using zero-centered processing and normalized

square deviation.
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2.2 Model construction

Among the processed datasets, 80% (161,124) of samples

were randomly chosen for the training dataset, while 20%

(40,281) were used as the test dataset. Then, using the

training and test datasets, a deep learning prediction model

and other models based on various machine learning

algorithms were constructed and optimized, and their

performances were compared.

2.2.1 Deep learning prediction model
The deep learning prediction model (DeepMDS) was built

sequentially in Python (version 3.6) using the Keras platform,

which is a high-level neural networks API running on top of

Theano (Feng et al., 2019). The basic architecture of deep

learning models was illustrated in Figure 2. To begin, gene

expression data from cell lines and target information of

drugs as input were loaded in the nodes (also called neurons)

of the input layer. Then the loaded information from input layer

FIGURE 1
Schematic illustration of the construction of our modeling dataset.

FIGURE 2
The architecture diagram of deep learning prediction model showing data sources and workflow.
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was propagated through the neighboring hidden layers, including

the dense layer and the dropout layer. Finally, the output layer

could provide the predicted IC50 values for each sample. To

address sophisticated regression problems, each layer among the

deep learning architecture was followed by non-linear activation

functions (Feng et al., 2019). The Rectified Linear Unit (ReLU)

activation function was used to activate the input layer and

hidden layer in this study because it has the capacity to

reduce the vanishing gradient problem and has a rapid

computing speed (Eq. 1) (Feng et al., 2019). Then for the

output layer, a linear activation function was applied in the

regression model to fit the distribution of predicted IC50 values

better (Eq. 2). Meanwhile, the classification model was developed

using the deep learning architecture, which enables a similar

assessment of model performance. The construction of

classification model constructed in the same manner as stated

previously, except that the Sigmoid activation function (Eq. 3)

was applied to produce the classification labels in the output layer

(Eq. 3). Here, the samples labeled with IC50 values ≤10 nM were

considered positive samples, whereas those labeled with

IC50 values >10 nM were considered negative samples.

y � ReLU Wx + b( ) (1)

where y was the activation value of the hidden layer, x was the

input data, W was weight matrix and b was bias.

z � linear W′y + b′( ) (2)

where z was the predicted IC50 values, y was the activation value

of the hidden layer,W′ was transposed weight matrix and b’ was

transposed bias.
z � sigmoid W′y + b′( ) (3)

where z was the classification labels, y was the activation value of

the hidden layer, W′ was transposed weight matrix and b’ was

transposed bias.

In order to train the model, the loss functions of MSE (mean

square error) and binary cross-entropy were used to estimate

performance of regression and classification models, respectively,

by comparing the difference between the actual label of input

data in input layer (x) and the predicted label of output layer (z),

where SGD (stochastic gradient descent) was applied to search

the optimal parameters (Eq. 4).

LH x, z( ) � −∑d

k�1 xklogzk + 1 − xk( )log 1 − zk( )[ ] (4)

where xwas the actual value of input data in input layer, zwas the

predicted value of output layer, d was the epoch number.

In addition, Adam (adaptive moment estimation) and

RMSprop (Root Mean Square prop) were selected as

optimization functions for the construction of regression and

classification models, respectively. Throughout the training

process, the aforementioned processes were repeated in order

to update the weights and bias until the optimal weight matrixW

and bias b were obtained.

2.2.1.1 Optimization of deep learning prediction model

The performance of a deep learning prediction model is

determined not only by its architecture of deep learning but also

by its hyper parameters. Traditionally, the ideal parameter

combination for a deep learning model was established by

human experience, which was neither accurate nor objective.

To obtain the optimal DeepMDS, a grid search algorithm was

used to find the best combination from a parameter space

including epoch number, batch size, learning rate, dropout

rate and hidden units of hidden layers. Finally, using the same

datasets, 5,625 (5 × 5×3 × 3 × 5 × 5) regression and classification

models were developed individually to seek their own optimal

parameter combinations using 10-fold cross validation.

According to the optimization results, the conic architecture

with two hidden layers having 200 nodes in the first layer and

100 nodes in the second layer was the optimal regression and

classification model.

Also, a big dropout rate of 0.5 followed behind each dense

layer to avoid the overfitting problems. Furthermore, a smaller

learning rate of 10−5, a batch size of 128 and an epoch number of

200 were set up to constitute the optimal regression model.

Meanwhile, a learning rate of 10–3, a batch size of 32 and an epoch

number of 500 were chosen for the best classification model

(Supplementary Table S2, Supplementary Data Sheet D4).

2.2.2 Model evaluation and comparison
To compare the performance of deep learning model to that

of other models based on state-of-the-art machine learning

algorithms, the same datasets were used to develop a k nearest

neighbor (KNN) model, a random forest (RF) model, a support

vector machine (SVM) model and a gradient boosting machine

(GBM) model. Also, each model was allowed to optimize hyper

parameters using a grid search algorithm and cross validation.

2.2.2.1 K nearest neighbor model

The variable selection k nearest neighbor (KNN) algorithm

was applied to develop the prediction model based on Python

(version 3.6). Regarding hyper parameter setting, number of

neighbors, types of weight functions and algorithms were tuned

to achieve the optimal KNN model. Following a grid search in a

value space of considered parameters, the optimal parameters for

the KNN regression model were 6 neighbors, a “uniform” weight

function and a ‘auto’ algorithm. In addition, for the KNN

classification model, the optimal model consisted of

5 neighbors, a “uniform” weight function, and a “auto”

algorithm (Supplementary Table S3, Supplementary Data

Sheet S4).

