Check for updates

OPEN ACCESS

EDITED BY David Adeiza Otohinoyi, Louisiana State University, United States

REVIEWED BY Qinwei Fu, Chengdu University of Traditional Chinese Medicine, China Gioacchino Calapai, University of Messina, Italy Hong Nie, Jinan University, China

*CORRESPONDENCE Xianbo Wu, ⊠ cdutcmwu@163.com

[†]These authors share first authorship

SPECIALTY SECTION This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

RECEIVED 28 August 2022 ACCEPTED 29 December 2022 PUBLISHED 12 January 2023

CITATION

Wang J, Chen Y, Yang X, Huang J, Xu Y, Wei W and Wu X (2023), Efficacy and safety of Chinese herbal medicine in the treatment of chronic pruritus: A systematic review and meta-analysis of randomized controlled trials. *Front. Pharmacol.* 13:1029949. doi: 10.3389/fphar.2022.1029949

COPYRIGHT

© 2023 Wang, Chen, Yang, Huang, Xu, Wei and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Efficacy and safety of Chinese herbal medicine in the treatment of chronic pruritus: A systematic review and meta-analysis of randomized controlled trials

Jie Wang^{1†}, Yuhang Chen², Xinwei Yang³, Jianli Huang¹, Yihua Xu⁴, Wei Wei¹ and Xianbo Wu³*

¹The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China, ²The Second Clinical Medical College of Beijing University of Chinese Medicine, Beijing, China, ³School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China, ⁴School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China

Background: Chronic pruritus (CP) is a common and aggravating symptom associated with skin and systemic diseases. Although clinical reports suggest that Chinese herbal medicine (CHM) is safe and effective in Chronic pruritus treatment, evidence to prove it is lacking. Therefore, in this review, we evaluated the therapeutic effects and safety of Chinese herbal medicine for the treatment of Chronic pruritus.

Methods: Nine databases were searched for relevant randomized controlled trials (RCTs) from the inception of the database to 20 April 2022. The randomized controlled trials that compared the treatment of Chinese herbal medicine or a combination of Chinese herbal medicine and conventional western medicine treatment (WM) with western medicine treatment intervention for patients with Chronic pruritus were selected. We evaluated the effects of treatment with Chinese herbal medicine on the degree of pruritus, the Dermatology Life Quality Index (DLQI) score, response rate, recurrence rate, and incidence of adverse events in patients with Chronic pruritus. The risk of bias in each trial was evaluated using the Cochrane Collaboration tool. The RevMan software (version 5.3) was used for performing meta-analyses to determine the comparative effects.

Results: Twenty-four randomized controlled trials were included, compared with placebo, moderate-quality evidence from one study showed that Chinese herbal medicine was associated with reduced visual analogue scale (VAS) (MD: -2.08; 95% CI = -2.34 to -1.82). Compared with western medicine treatment, low-to moderate-quality evidence from 8 studies indicated that Chinese herbal medicine was associated with reduced visual analogue scale, 4 studies indicated that Chinese herbal medicine was associated with reduced Dermatology Life Quality Index (MD = -1.80, 95% CI = -2.98 to -.62), and 7 studies indicated that Chinese herbal medicine was associated with improved Effective rate (RR: 1.26; 95% CI = 1.19-1.34). Compared with combination of Chinese herbal medicine and western medicine treatment, 16 studies indicated that Chinese herbal medicine was

Abbreviations: CP, chronic pruritus; RCT, randomized controlled trial; RR, risk ratio; MD, mean difference; VAS, visual analogue scale; CHM, Chinese herbal medicine; WM, conventional western medicine treatment; DLQI, Dermatology Life Quality Index; AE, adverse event; AD, atopic dermatitis; GRADE, Grading of Recommendations Assessment; Development, and Evaluation; CI, confidence interval; TCM, traditional Chinese medicine.

associated with reduced visual analogue scale, 4 studies indicated that Chinese herbal medicine was associated with reduced Dermatology Life Quality Index (MD = -2.37, 95% CI = -2.61 to -2.13), and 13 studies indicated that Chinese herbal medicine was associated with improved Effective rate (RR: 1.28; 95% CI = 1.21-1.36). No significant difference in the occurrence of adverse events in using Chinese herbal medicine or western medicine treatment was reported.

Conclusion: The efficacy of Chinese herbal medicine used with or without western medicine treatment was better than western medicine treatment in treating chronic pruritus. However, only a few good studies are available regarding Chronic pruritus, and thus, high-quality studies are necessary to validate the conclusions of this study.

KEYWORDS

Chinese herbal medicine (CHM), chronic pruritus (CP), pruritus degree, systematic review, meta-analysis

1 Introduction

Chronic pruritus (CP) is an unpleasant sensation that induces an urge to scratch and lasts for at least 6 weeks (Rajagopalan et al., 2017; Villa-Arango et al., 2019). It is often accompanied by skin diseases [e.g., psoriasis, atopic dermatitis (AD), and lichen planus] and systemic diseases (e.g., end-stage renal disease, diabetes, hypothyroidism, chronic hepatobiliary disease, and malignancy) (Twycross et al., 2003; Ständer et al., 2007; Olek-Hrab et al., 2016; Weisshaar et al., 2019). Several population-based studies have suggested that one in five individuals in the general population experience CP at least once in their lifetime, with a 12-month incidence of 7% (Matterne et al., 2011). The prevalence of CP in the general adult population is approximately 13.5% (Rajagopalan et al., 2017). In patient populations, the incidence of CP varies depending on its underlying etiology, ranging from 25% in hemodialysis patients (Weiss et al., 2016) to 100% in patients with skin conditions, such as urticaria and AD (Szepietowski et al., 2002; Szepietowski et al., 2004). CP can lead to sleep disturbance, fatigue, inability to work, anxiety, and depression, resulting in a considerable decline in health-related quality of life (Schneider et al., 2006; Steinke et al., 2018; Stumpf et al., 2018; Schneider et al., 2022). Additionally, CP imposes a significant burden on society by increasing healthcare costs and posing treatment challenges.