2.2.2.2 Random forests model

Based on random forest (RF) algorithm and Bagging

architecture, Random Forest Regressor and Random Forest

Classifier functions were used to develop RF regression and

classification models using Python (version 3.6) respectively.
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In terms of hyper parameter setting, the number of features

considered in each split, the number of estimators (trees), and the

minimal number of leaved samples were all adjusted. As a

consequence, the RF regression model’s optimized parameters

were 200 estimators, ‘auto’ for features considered, and a min_

samples_leaf of 50. The best settings for the RF classification

model were set at 100 estimators, ‘auto’ for features considered,

and a min_samples_leaf of 10 (Supplementary Table S4,

Supplementary Data Sheet S4).

2.2.2.3 Support vector machine model

Based on Support Vector Machine (SVM) algorithm,

Support Vector Regression (SVR) and Support Vector

Classification (SVC) functions were applied to develop SVM

regression and classification models using Python (version 3.6)

respectively. During the process of hyper parameter setting, the

type of kernel function, penalty factor C and gamma were tuned

to achieve the optimal SVM model. According to the

optimization results, the optimal SVM regression model was

determined to be the RBF kernel function, a penalty factor C of

10 and a gamma of 0.01. Then, for the SVM classification model,

the optimal parameters were determined to be the RBF kernel

function, a penalty factor C of 1 and a gamma of 0.1

(Supplementary Material S5, Supplementary Data Sheet S4).

2.2.2.4 Gradient boosting machine model

Based on Gradient Boosting Machine (GBM) algorithm and

Boosting architecture, Gradient Boosting Regressor and Gradient

Boosting Classifier functions were applied to construct GBM

regression and classification models via Python (version 3.6),

respectively. When setting the hyper parameters, number of

trees, learning rates, number of features in each split, min_

samples_ split and min_ samples_ leaf were took into

consideration. According to the optimization results, the

optimal GBM regression model consisted of 500 estimators, a

min_ samples_ split of 1,000, a learning rate of 0.01, and a min_

samples_ leaf of 60. Also, the optimal parameters for the GBM

classification model were then adjusted as 200 estimators, a min_

samples_ split of 600, a learning rate of 0.01, and a min_

samples_ leaf of 60 (Supplementary Material Table S6,

Supplementary Material Data D4).

2.2.3 Performance metrics
In order to assess and compare the performances of above

optimized prediction models, the mean square error (MSE, Eq.

5), the root mean square error (RMSE, Eq. 6) and R-Square (R2_

score, Eq. 7) were used as metrics to evaluate their ability to

predict IC50 values of drug combinations in the regression task.

Meanwhile, the standard criteria for classification work including

Sensitivity (SEN, Eq. 8), Specificity (SPE, Eq. 9), Accuracy (ACC,

Eq. 10) and Matthews correlation coefficient (MCC, Eq. 11) were

also applied to evaluate model performance for the classification

task.

MSE � 1
m
∑m

i�1 y i( )
true − y i( )

pre( )2 (5)

RMSE �
																		
1
m
∑m

i�1 y i( )
true − y i( )

pre( )2√
(6)

R2 score � 1 −
1
m∑m

i�1 y i( )
true − y i( )

pre( )2
1
m∑m

i�1 y i( )
true − y

−( )2 (7)

where ytrue was the actual values of samples, ypre was the

predicted values of samples, m was the number of samples.

SEN � TP

TP + FN
(8)

SPE � TN

FP + TN
(9)

ACC � TP + TN

TP + FN + FP + TN
(10)

MCC � TP*TN − FP*FN																																							
TP + FN( )* TP + FP( )* TN + FN( )* TN + FP( )√

(11)
where TPmeant true positive; TNmeant true negative; FP meant

false positive; FN meant false negative.

Furthermore, the area under the Receiver Operating

Characteristic (ROC) curve (AUC) was also used to evaluate

the model performance for the classification task. Specifically, the

best possible prediction was 100% sensitivity and 100%

specificity with area under the curve (AUC) of 1, while an

AUC value of ≤0.5 represented random selection.

2.2 Prediction and validation with
literature synergy data

To further verify the performance of constructed DeepMDS

model built above, literature validation was carried out. Sun’s work

(Sun et al., 2015) rated 17 drug pairs comprised of 12 single agents

(sorafenib, erlotinib, gefitinib, tamoxifen, everolimus, dasatinib,

sunitinib, BIBW-2992, thalidomide, PD98059, flavopiridol and

toremifene) based on their RACS model-predicted synergy.

Meanwhile, to confirm the predicted results, each drug pair was

experimentally tested at four different concentration ratios (4:1, 3:2,

2:3, and 1:4) using MCF-7 cell line. The synergistic effect of these

17 drug pairs was also predicted and ranked by DeepMDS using

target information and gene expression data of MCF-7 cell line.

DeepMDS’s predicted results were then compared to experimental

results from the literature to determine the model’s performance.

2.3 Prediction and validation by in vitro
cellular experiments

To further evaluate the capability of DeepMDS to predict the

synergy effect of multi-drug combinations, seven recommended

chemotherapy drugs (docetaxel, paclitaxel, doxorubicin,
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epirubicin, gemcitabine, 5-fluorouracil, and methotrexate) from

breast cancer clinical treatment guidelines (Telli and Carlson,

2009) were randomly grouped to generate drug combinations,

including drug pairs and high-order combinations. Following

that, the synergy effect of drug combinations was then predicted

using DeepMDS and evaluated using an in vitro cell viability

assay. In brief, 120 drug combinations were constructed using

seven chemotherapeutic agents (II2-II28 indicated two-drug

combinations, III10-III56 indicated three-drug combinations,

Ⅳ16–Ⅳ70 indicated four-drug combinations,

Ⅴ21–Ⅴ56 indicated five-drug combinations,

Ⅵ16–Ⅵ28 indicated six-drug combinations, Ⅶ7 indicated

seven-drug combinations).

Following the collection of target information for each

medication from GDSC, PubChem, and DrugBank, the

datasets were pre-processed to construct prediction samples.

To examine the synergistic effect of the aforementioned drug

combinations, three distinct subtypes of breast cancer cell lines

were used: MCF-7, MDA-MB-468, and MDA-MB-231.

Furthermore, to validate DeepMDS’s robustness and

applicability, this model was used to predict another cancer

cell line A549 from lung tissue. Each cell line’s gene

expression data were analyzed and then utilized to construct

prediction samples. Finally, DeepMDS was used to predict the

sample datasets. For each cell line, the optimized DeepMDS

model predicted and ranked the IC50 values of 120 drug

combinations.

The corresponding validation experiments were carried out

in vitro. MCF-7, MDA-MB-468, MDA-MB-231, and A549 cell

lines were obtained from the Cell Bank of Type Culture

Collection of Chinese Academy of Sciences (CBTCCCAS).

Four cancer cells were cultured in DMEM medium

supplemented with 10% fetal bovine serum, and kept at 37°C

and 5% CO2 in a humidified incubator. Docetaxel, paclitaxel,

doxorubicin, epirubicin, gemcitabine, 5-Fluorouracil and

methotrexate were purchased from Meryer (Shanghai, China),

and the purity of each drug (compound) is above 98%. Each drug

(compound) was dissolved in DMEM medium and then used

alone or in combination with other drugs at various

concentration ratios so that we could ensure each drug

attained its best synergistical ratio throughout a wide

concentration range (Table 1). Then, exponentially growing

cells were seeded in 96-well plates at a density of 5×103 per

well and cultured for 24 h.

Afterward, the cells were then treated for 72 h with a variety

of single drugs or multi-drug combinations at a series of diluted

concentrations. There are three replicates for each measurement,

and the cytotoxicities of individual drugs or combinations were

determined using the cell counting kit-8 (CCK-8) assay.

IC50 values for each sample was calculated in line with the

manufacturer’s instructions. In addition, the combination index

(CI) (Chou and Talalay, 1984) was calculated using the

CompuSyn software (Chou and Martin, 2007), and then CI

values were applied to define and quantify the synergistic

effect of each drug combination. In general, a drug

combination is synergistic if the CI value is less than 0.9,

additive if the CI value is between 0.9 and 1.1, and

antagonistic if the CI value is greater than 1.1 (Sun et al.,

2016). In this study, a drug combination was considered

synergistic if the CI values for all concentration ratios were all

less than 0.9.

2.4 Pathway enrichment analysis of drug
combinations

To explore the synergistic mechanism of predicted

combinations in given cell lines, KEGG pathway enrichment

analysis was performed on the specific feature genes of cancer cell

lines and the target information of drug combinations, and the

pathways of synergistic combinations against different cancer cell

lines were compared.

3 Results

3.1 Overview of DeepMDS model

Here, we present DeepMDS, a Deep Neural Network (DNN)-

based methodology for the prediction of the pseudo-IC50 values

of a series of drug combinations in a given cell line. Figure 2

illustrates the framework of the DeepMDS, which contains two

main features: 1) identification of top-ranked drug combinations

from a pool of drug pairs and combinations of three or more

compounds, that is, high-order combinations, and 2) cancer cell

line-specific prediction by integrating gene expression profile,

target information of drugs, and drug responses. In other words,

DeepMDS not only allows us to predict the most potent

combination, but it also allows us to deliver the best

prospective combination susceptible to a specific molecular

subtype of cancer cells, which mimics the way that precision

medicine is utilized in clinical trials.

3.2 Model comparison

We first validated our DeepMDS using the test dataset and

compared it to four other machine learning-based methods

(Table 2 and Table 3). In terms of performance metrics,

regardless of whether the regression task is used to predict he

pseudo-IC50 values or the classification task is used to identify

positive results, it is clear that our deep learning model

outperformed those developed using traditional machine

learning algorithms. In specific, DeepMDS achieved a test

MSE of 2.50 in the regression task, while GBM, SVM, RF and

KNN models performed poorly with MSEs of 5.75, 8.66,
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13.11 and 16.73, respectively. Along with MSE, two more

evaluation metrics, RMSE and R2_score, showed a similar

trend. It is worth mentioning that the square root of R2_score

equals the Pearson correlation coefficient in this case, as R2_score

was used to determine the linear correlation between predicted

and actual values in this regression task. In the classification

challenge, DeepMDS also outperformed the competition,

increasing the ACC to 0.94 and the AUC to 0.97, while the

second-best approach, the GBM model, achieved an ACC of

0.86 and an AUC of 0.92.

Additionally, we compared the performance of DeepMDS

to that of DeepSynergy, a deep learning-based model for

predicting synergy in a given cell line. DeepSynergy achieved

an ACC of 0.92 and an AUC of 0.90 for classification, and an

MSE of 255.49 and an RMSE of 15.91 for regression. As shown

in Table 2 and 3, our DeepMDS still performed well. Also,

DeepMDS achieved a SEN of 0.95 and a SPE of 0.93 for the

classification task, compared to 0.57 and 0.95 for DeepSynergy.

Moreover, we compared the performance of DeepMDS against

other deep learning-based methods. DeepMDS predictions

showed a significant correlation with actual combination

viabilities (Pearson’s r = 0.93, Supplementary Table S1),

outperforming other four models developed in the last

2 years. These findings demonstrated that the strength of our

deep learning-based model, which was able to achieve steady

and robust model performance in both regression and

classification tasks, as well as superior accuracy in drug

synergy prediction.