The cause of CP is extremely complicated and includes dermatological, systemic, neurological, psychiatric, mixed, or unknown factors (Kretzmer et al., 2008; Matterne et al., 2013; Shive et al., 2013; Hay et al., 2014; Pereira et al., 2016). CP is a challenging condition to manage due to its extremely complicated aetiology. The treatment of CP mainly includes the treatment of the underlying disease and topical treatment. Conventional western medicine treatment (WM) (Andrade et al., 2020) includes emollient creams, cooling lotions, topical corticosteroids, topical antidepressants, systemic antihistamines, systemic antidepressants, systemic anticonvulsants, and phototherapy, as well as, symptomatic and supportive care. However, the commonly (Hay et al., 2014) used treatment methods have limited efficacy and might be associated with significant side effects. Therefore, patients often experience severe, long-term itching without improvement, which exacerbates the negative effects on the quality of life and psychosomatic responses (Dalgard et al., 2020). Therefore, alternative strategies for treating CP need to be investigated.

Chinese herbal medicine (CHM) is an essential part of monotherapy or substitute supplementary treatment of CP and has been used in China for many years. The treatment of itching by administering CHM (mainly orally), CHM fumigation, external washing, acupoint therapy, etc., can effectively relieve itching. Many clinical and experimental studies have confirmed the effectiveness of CHM in the treatment of CP (Bedi and Shenefelt, 2002; Xue et al., 2019; Lu et al., 2021). For example, Qinzhuliangxue decoction has anti-inflammatory effects, and it increases the threshold of pruritus caused by histamine phosphate, which is effective in treating CP caused by specific eczema (Ma et al., 2020). Turmeric anti-inflammatory and high-sensitivity has C-reactive protein-lowering effects and can be used for treating uremic pruritus (Pakfetrat et al., 2014). Animal experiments have shown that administering Huanglian Jiedu decoction can treat AD by regulating the antigen presentation function of dendritic cells, weakening T-lymphocyte activation, and subsequently exerting anti-inflammatory and anti-pruritus effects (Xu et al., 2021). Although several studies have treated CP with CHM or a combination of CHM and WM, systematic analyses and evidence synthesis of CHM treatment on CP are limited. Therefore, new evidence-synthesis methods need to be developed in this field. In this systematic review, we summarized and evaluated studies on the efficacy and safety of using CHM for monotherapy or adjuvant therapy in the treatment of CP to promote its clinical application.

2 Materials and methods

The review protocol was registered on the International Platform for the Registration of Systematic Review and Meta-Analysis Schemes (INPLASY202260103), and it is presented according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement (Liberati et al., 2009).

2.1 Search strategies

Nine electronic databases were searched for relevant studies from the date of the inception of the database to 20 April 2022. The databases searched were PubMed, Embase, Web of Science, Cochrane, Chinese Biological Medicine, China National Knowledge

TABLE 1 PubMed search strategy.

#1: "Drugs, Chinese Herbal" [Mesh]
#2: (((((((Chinese Drugs [Title/Abstract])) OR (Chinese Plant [Title/Abstract])) OR (Chinese Herbal Drugs [Title/Abstract])) OR (herbal drugs [Title/Abstract])) OR (Chinese [Title/Abstract])) OR (chinese plant extracts [Title/Abstract])) OR (chinese pl
#3: 1# OR 2#
#4: "Pruritus" [Mesh]
#5: (((Itching [Title/Abstract]) OR (Chronic pruritus [Title/Abstract])) OR (itch [Title/Abstract])) OR (Chronic itch [Title/Abstract])
#6: 4# OR 5#
#7: "Randomized Controlled Trials as Topic" [Mesh]
#8: ("Randomized Controlled Trials as Topic" [Mesh]) OR (((Clinical Trials, randomized [Title/Abstract]) OR (Trials, Randomized Clinical [Title/Abstract])) OR (Controlled Clinical Trials, Randomized [Title/Abstract]))
#9: 7# OR 8#
#10: 3# OR 6# OR 9#
n 10: 5# OK 0# OK 9#

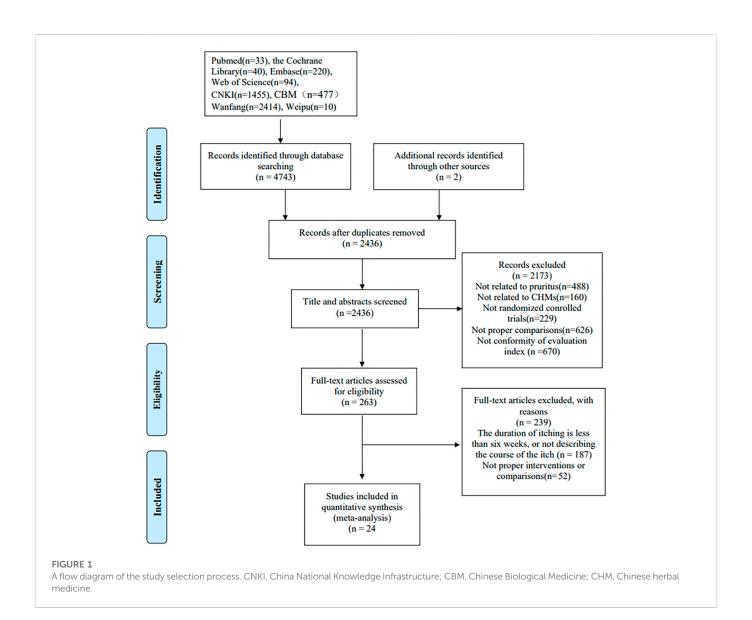
Infrastructure, the Chinese Scientific Journal Database, the Wanfang database, and Clinical Trials.gov. Publications of all languages were accepted. Relevant studies were retrieved using Medical Subject Heading terms or keywords combined with free text words, such as chronic pruritus, pruritus, traditional Chinese medicine (TCM), Chinese herbal medicine, randomized control, and random. These keywords were modified according to the needs of different databases. The PubMed search strategies are shown in Table 1.