TABLE 1 The settings of concentration ratios for different drug combinations.

The number of drugs in a combination Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ

Two 1:1 2:1 1:2 — — —

Three 1:1:1 2:1:1 1:2:1 1:1:2 — —

Four 1:1:1:1 2:1:1:1 1:2:1:1 1:1:2:1 1:1:1:2 —

Five 1:1:1:1:1 2:1:1:1:1 1:2:1:1:1 1:1:2:1:1 1:1:1:2:1 1:1:1:1:2

Note: roman numerals, including Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ, and Ⅵ, indicated different drug molar ratios in a drug combination.

TABLE 2 Model performances of prediction models for regression task.

Model MSE RMSE R2_score

DeepMDS 2.50 1.58 0.86

GBM 5.75 2.40 0.81

SVM 8.66 2.94 0.75

RF 13.11 3.62 0.72

KNN 16.73 4.09 0.67

DeepSynergy 255.49 15.91 0.73

Note: The columns showed mean square error (MSE), root mean square error (RMSE) and R-Square (R2_score).

TABLE 3 Model performances of prediction models for classification task.

Model SEN SPE MCC ACC AUC

DeepMDS 0.95 0.93 0.88 0.94 0.97

GBM 0.87 0.85 0.72 0.86 0.92

SVM 0.81 0.85 0.66 0.83 0.89

RF 0.74 0.82 0.56 0.78 0.83

KNN 0.75 0.71 0.46 0.73 0.76

DeepSynergy 0.57 0.95 NA 0.92 0.90

Note: The columns showed sensitivity (SEN), specificity (SPE), Matthews correlation coefficient (MCC), accuracy (ACC), and the performance measures area under ROC, curve (AUC).

“NA” indicated that no MCC, data was provided in literature.
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3.3 Literature validation

To verify our DeepMDS’s predictive power, we first focused

on previously published drug combinations, the majority of

which were paired combinations. Seventeen drug pairs and

twelve single agents were predicted using DeepMDS and were

shown to be consistent with published literature (Sun et al., 2015)

(Supplementary Data Sheet S5). Notably, the output layer of the

DeepMDS was the predicted pseudo-IC50 value for each

combination, which did not represent the actual therapeutic

efficacy but was used to rank the therapeutic efficacies of

multi-drug combinations. Here we confined the predicted

outcomes to pairwise drug combinations and ranked 17 drug

pairs according to their increasing pseudo-IC50 values, followed

by a comparison to experimental data from the literature

(Figure 3).

Four of the seventeen drug pairs in the reference data were

validated as having significant synergistic antitumor effects at

optimal dose ratios (Sun et al., 2015), as seen by the dark green

coloration in Figure 3. DeepMDS re-ranked these drug

combinations, revealing that three highly synergistic couples

were correctly predicted in the top five combinations.

Sorafenib and dasatinib and gefitinib and toremifene, the next

two most effective medication combinations, also revealed

synergistic mechanisms at all drug ratios. Notably, the

bottom-ranked combination was verified to exhibit additive or

even antagonistic effects, as predicted by DeepMDS. Collectively,

the ranking of pairwise combinations predicted by DeepMDS

was largely comparable with experimental data from the

literature (Sun et al., 2015), demonstrating our model’s

adeptness at filtering and enriching synergistic medication

combinations.

3.4 De novo prediction of multi-drug
combinations for specific cancer cell lines

To further explore DeepMDS’s ability to predict novel high-

order combinations, we chose seven anticancer drugs that have

been approved by the FDA for breast cancer (National

Comprehensive Cancer Network, 2021). These drugs were

randomly assigned into 120 combinations, ranging from

simple drug pairs to more sophisticated three- or more-drug

combinations. The anticancer activity of these combinations was

then predicted using our DeepMDS on four cancer cell lines,

followed by in-house experimental validation.

Regarding the heterogeneous biological markers of breast

cancer cell lines, we chose three representative subtypes: MCF-7

FIGURE 3
The comparison results between DeepMDS and literature. The synergy effect of each drug pair was retrieved from literature (Sun et al., 2015),
and described using combination index (CI). The left ranking was predicted using RACSmodel, validated by in vitro experiments onMCF-7 (Sun et al.,
2015). Dark green indicated strong synergy (CI < 0.3); pale green indicated synergy (0.3 < CI < 0.9); yellow indicated additive (0.9 < CI < 1.1); and red
indicated antagonism (CI > 1.1). The different CI values of each drug pair were calculated at four dual-drug ratios, including 4:1, 3:2, 2:3, and 1:4.
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for luminal A subtype (ER+, PR+/−, HER2−), MDA-MB-468 for

basal subtype (ER−, PR−, HER2−), and MDA-MB-231 for

claudin-low subtype (ER−, PR−, HER2−), the latter two of

which were also referred to as triple-negative cell lines

(Holliday and Speirs, 2011). For the sake of comparison, one

lung cancer cell line A549 was chosen to assess the prediction

ability of DeepMDS. Then, 120 drug combinations were ranked

according to their predicted pseudo-IC50 values for each cell line.

According to the findings (Table 4), the top three synergistic

combinations for MCF-7 and MDA-MB-468 shared

commonalities, including III12 and III7. When compared to

MDA-MB-468, the top three choices for another triple-negative

MDA-MB-231 had no similar result. The top three regimens for

MDA-MB-231 were combinations of more than three drugs,

includingⅣ33, Ⅴ32 andⅣ59. On another A549 lung cancer cell

line, Ⅱ28, Ⅲ12 and Ⅲ52 were the top three.