2.2 Inclusion and exclusion criteria

We evaluated the efficacy and safety of CHM for treating CP. The inclusion criteria for the studies were as follows: (Rajagopalan et al., 2017) a randomized controlled trial (RCT) was performed with or without blinding; (Villa-Arango et al., 2019) the participants were diagnosed with chronic systemic pruritus (pruritus duration >6 weeks) (Ständer et al., 2007); (Ständer et al., 2007) the participants were not restricted to a specific age group, gender, race, disease duration, or concomitant disease; (Weisshaar et al., 2019) the experimental group was treated with oral, external, or a combination of oral and external CHM, irrespective of the medicinal form used (e.g., proprietary Chinese medicine, Chinese herbal decoction, granules, capsules, tablets, pills, or injections), whereas, the control group was treated with a placebo or conventional Western medicine (WM); (Olek-Hrab et al., 2016) the pruritus index (using the visual analogue scale [VAS] (Furue et al., 2013)) was reported in the study.

The exclusion criteria for the studies were as follows: (Rajagopalan et al., 2017) the participants were not diagnosed with CP, or the study did not mention that the duration of pruritus was >6 weeks; (Villa-Arango et al., 2019) the RCT did not use the VAS to assess pruritus; (Ständer et al., 2007) the control group was administered other TCM interventions (such as CHM, acupuncture, or massage) other than WM. The studies were screened based on the selection criteria by two independent reviewers (WJ and CYH), and a third reviewer (WXB) resolved any discrepancy that might have occurred between the assessments of the two reviewers.

2.3 Types of outcome measures


The main outcome measure was the pruritus index evaluated using VAS. VAS consists of a 10-cm line indicated with points 0 to 10 (0 = no itching, 10 = worst imaginable itching) on which patients indicate pruritus intensity by marking the point that corresponds to the severity of their pruritus (Furue et al., 2013). Secondary outcomes included the Dermatology Life Quality Index (DLQI) score (Finlay and Khan, 1994), effective rate, recurrence rate, and adverse effect rate.

2.4 Data extraction and quality assessment

After retrieving the articles, the documents were managed, and duplicates were removed using the document management software Endnote X9. Based on the inclusion and exclusion criteria, two reviewers (WJ and CYH) independently screened the titles and abstracts to select relevant studies, and then, they screened the full texts for the final selection. Additionally, the name of the authors, the year of publication, sample size, the sex and age of the participants, details of the intervention, outcome measures, and adverse reactions were independently extracted by two reviewers (WJ and CYH) using a pre-defined data collection form. Then, the extracted data were crosschecked for accuracy by two other reviewers (HJL and YXW). In case information in the included articles was not clear, one of the reviewers (HJL) contacted the authors of the specific study through telephone or email for clarification. The included articles were evaluated by two reviewers (WJ and CYH) using ROB2.0. The six dimensions included random isolation process, deviations from intended interventions, missing outcome data, measurement of the outcome, selection of the reported result, and overall bias. If disagreement occurred between the reviewers, discussions were held with the two other reviewers (XYH and WW) to arrive at a consensus.

2.5 Evidence synthesis and statistical analysis

Cochrane systematic review software Review Manager 5.3 and Stata 14.0 were used to analyze the data statistically. The quality of evidence

was summarized and graded using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology. A table was created to summarize the results using the GRADE profiler 3.6.1 software. Risk ratios (RRs) with 95% confidence intervals (CIs) were used to evaluate dichotomous data, continuous data, mean difference (MD), and standard mean difference. A fixed-effects model was used if the data were homogeneous (Cochrane Q, p > .1, $I^2 < 50\%$), and a random-effects model was used if the data were heterogeneous. *p*-values <.05 were considered to be statistically significant. When a certain level of heterogeneity was observed, and we had sufficient studies, subgroup analyses were performed to account for the heterogeneity. Funnel plots were used to assess publication bias when at least 10 trials were available.

3 Results

3.1 Description of the included studies

Following our search strategy, 4,745 articles were initially identified, and 2,436 articles were selected after removing

duplicates. After initially screening the titles and abstracts for inclusion and exclusion criteria, 2,173 articles were excluded. The remaining 263 studies were thoroughly reviewed, and 239 articles were removed for various reasons. Finally, 24 eligible RCTs (Ying Yang et al., 2006; Mehrbani et al., 2015; Wei and Li, 2017; Yine and Li, 2017; Yu Zhou et al., 2017; Hu and Feng, 2018; Liu, 2018; Ma, 2018; Qi, 2018; Tianming Ma and Liu, 2018; Yang et al., 2018; Zhang, 2018; Hanhua Cao et al., 2019; Li, 2019; Liu, 2019; QIi, 2019; Qing Wu et al., 2020; Rui Tao et al., 2020; Xinwei Guo et al., 2020; Yu, 2020; Bin Zhao, 2021; Lan, 2021; Liu, 2021; Tianhua Quan et al., 2021) consisting of 2,313 participants were included in the meta-analysis. The study selection process is presented in Figure 1, the characteristics of the included trials are presented in Table 2, and the characteristics of the included TCM are presented in Table 3; Supplementary Table S1.

All studies were published between 2007 and 2022. The number of participants in the studies varied from 42 to 300, and the treatment duration varied from 14 to 60 days. The participants had different types of disease along with CP. Among the 24 studies, the experimental groups of eight studies (Ying Yang et al., 2006; Wei

TABLE 2 Characteristics of the included studies.

Study ID	Conditions	Sample s	size	Course of c	lisease	Mean age	(year)	Male/Fen	nale	Interve	ntion	The course of
		Experimental	Control	Experimental	Control	Experimental	Control	Experimental	Control	Experimental	Control	treatment (m = month)
Li (2019)	chronic urticaria	38	38	39.52 ± 4.76w	39.55 ± 4.81w	45.08 ± 3.54	45.09 ± 3.52	22/16	21/17	Loratadine dispersive tablet + Xiaoyang Decoction	Loratadine dispersive tablet	2 weeks
Zhang (2018)	psoriasis	28	28	12.1 ± 10.4 m	12.4 ± 11.4 m	41.3 ± 15.2	45.5 ± 11.6	18/12	16/14	Vaseline + traditional Chinese medicine bath	Vaseline	3 weeks
Qi (2018)	eczema	42	38	5.72 ± 2.46 m	5.36 ± 2.61 m	38.19 ± 8.74	37.45 ± 8.52	19/23	17/21	Jianpi Qushi Decoction + Mometasone Furoate Cream	Xitirizine Hydrochloride Tablets + Mometasone Furoate Cream	1 month
Liu (2018)	neurodermatitis	32	31	27.7 ± 15.4 m	29.1 ± 16.3 m	46.8 ± 15.6	45.3 ± 14.5	19/16	17/18	Chinese herbal washing externally and drinking internally	compound dexamethasone cream + zinc oxide-sulfur ointment + loratadine tablets	28 days
Wei and Li, 2017	neurodermatitis	74	73	29.5 ± 16. 3 m	31.6 ± 19. 2 m	46.2 ± 15.3	45.8 ± 14.7	38/42	43/37	Qingshi Zhiyang ointment + Modified Xiaofeng Zhiyang	Mometasic Fumarate cream + loratadine tablets	21 days
Tianhua Quan (2021)	chronic urticaria	30	30	3.31 ± 2.16y	3.08 ± 2.20y	36.23 ± 13.25	36.23 ± 13.25	13/17	12/18	Decoction Pingwei Xiaozhen Decoction + olopatadine hydrochloride tablets	olopatadine hydrochloride tablets	4 weeks
Bin Zhao (2021)	chronic urticaria	58	58	3.87 ± .78y	3.66 ± .71y	41.25 ± 8.27	41.37 ± 8.24	28/30	27/31	Xiaoxun decoction + desloratadine citrate disodium tablets	desloratadine citrate disodium tablets	3 weeks
Yu (2020)	chronic eczema	160	160	11.36 ± 2.47 m	11.58 ± 2.64 m	39.25 ± 6.87	39.79 ± 7.02	84/76	86/74	Traditional Chinese Medicine fumigation	Mizolastine Sustained Release Tablets + Mometasone Furoate Cream	20 days

(Continued on following page)

1

13

135

123

123

1345

1234

13

TABLE 2 (Continued) Characteristics of the included studies.

Study ID	Conditions	Sample	size	Course of d	lisease	Mean age	(year)	Male/Fen	nale	Interve	ntion	The course of	Outcomes
J		Experimental	Control	Experimental	Control	Experimental	Control	Experimental	Control	Experimental	Control	treatment (m = month)	
Hanhua Cao (2019)	pruritus in Hemodialysis Patients	30	30	36.45 ± 10.72 m	35.57 ± 10.28 m	51.83 ± 9.22	52.76 ± 10.24	16/14	15/15	hemoperfusion + gabapentin + Chinese herbal fumigation	hemoperfusion + gabapentin	60 days	03
Liu (2019)	psoriasis	55	55	3.9 ± 2.6y	4.3 ± 2.5y	39.19 ± 11.76	37.2 ± 9.64	31/24	28/27	Traditional Chinese Medicine No.2 Prescription + Jianpi Jiedu Decoction	Awei A Capsule + calcipotrio ointment	12 weeks	0036
Qii (2019)	eczema	75	75	3.26 ± 1.47y	3.27 ± 1.49y	44.16 ± 9.16	44.23 ± 9.21	38/37	39/36	Jianpi Huashi decoction + routine treatment + hydrocortisone	routine treatment + hydrocortisone	8 weeks	00
Yu Zhou (2017)	psoriasis	53	53	3.5 ± 0.5y	3.7 ± 0.6y	36.5 ± 8.4	35.5 ± 8.0	31/22	33/20	Vl000L phototherapy machine treatment + herbal bath of Liangxue Zhiyang decoction	Vl000L phototherapy machine treatment	8 weeks	0035
Xiaojing Yang (2018)	allergic dermatitis	40	40	1.03 ± .38y	1.10 ± .47y	34.33 ± 6.97	33.94 ± 6.28	16/24	15/25	White Tiger Decoction + Dexamethasone Acetate Ointment + Desloratadine Tablets	Dexamethasone Acetate Ointment + Desloratadine Tablets	4 weeks	03
Liu (2021)	psoriasis	32	32	7.68 ± 5.02y	8.12 ± 4.11y	36.89 ± 7.56	37.55 ± 8.03	18/14	16/16	Calcipotriol ointment + Danggui Sini decoction	Calcipotriol ointment	8 weeks	036
Tianming Ma (2018)	atopic dermatitis	43	36	15.7 ± 8.2y	14.9 ± 7.9y	27.5 ± 6.3	26.3 ± 7.1	28/15	24/12	Compound fish liver oil oxidation ointment + tacrolimus ointment + Kushen Qufeng pills	Compound fish liver oil oxidation ointment + tacrolimus ointment	4 weeks	0036
Yine and Feng (2017)	plaque psoriasis	70	70	6.41 ± 1.00y	6.49 ± 1.03y	41.02 ± 5.39	40.76 ± 5.32	32/28	39/31	Acitretin + Yangxue Tongluo decoction	Acitretin	8 weeks	0235

(Continued on following page)

TABLE 2 (Continued) Characteristics of the included studies.