3.5 Experimental validation of predicted
synergistic combinations

Subsequently, an in vitro cell viability study was undertaken

on each cancer cell line to evaluate the predicted findings.

IC50 values for individual drugs were first obtained for each

TABLE 4 The top three predicted combinations for a variety of cancer cell lines.

Predicted
ranking

MCF-7 MDA-MB-468 MDA-MB-231 A549

1 III12 (doxorubicin, docetaxel,
and gemcitabine)

Ⅲ12 (doxorubicin, docetaxel
and gemcitabine)

Ⅳ33 (doxorubicin, gemcitabine,
methotrexate, and paclitaxel)

Ⅱ28 (epirubicin and
paclitaxel)

2 Ⅲ7 (doxorubicin, 5-
Fluorouracil, and docetaxel)

Ⅱ3 (doxorubicin and docetaxel) Ⅴ32 (doxorubicin, docetaxel, gemcitabine,
methotrexate, and paclitaxel)

Ⅲ12 (doxorubicin,
epirubicin, and paclitaxel)

3 Ⅲ18 (doxorubicin, gemcitabine,
and paclitaxel)

Ⅲ7 (doxorubicin, 5-
Fluorouracil and docetaxel)

Ⅳ59 (5-Fluorouracil, docetaxel,
methotrexate and epirubicin)

Ⅲ52 (docetaxel, epirubicin,
and paclitaxel)

FIGURE 4
The anti-cancer effects of seven single drugs on four cancer cell lines (A). The anti-cancer effects of seven single drugs on three breast cancer
lines, including luminal A subtype MCF-7 (A), basal subtype MDA-MB-468 (B), and claudin-low subtypeMDA-MB-231 (C). Also, the anti-tumor ability
of seven individual drugs were examined on a lung cancer cell A549 (D).
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cancer cell line (Figure 4). Then, in a similar fashion, the

synergistic effects of predicted drug combinations were

measured for each cell line.

3.5.1 Synergistic effects of predicted
combinations on luminal a breast cancer cell line

For MCF-7 cell line, the results indicated that realistic

IC50 values for single drugs ranged from 138.3 nM to

97.25 μM, with docetaxel exhibiting the best anti-cancer ability

and 5-fluorouracil exhibiting the least (Figure 4A). In light of the

ranked combinations, several combinations containing the top

three (Ⅲ12, Ⅲ7 and Ⅲ18), the middle level ones (Ⅲ40, Ⅲ43 and

Ⅲ47), and the bottom three (Ⅲ9, Ⅲ44 and Ⅲ41) were examined

on MCF-7 cell line using the defined drug ratios listed in Table 1.

As a result, the lowest IC50 value for each combination across

all drug ratios was considered the best experimental result and

was used to rank the synergistic effect (Table 5). Except for the

bottom combinations Ⅲ9 and Ⅲ44, the rest of experimental

results were identical to the predicted order. With respect to the

combinationsⅢ9 andⅢ44, the actual IC50 values reversed their

ranking, which could be explained in part by the fact that both

combinations elicited strong antagonistic responses on MCF-7

cell line, and DeepMDS may be insensitive to negative examples

with additive or antagonistic effects. Additionally, the associated

CI values of drug combinations were also calculated

(Supplementary Figure S1). The top three combinations had a

clear synergy impact on MCF-7 cell line (0.3 < CI < 0.9), with

Ⅲ12 exhibiting the strongest synergy effect (CI < 0.3). By

contrast, the middle three and the bottom three demonstrated

antagonism effect (CI > 1.1).

To further evaluate DeepMDS’s accuracy and robustness,

the best synergistic combination, III12, was compared to

different combinations including either two or all three

drugs from III12 at the optimal drug ratio. For example, we

chose Ⅱ19 (docetaxel/gemcitabine, 2:1), Ⅱ3 (doxorubicin/

docetaxel, 1:2), and Ⅱ4 (doxorubicin/gemcitabine, 1:1) as

components of III12 (Figure 5A); and other groups,

IV27 and IV28, contained the whole combination setting of

TABLE 5 The anti-cancer effects of nine combinations of three drugs on MCF-7 cells.

Predicted ranking Group number The IC50 (nM) of drug combinations The best IC50

Ⅰ Ⅱ Ⅲ Ⅳ

1 Ⅲ12 90.43 31.37 30.88 42.94 30.88

2 Ⅲ7 290.99 101.66 56.52 85.66 56.52

3 Ⅲ18 102.14 128.37 88.62 168.34 88.62

62 Ⅲ40 2268.13 535.42 5823.46 308.97 308.97

63 Ⅲ43 640.90 6386.59 4144.85 598.10 598.10

65 Ⅲ47 10584.30 827.17 18532.30 10219.80 827.17

118 Ⅲ9 23145.90 11,675.80 2121.31 2784.08 2121.31

119 Ⅲ44 2606.11 2197.47 1499.70 1523.97 1499.70

125 Ⅲ41 6022.00 354825.00 84020.00 24170.00 6022.00

Note: the predicted ranking included 120 drug combinations and individual drugs themselves.

FIGURE 5
The comparison of anti-cancer effect on MCF-7 cell line
between III12 and related combinations. (A). The comparison of
anti-cancer effect on MCF-7 cells between III12 and related
pairwise combinations that were extracted from III12. (B). The
comparison of anti-cancer effect on MCF-7 cells between
III12 and four-drug combinations which included the entire
III12 composition.
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III12 (Figure 5B). In addition, the commonly used clinical

combinations (Ⅲ55: gemcitabine, epirubicin and paclitaxel,

and Ⅱ3: doxorubicin and docetaxel) (Telli and Carlson, 2009)

were assessed under the same circumstance as combination

Ⅲ12. Not unexpectedly, in vitro cellular experimental results

indicated that Ⅲ12 continues to exhibit the best anti-cancer

synergistic activity when compared to any other combination

(Table 6 and Supplementary Figure S2). Taking all the above

validation data into account, the predicted Ⅲ12 (doxorubicin,

docetaxel and gemcitabine) was the most synergistic

combination for the MCF-7 cell line.