Study ID	Conditions	Sample	size	Course of d	lisease	Mean age	(year)	Male/Fer	nale	Interve	ntion	The course of	Outcomes
		Experimental	Control	Experimental	Control	Experimental	Control	Experimental	Control	Experimental	Control	treatment (m = month)	
Ying Yang (2007)	atopic dermatitis	32	32	NA	NA	NA	NA	NA	NA	Jianpi Zhiyang Granules	loratadine	4 weeks	05
Saishen Hu (2018)	Senile skin pruritus	44	43	2.01 ± .29y	1.95 ± .36y	7.90 ± 6.07	68.11 ± 5.87	27/17	28/15	Cetirizine + Calamine Liniment + Modified Siwu Decoction Combined with Yangxue Runzao Zhiyang Prescription	Cetirizine + Calamine Liniment	2 weeks	036
Lan Ding (2021)	Pruritus in Hemodialysis Patients	20	20	NA	NA	NA	NA	NA	NA	Hemodialysis + Ebastine + Yangxue Qufeng External Washing Prescription	Hemodialysis + Ebastine	4 weeks	03
Ma (2018)	chronic eczema	42	43	2.04 ± .34 m	2.13 ± .49 m	37.21 ± 1.33	36.84 ± 1.48	25/17	28/15	antiallergic treatment + Compound Flumethasone Ointment + Yangxue Zhiyang Decoction	antiallergic treatment + Compound Flumethasone Ointment	14 days	00
Mehrbani (2015)	atopic dermatitis	24	18	13.45 ± 1.82y	12.77 ± 2.09y	28.62 ± 2.30	24.33 ± 1.50	20/4	16/18	extract of field dodder	placebo	15 days	05
Qing Wu (2020)	psoriasis	39	39	4.82 ± .92y	4.76 ± .88y	42.95 ± 8.06	43.06 ± 8.18	21/18	20/19	compound glycyrrhizin tablets + desonide cream + Qingre Liangxue decoction	compound glycyrrhizin tablets + desonide cream	8 weeks	1345
Rui Tao (2020)	chronic eczema	36	35	8.16 ± 2.56 m	8.20 ± 3.02 m	56.23 ± 12.13	55.34 ± 11.28	24/12	22/13	conventional hypoglycemic treatment + triamcinolone econazole cream + Jiangtang Huoxue Prescription combined with Xiaofeng Powder	conventional hypoglycemic treatment + triamcinolone econazole cream + loratadine dispersible tablets	4 weeks	0006

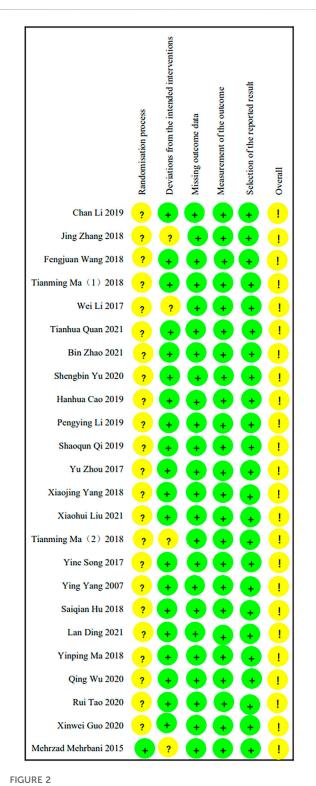
10.3389/fphar.2022.1029949

Frontiers in Pharmacology

(Continued on following page)

Study	Study Conditions	Sample size	size	Course of disease	sease	Mean age (year)	year)	Male/Female	ale	Intervention	ntion	The course	Outcomes
⊇		Experimental	Control	Experimental Control Experimental	Control	Experimental	Control	Control Experimental Control Experimental Control Experimental	Control	Experimental	Control	u treatment (m = month)	
Xinwei Guo (2020)	atopic dermatitis	57	57	15.07 ± 5.52y	15.86 ± 6.86y	24.42 ± 6.01	26.86 ± 6.93	30/27	29/28	Modified Chushi loratadine Weiling Decoction tablets + + vitamin E cream	loratadine tablets + vitamin E cream	8 weeks	000
visual analc	igue scale (VAS); @c	lermatology life-quality	/ index (DLQI)	visual analogue scale (VAS); @dermatology life-quality index (DLQI); @Effective rate; @Recurrence rate; @Adverse effect rate.	currence rate;	©Adverse effect rate.		_		_			