3.5.2 Synergistic effects of predicted
combinations on triple-negative breast cancer
cell line

Additionally, for the MDA-MB-468 cell line (triple-

negative basal subtype), IC50 values for various drugs

ranged from 881.6 nM to 536.2 μM, with paclitaxel

exerting the greatest anti-cancer ability (Figure 4B). Then,

the synergy impact of the top three combinations at various

drug ratios was evaluated on MDA-MB-468. Similarly, Ⅲ12

(doxorubicin, docetaxel, and gemcitabine) achieved the best

IC50 value of 115.5 nM when used in a 2:1:1 M ratio

(Table 7). Additionally, the clinically used drug

combinations Ⅲ55 (gemcitabine, epirubicin, and paclitaxel)

(Telli and Carlson, 2009) was evaluated, and its best

IC50 value was 774.2 nM, ranking 27th in the predicted

results.

However, another triple-negative claudin-low subtype,

MDA-MB-231, showed different drug responses. For example,

monotherapy demonstrated that epirubicin had the lowest

IC50 value of 2.81 μM while 5-fluorouracil remained the

worst one (Figure 4C). Experiments indicated that IV33, a

four-drug combination, was the best of the predicted top

three. Two commonly used drug combinations (Ⅲ55 and Ⅱ3)
in clinical treatment were also compared, and it was discovered

that Ⅲ55, which was ranked 27th, and Ⅱ3, which was ranked

70th, had significantly higher IC50 values and inferior anticancer

activity (Table 8).

In addition, the synergistic mechanisms of all combinations

were calculated for MDA-MB-468 and MDA-MB-231,

respectively. With regards to MDA-MB-468, all three top

combinations indicated strong synergy at each drug ratio,

with CI values smaller than 0.3. Besides, the clinically used

Ⅲ55 showed strong synergy (CI = 0.27) and modest synergy

(CI = 0.74) at 2:1:1 and 1:2:1 ratios, respectively; however, this

regime had additive effect and antagonistic effect at the ratio of 1:

1:2 (CI > 0.9) and 1:1:1 (CI > 1.1), respectively (Supplementary

Figure S3). For the MDA-MB-231 cell line, the top two, IV33 and

V32, exhibited strong synergistic effect at all drug ratios.

However, the ranked third combination IV59 would exhibit

some antagonistic activity at the ratio of 1:1:1:1 and 1:2:1:1,

while still presenting strong synergy at other ratios. By contrast,

II3 and III55, both of which have been used in clinical practice,

had at least modest synergistic effects at each drug ratio

(Supplementary Figure S4).

TABLE 6 The comparison results of anti-cancer effect between clinically used combinations and Ⅲ12 on MCF-7 cell line.

Predicted ranking Group number The IC50 (nM) of drug combinations The best IC50

Ⅰ Ⅱ Ⅲ Ⅳ

1 Ⅲ12 90.43 31.37 30.88 42.94 30.88

60 Ⅱ3 570.00 440.00 377.18 — 377.18

92 Ⅲ55 3695.00 7789.00 9444.00 814.10 814.10

Note: the predicted ranking included 120 drug combinations and individual drugs themselves.

TABLE 7 The anti-cancer effects of drug combinations on MDA-MB-468 cells.

Predicted ranking Group number The IC50 (nM) of drug combinations The best IC50

Ⅰ Ⅱ Ⅲ Ⅳ

1 Ⅲ12 137.80 115.50 410.50 468.50 115.50

2 Ⅱ3 353.90 207.60 443.30 — 207.60

3 Ⅲ7 3497.00 522.90 1561.00 2767.00 522.90

27 Ⅲ55 3095.00 774.20 1056.00 1613.00 774.20

Note: the predicted ranking included 120 drug combinations and individual drugs themselves.
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3.5.3 Validation of predictive specificity for
various breast cancer subtypes

The predicted result’s specificity for cancer cell lines was

further confirmed. Ⅳ33, the best drug combination for MDA-

MB-231, was evaluated using other subtypes of breast cancer cell

lines such as MCF-7 and MDA-MB-468. Rather than that, Ⅲ12,

which shown the greatest anticancer activity against MCF-7 and

MDA-MB-468, was evaluated in a similar manner against MDA-

MB-231. IV33 was predicted to rank 66th for MCF-7 and 33rd

for MDA-MB-468, respectively, and Ⅲ12 was predicted to rank

10th for the MDA-MB-231 (Table 9). Experiments proved the

anticancer abilities of various combinations predicted for each

specific subtype. And regardless of the drug ratio,Ⅳ33 exhibited

antagonistic activity against MCF-7; however, Ⅳ33 had

synergistic anti-cancer effects on MDA-MB-468 at all but 1:1:

1:1 and 1:1:1:2. Compared with the outcomes of IV33 on 2 cell

lines, Ⅲ12, which performed slightly better on MDA-MB-231,

exhibited synergy effect at all ratios.