and Li, 2017; Liu, 2018; Qi, 2018; Liu, 2019; Rui Tao et al., 2020; Xinwei Guo et al., 2020; Yu, 2020) used CHM treatment, of which 5 (Ying Yang et al., 2006; Wei and Li, 2017; Liu, 2018; Rui Tao et al., 2020; Yu, 2020) had a treatment period of ≤ 4 weeks and three studies (Qi, 2018; Liu, 2019; Xinwei Guo et al., 2020) had a treatment period of >4 weeks. The experimental groups of 16 studies (Mehrbani et al., 2015; Yine and Li, 2017; Yu Zhou et al., 2017; Hu and Feng, 2018; Ma, 2018; Tianming Ma and Liu, 2018; Yang et al., 2018; Zhang, 2018; Hanhua Cao et al., 2019; Li, 2019; QIi, 2019; Qing Wu et al., 2020; Bin Zhao, 2021; Lan, 2021; Liu, 2021; Tianhua Quan et al., 2021) used a combination of CHM and WM treatment, of which four (Yu Zhou et al., 2017; Zhang, 2018; Hanhua Cao et al., 2019; Lan, 2021) used CHM externally, one (Qing Wu et al., 2020) used CHM internally and externally, and 11 (Mehrbani et al., 2015; Yine and Li, 2017; Hu and Feng, 2018; Ma, 2018; Tianming Ma and Liu, 2018; Yang et al., 2018; Li, 2019; QIi, 2019; Bin Zhao, 2021; Liu, 2021; Tianhua Quan et al., 2021) used CHM orally. Among the control groups, one (Mehrbani et al., 2015) study used a placebo, and the remaining 23 used WM (Table 2). Regarding outcomes, all 24 studies reported pruritus indicators using the VAS scores, and eight studies (Wei and Li, 2017; Yine and Li, 2017; Yu Zhou et al., 2017; Liu, 2018; Tianming Ma and Liu, 2018; Liu, 2019; Xinwei Guo et al., 2020; Bin Zhao, 2021) reported DLQI scores. Additionally, 20 studies (Ying Yang et al., 2006; Wei and Li, 2017; Yine and Li, 2017; Yu Zhou et al., 2017; Liu, 2018; Ma, 2018; Qi, 2018; Tianming Ma and Liu, 2018; Yang et al., 2018; Zhang, 2018; Hanhua Cao et al., 2019; Li, 2019; Liu, 2019; Qing Wu et al., 2020; Rui Tao et al., 2020; Yu, 2020; Bin Zhao, 2021; Lan, 2021; Liu, 2021; Tianhua Quan et al., 2021) reported total effective rates, and 13 studies (Ying Yang et al., 2006; Mehrbani et al., 2015; Yine and Li, 2017; Yu Zhou et al., 2017; Hu and Feng, 2018; Qi, 2018; Tianming Ma and Liu, 2018; Liu, 2019; Qing Wu et al., 2020; Rui Tao et al., 2020; Xinwei Guo et al., 2020; Liu, 2021; Tianhua Quan et al., 2021) reported the occurrence of adverse reactions.


3.2 Risk of bias assessment

The risk of article bias is presented in Figures 2, 3. Only one article (Mehrbani et al., 2015) explicitly mentioned the use of blindness. As other studies did not report participant/person blind or outcome measurement, both performance bias and detection bias in other studies were judged as unclear. In 23 studies (Ying Yang et al., 2006; Wei and Li, 2017; Yine and Li, 2017; Yu Zhou et al., 2017; Hu and Feng, 2018; Liu, 2018; Ma, 2018; Qi, 2018; Tianming Ma and Liu, 2018; Yang et al., 2018; Zhang, 2018; Hanhua Cao et al., 2019; Li, 2019; Liu, 2019; QIi, 2019; Qing Wu et al., 2020; Rui Tao et al., 2020; Xinwei Guo et al., 2020; Yu, 2020; Bin Zhao, 2021; Lan, 2021; Liu, 2021; Tianhua Quan et al., 2021), the risk of bias was considered medium due to the lack of explicit reference to allocation concealment. In four studies (Mehrbani et al., 2015; Wei and Li, 2017; Tianming Ma and Liu, 2018; Zhang, 2018), subjects dropped out of the study. The authors explained the reasons for the dropout, but they still considered a potential risk of bias. The judgment of unclear risk of bias was given to all studies for reporting bias, as none of the studies had study protocols and did not provide sufficient information for further assessment. Information such as the source of funding, sample size calculation, and trial registration was also insufficient to assess other potential biases in the included studies.

'ABLE 2 (Continued) Characteristics of the included studies.

TABLE 3 Ingredients of CHM in the included studies.