To identify the potential synergistic mechanism of Ⅲ12 and

Ⅳ33 on various breast cancer subtypes, KEGG pathway

enrichment analysis was carried out with a p-value cutoff of

0.01 (Supplementary Figure S7). The enrichment analysis

showed that pathway in cancer, PI3K-Akt signaling pathway

and notch signaling pathway were the common pathways of

Ⅲ12 and Ⅳ33 on three breast cancer subtypes. More

importantly, MAPK signaling pathway may be a special

mechanism for the synergistic anti-cancer effect of Ⅲ12 on

MCF7 and MDA-MB-468, and Rap1 signaling pathway may

be another important mechanism forⅢ12 onMCF7. In addition,

MAPK signaling pathway was the common pathway of Ⅳ33 on

three breast cancer subtypes. Further analysis revealed that Gap

junction may not contribute significantly to the synergistic anti-

cancer effect of Ⅳ33. Collectively, each subtype of breast cancer

cell lines had its own best synergized drug combinations,

indicating an excellent specificity of DeepMDS for cell line

subtypes that reflect dramatic genetic and epigenetic changes

during the development of cancer.

3.5.4 Synergistic effects of predicted
combinations on lung cancer cell line

An additional lung cancer cell line, A549, was used to examine

the applicability of DeepMDS. It first predicted the synergistic

anticancer effects of 120 drug combinations using DeepMDS

(Supplementary Data Sheet D6), and then six combinations that

ranked at the top two (Ⅱ28 andⅢ21), middle level (Ⅲ12 andⅢ47),

or bottom two (Ⅲ41 and Ⅲ42) were examined in terms of cellular

TABLE 8 The anti-cancer effects of drug combinations on MDA-MB-231 cells.

Predicted ranking Group number The IC50 (nM) of drug combinations The best IC50

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ

1 Ⅳ33 177 52 139 2152 167 — 52

2 Ⅴ32 1087 743 868 852 219 552 219

3 Ⅳ59 147,600 1952 19,260 244 850 — 244

27 Ⅲ55 1506 5757 1793 5019 — — 1506

70 Ⅱ3 7983 9414 4567 — — — 4567

Note: the predicted ranking included 120 drug combinations and individual drugs themselves.

TABLE 9 The anti-cancer effect of Ⅲ12 and Ⅳ33 on MCF-7, MDA-MB-231 and MDA-MB-468 cells.

Group number Cell line The IC50 (nM) of drug combinations The best IC50

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ

Ⅲ12 MCF-7 90.4 31.3 30.8 42.9 — 30.8

MDA-MB-468 137.8 115.5 410.5 468.5 — 115.5

MDA-MB-231 15,720 8044.0 887.0 4666.0 — 887.0

Ⅳ33 MCF-7 8090.0 787.6 4355.0 788.9 1296.0 787.6

MDA-MB-468 2803.0 1275.0 1988.0 1451.0 2665.0 1275.0

MDA-MB-231 177.5 52.3 139.8 2152.0 167.5 52.3

Frontiers in Pharmacology frontiersin.org13

She et al. 10.3389/fphar.2022.1032875

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1032875


toxicity. IC50 values of individual drug ranged from 0.44 μM to

50.23 μM, with doxorubicin exerting the best anti-cancer ability and

5-fluorouracil still having the weakest efficacy (Figure 4D). It was

shown that the anti-cancer capacity of various combinations at their

optimal drug ratios was compatible with the predicted results of

DeepMDS, thereby proving the reliability of this model for

predicting potential multi-drug combinations (Table 10).

When we looked at the mechanisms of action for these

combinations, it was clear that the synergy effect at every

drug ratio was the most noticeable benefit of the top two

combinations. Combinations in the middle (III47), as well as

those at the bottom, showed additive or antagonistic effects at the

majority of the ratios, but the 30th-ranked combination (III12)

also demonstrated a strong synergistic mechanism in some cases

(Supplementary Figure S6). It is possible that some underlying

drug-target interactions, which were part of the overall

synergistic mechanism, were not collected in the current

training dataset because the predicted rank for Ⅲ12 and

Ⅲ42 differed from the experimental results. Big biomedical

data, which is becoming more widely available, could help us

better predict the best combination for a given cancer cell line.

4 Discussion

Although it is now well established that combination therapies

are significantly more effective at treating complicated disorders,

experimentally assessing novel combinations is difficult due to the

huge number of possible drug combinations. In this study, a deep

learning-based model (DeepMDS) was successfully built to expedite

the development of novel synergistic multi-drug combinations for

clinical cancer treatment. DeepMDS enabled the ranking of all

multi-drug combinations constructed randomly from a pool of

medications using large-scale integrated features taken from gene

expression profiles of human cancer cell lines, the multiscale

interactome, and drug response data. Also, the predicted ranking

of drug combinations revealed the likely mechanisms of action; for

example, the higher ranked combination had a significantly greater

synergy impact, whereas the lower ranked combination would have

an antagonistic effect. DeepMDS performed admirably in terms of

accuracy. For the classification job, it earned an ACC of 0.94, an

AUC of 0.97, a SEN of 0.95, and a SPE of 0.93. When facing a

regression task, this model achieved a MSE of 2.50 and a RMSE of

1.58. A lack of experimental validation for some deep learning-based

models may result in erroneous and/or unprofitable predictions

when evaluating combinations of unknown druggable chemicals,

natural products, and/or new cell lines. So, an in vitro cell

experiment with seven clinically used anti-cancer drugs was used

to test the ranked drug combinations predicted by DeepMDS in this

work. In comparison to other drug combinations, it is clear that all of

the predicted optimal synergistic combinations had a significant

synergistic anti-cancer effect on each individual cell line.