	Prescription name	Ingredients of herb prescription	Preparations
Chan Li (2019)	Xiaoyang Decoction	huangqi 20 g, shenyao 20 g, baixianpi 15 g, baishao15 g, niubangzi15 g, danggui 10 g, fangfeng 10 g, muzui 10 g, xuchangqing 10 g, gancao 5 g	Decoction
Jing Zhang (2018)	traditional Chinese medicine bath	danshen 50 g, honghua 20 g, shengdi 50 g, digupi 50 g, kushen 40 g, baixianpi 40 g, difuzin 40 g, shechuangzi 30 g, baihuasheshecao 30 g	_
Fengjuan Wang (2018)	Jianpi Qushi Decoction	dansheng 20 g, caobaizhu 15 g, fuling 10 g, mudanpi 10 g, fangfeng10 g, zexie 10 g, chenpi 10 g, chishao10 g, difuzi 15 g, shanyao 10 g, huashi 10 g, baixianpi 10 g, yiyiren 10 g, zhiganzao 6 g	Decoction
Tianming Ma (1) (2018)	Chinese herbal washing externally and drinking internally	shengdihuang 20 g, danggui 15 g, maidong 20 g, baishao 30 g, mudanpi 20 g, kushen 20 g, jili 20 g, fangfeng 15 g, baiixanpi 20 g	Decoction
Wei Li (2017)	Qingshi Zhiyang ointment + Modified Xiaofeng Zhiyang Decoction	qingdai, luganshi, danshigao, huashi, kushen, huangbai, bingpian, Olive oil, vaseline + quanxie 3 g, chanyi 10 g, wushaoshe 10 g, lufengfang 10 g, baixianpi 15 g, xuzhangqing 15 g, baishao 20 g, chuanxiong 10 g, danshen20 g	ointment, Decoction
Tianhua Quan (2021)	Pingwei Xiaozhen Decoction	jingjie 15 g, fangfeng 15 g, dahuang 6 g, mangxiao 9 g, chuanxiong 10 g, danggui 20 g, baishao 15 g, huangqin 15 g, jiegeng 12 g, gancao 10 g, baizhu 1 5g, shigao 20 g, yinchaihu 12 g, wuweizi 9 g, wumei 9 g, baixianpi 15 g, cijili 15 g	Decoction
Bin Zhao (2021)	Xiaoxun decoction	jingjie 15 g, fangfeng 15 g, chantui 10 g, baijili 15 g, danggui 6 g, chuanxiong 10 g, chenpi 10 g, fuling10 g, baizhu 10 g, shenggancao 10 g	Decoction
Shengbin Yu (2020)	Traditional Chinese Medicine fumigation	hongzicao 30 g, fangfeng 15 g, difuzi 30 g, shengdi 30 g, huajiao10 g, baixianpi 30 g, shechuangzi 20 g, taoren 30 g, gancao 15 g, chishao 30 g, binpian 5 g, dahuang 30 g, kushen 30 g	CHM fumigation
Hanhua Cao (2019)	Chinese herbal fumigation	fangfeng 15 g, chantui 15 g, baixianpi 50 g, dahuang 30 g, tufuling 30 g, difuzi 30 g, shechuangzi 30 g, baishouwu 30 g, jixueteng30 g, danshen 30 g, chuanxiong 30 g, kushen 10 g, bohe 10 g	CHM fumigation
Pengying Li (2019)	Traditional Chinese Medicine No.2 Prescription + Jianpi Jiedu Decoction	tufuling 30 g, bixie 10 g, fuling 12 g, huangbai 20 g, lianqiao 15 g, chaobaizhu 10 g, baihuasheshecao 30 g, danggui 20 g, danshen 10 g, kushen 10 g, yiyiren 20 g, gancao 10 g + tufuling 30 g, huangbai 30 g, machixian 30 g, lianqiao 30 g, baizhu 30 g, fuling 30 g	Decoction
Shaoqun Qi (2019)	Jianpi Huashi decoction	chaochenpi 10 g, baizhu 10 g, fuling 10 g, danzhuye 10 g, fangfeng 10 g, baixianpi 10 g, cangzhu 10 g, baijili 10 g, chaoyiyiren 15 g, shengmuli 20 g, taizishen 20 g, gancao 6 g	Decoction
Yu Zhou (2017)	Liangxue Zhiyang decoction	danshen 20 g, kushen 12 g, jingjie 12 g, zicao 10 g, fangfeng12 g, chantui 8 g, yejuhua 10 g, shechuangzi 10 g, tufuling 10 g, guizhi 10 g, dazao 12 g, gancao 6 g	CHM bath
Xiaojing Yang (2018)	White Tiger Decoction	baishao 20 g, shigao 20 g, jinyinhua 20 g, xuanshen 20 g, pugongying 20 g, baixianpi 20 g, shengdihuang 25 g, zhimu 15 g, danpi 15 g, wushe 15 g, fangfeng 12 g, danggui 12 g, quanxie 9 g, chaihu 9 g, gancao 9 g	Decoction
Xiaohui Liu (2021)	Danggui Sini decoction	danggui 30 g, shanyao 30 g, chuanxiong 15 g, jixueteng 15 g, zhigancao 15 g, chishao 10 g, baishao 10 g, jingjie 10 g, fangfeng 6 g, cangerzi 6 g, chaihu 6 g, guizhi 6 g, xixin 3 g	Decoction
Tianming Ma (2) (2018)	Kushen Qufeng pills	_	Pill
Yine Song (2017)	Yangxue Tongluo decoction	tufuling 30 g, shenghuaihua 20 g, danggui 15 g, jixueteng 15 g, weilingxian 15 g, fangfeng 15 g, dihuang 15 g, maidong 10 g	Decoction
Ying Yang (2006)	Jianpi Zhiyang Granules	huangqi, baizhu, danggui, heshouwu, shengdi, baishao, chuanxiong, jingjie, fangfeng	Capsule
Saiqian Hu (2018)	Modified Siwu Decoction Combined with Yangxue Runzao Zhiyang Prescription	danggui 10 g, chuanxiong 10 g, shaoyao 10 g, shudihuang 15 g, baixianpi 10 g, fangfeng 10 g, jingjie 10 g, shengdihuang 20 g, tufuling 20 g, difuzi 20 g, nvzhenzi 15 g, kushen 15 g, zhimu 15 g, mohanlian 20 g, huangbai12 g, mudanpi 12 g, shuiniujiaofen10 g	Decoction
Lan Ding (2021)	Yangxue Qufeng External Washing Prescription	danggui 15 g, chishao 10 g, chuanxiong 9 g, danpi 15 g, kushen15 g, tufuling 15 g, baijili1 5g, yejiaoteng 30 g, difuzi 15 g, shechuangzi15 g, jingjie 10 g, fangfeng 10 g, shenggancao 30 g	CHM bath
Yinping Ma (2018)	Yangxue Zhiyang Decoction	shengdihuang 25 g, shudihuang 25 g, tiandong 25 g, maidong 25 g, mudanpi 20 g, jingjie 20 g, danggui 10 g, baijili 10 g, chantui10 g, gancao 10 g	Decoction
Mehrzad Mehrbani	extract of field dodder	dodder seed	
Qing Wu (2020)	Qingre Liangxue decoction	lianqiao 30 g, zicao 25 g, shuiniujiao15 g, jinyinhua 15 g, danpi12 g, shengdi 12 g, huangqin 10 g, chishao10 g, lingxiaohua 10 g, gancao 9 g	Decoction
Rui Tao (2020)	Jiangtang Huoxue Prescription combined with Xiaofeng Powder	cangzhu 15 g, xuanshen 20 g, gegen 15 g, danshen 20 g, huangqi 20 g, shengdihuang 20 g, muxiang 10 g, danggui 10 g, yimucao15 g, baishao 15 g, chuanxiong 10g, fangfeng 10 g, chantui 10 g, zhimu 10 g, kushen 6 g, mutong 6 g, jingjie 10 g, niubangzi 10 g, shigao 15 g, gancao 6 g	Decoction
Xinwei Guo (2020)	Modified Chushi Weiling Decoction	cangzhu 6 g, houpu 6 g, chenpi 9 g, huashi 12 g, chaobaizhu 12 g, zhuling 12 g, chaohuangbai 12 g, chaozhike 9 g, zexie 9 g, chiling 12 g, zhigancao 9 g	Decoction