As per the knowledge of authors, one of the biggest advantages

of our model is to accurately predict the most promising three- or

more-drug combinations for a certain cancer cell line. High-order

combinations of drugs, as opposed to simple drug pairs, can regulate

many anti-cancer networks simultaneously, hence improving tumor

growth inhibition efficacy while avoiding drug resistance. Results

indicated that DeepMDS leveraged its ability to rank high-order

combinations which were randomly formed in the training space

and so far untested. In addition, another advantage of DeepMDS is

to predict synergistic combinations specific to a cancer cell line and

even to a subtype of cell line. Experiments demonstrated that

DeepMDS consistently gained high prediction performance

across various subtypes of breast cancer cells and tissue-specific

cancer cell lines. For example, III12 (doxorubicin, docetaxel and

gemcitabine) had the best synergistic anti-cancer activity on

hormone-responsive breast cancer cell line MCF-7, but Ⅳ33

(doxorubicin, gemcitabine, methotrexate and paclitaxel) and

Ⅲ12 were the most effective combinations against claudin-low

MDA-MB-231 and basal MDA-MB-468, respectively, for triple-

negative breast cancers. A549, a lung cancer cell line, was also used to

evaluate the cell line specificity of DeepMDS, and one drug pair

(Ⅱ28) was found to be the best regimen. Therefore, it doesn’t matter

what the multi-drug combinations are, DeepMDS was able to

accurately predict and rank synergistic combinations against the

TABLE 10 The anti-cancer effects of drug combinations on A549 cells.

Predicted ranking Group number The IC50 (nM) of drug combinations The best IC50

Ⅰ Ⅱ Ⅲ Ⅳ

1 Ⅱ28 181.5 140.9 73.8 — 73.8

2 Ⅲ21 240.6 194.2 240.3 234.1 194.2

30 Ⅲ12 215.1 135.4 128.4 191.1 128.4

41 Ⅲ47 1353.0 696.8 750.7 3213.0 696.8

119 Ⅲ41 9304 15,100 4739 15,110 4739

125 Ⅲ42 1353 3807 1112 1223 1112

Note: the predicted ranking included 120 drug combinations and individual drugs themselves.
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cell line of interest, showing a wide range of applications. DeepMDS,

in particular, makes it easier in the future to give targetedmulti-drug

combinations when taking into account the heterogeneity in

genomic data of each patient.

To further validate the prediction power of DeepMDS for

unseen combinations, clinically used breast cancer drug

combinations, including II3 (doxorubicin and docetaxel) and

Ⅲ55 (gemcitabine, epirubicin, and paclitaxel), were tested in

three subtypes of breast cancer cell line and, by extension,

compared with the predicted best combinations. As a result, the

IC50 values of Ⅱ3 and Ⅲ55 against MCF-7 increased about tenfold

to twentyfold when compared to the predicted best combination

(III12). Also, for triple-negative MDA-MB-468, this triple-drug

combination (III12) was predicted to be the best, with an

IC50 value of approximately 55.6 percent of II3’s and

14.9 percent of III55’s, respectively. In another triple-negative

MDA-MB-231, we observed that the IC50 values of II3 leaped

by about 88-fold, of III55 by 28.9-fold, when compared to the best

combination IV33. Thus, it is possible to apply the novel synergistic

drug combinations predicted by DeepMDS for breast cancer clinical

trials, especially with regard to the triple negative breast cancer.

During the construction of machine learning and deep

learning models, data are of critical relevance. In some cases,

low quality predictive performance was mainly due to the

incomplete dataset. For example, DeepSynergy was unable to

accurately predict the response of novel medications and novel

cell lines; more specifically, DeepSynergy indicated MSEs

between 414 and 500 for novel drugs, and MSEs between

387 and 461 for novel cell lines. Because there were only

38 training instances of chemical compounds and cell lines,

the authors speculated that the low prediction performance

was due to a lack of training data (39 examples). In this case,

the larger-scale integrated modeling datasets (201,405), which

include 1,000 human cancer cell lines and 1839 chemicals, could

substantially improve the performance and increase the accuracy

of ranking the combinations. Another characteristic is the

incorporation of drug-target data into modeling data. Rather

than relying on descriptors of chemical structures to compare the

structure similarity of two drugs, the drug-target information

drives our prediction model to produce more accurate results in a

biomedical context, which is beneficial for elucidating the

underlying mechanisms of synergy action.

However, one limitation of our suggested strategy is that the

modeling data contains insufficient information on drug targets. As

a result, in some situations, a portion of a drug’s target information

may be omitted from the existing features, resulting in a discrepancy

between predicted and actual outcomes. Notably, we did not feel that

this constraint would eliminate the clinical use of our DeepMDS. By

updating experimental drug targets data or adding predicted drug

targets, this problem can be solved and the prediction accuracy of

DeepMDS can be further enhanced. In addition, drug concentration

ratio is also important for the synergistic effect of drug combination.

Due to the lack of available data on drug concentration ratios of drug

combinations and the corresponding synergies, in this model, it was

assumed that the drug concentration of each drug was sufficient to

act on their targets and produce efficacy. We will continue to

develop a computational method to predict the optimal drug

concentration ratio for drug combination in future studies.

Despite the limitations, our prediction model was able to

translate monotherapy data into clinically useful predictions and

expand the Universe of possible synergistic medication

combinations, prioritizing promising multi-drug combinations for

distinct types of cancer.

5 Conclusion

In this study, we developed a deep learning-based model that

could aid in the discovery of the probable best combinations for a

certain cell line or cell subtype. With regard to the high-cost

experimental screening of drug combinations, our DeepMDS

would significantly simplify the process of prioritizing the most

promising multi-drug combinations for future pre-clinical

studies. More importantly, our experimental validation proved

that high-order combinations including three or more drugs, in

most of cases, consistently outperformed drug pairs typically

utilized in clinical treatment. Also, precise and robust prediction

of drug combinations could identify the possible targeted

combinations for personalized medicine, thereby expediting

the development of combination therapy to combat against

drug resistance and to improve efficacy.
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