The results for the evaluation of the selected articles using ROB2.0.

3.3 Primary outcomes

3.3.1 Pruritus

3.3.1.1 Oral CHM versus placebo

Only one study (Mehrbani et al., 2015) compared CHM with placebo; the CHM and placebo groups had a significant difference in

pruritus, as determined by a fixed-effects model (n = 42, MD: -2.08; 95% CI = -2.34 to -1.82; p < .00001; Figure 4).

3.3.1.2 CHM versus WM

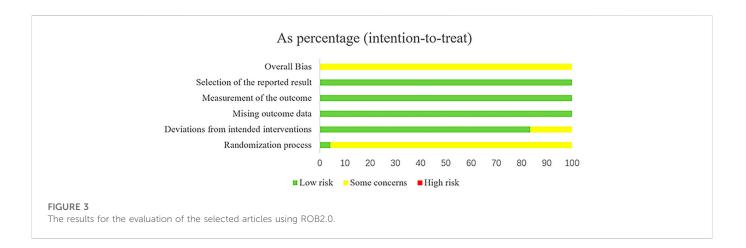
3.3.1.2.1 Oral CHM treatment.

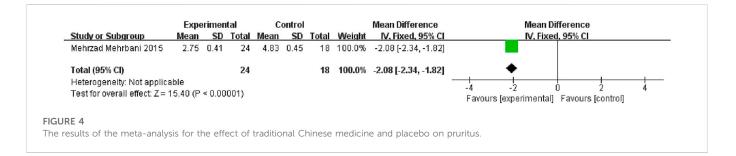
In four trials, the experimental groups were administered oral CHM, and the control groups were administered WM. A subgroup analysis of treatment duration showed that two studies (Ying Yang et al., 2006; Rui Tao et al., 2020) had treatment durations <4 weeks (p = .85, $I^2 = 0\%$) and two studies (Qi, 2018; Xinwei Guo et al., 2020) had treatment durations >4 weeks (p = .42, $I^2 = 0\%$). The TCM and WM groups had significant differences in pruritus, as determined by a fixed-effects model (n = 135, MD = -1.20, 95% CI = -1.63 to -.77, p < .00001; n = 194, MD = -1.80, 95% CI = -2.23 to -1.37, p < .00001; Figure 5A).

3.3.1.2.2 External treatment with CHM.

In one trial (Yu, 2020), the experimental group was administered CHM externally, and the control group was administered WM. The TCM and WM groups had significant differences in pruritus, as determined by a fixed-effects model (n = 320, MD = -.89 95% CI = -1.16 to -.62, p < .00001; Figure 5B).

3.3.1.2.3 Oral and external treatment with CHM.


Three trials compared oral and external CHM treatment with WM. A subgroup analysis of treatment duration showed that two studies (Wei and Li, 2017; Liu, 2018) had treatment durations <4 weeks (p = .87, $I^2 = 0\%$) and one study (Liu, 2019) had treatment duration >4 weeks (p < .00001). A fixed-effects model showed that the TCM and WM groups had a significant difference in pruritus after treatment (n = 210, MD = -.85, 95% CI = -1.02 to -.68, p < .00001; n = 110, MD = -2.20, 95% CI = -2.26 to -1.76, p < .00001; Figure 5C).


3.3.1.3 Combination of CHM and WM versus WM alone 3.3.1.3.1 Oral CHM treatment.

In 11 studies, the experimental group was treated with oral CHM and WM, and the control group was treated with WM. A subgroup analysis of treatment duration showed that the treatment duration was <4 weeks in seven studies (Hu and Feng, 2018; Ma, 2018; Tianming Ma and Liu, 2018; Yang et al., 2018; Li, 2019; Bin Zhao, 2021; Tianhua Quan et al., 2021) (p < .0001, I² = 97%) and >4 weeks in three studies (Yine and Li, 2017; QIi, 2019; Liu, 2021) (p < .0001, I² = 91%), suggesting some heterogeneity. A random-effects model showed a significant difference between the groups (n = 583, MD = -1.02, 95% CI = -1.49 to -.54, p < .0001; n = 354, MD = -.80, 95% CI = -1.32 to -.29, p = .002; Figure 6A). The funnel plot was asymmetrical, indicating publication bias (Supplementary Figure S1).

3.3.1.3.2 External treatment with CHM.

In four studies, the intervention group received external treatment with CHM and WM, whereas, the control group received WM treatment only. A subgroup analysis of treatment duration showed that the treatment duration was <4 weeks in two studies (Zhang, 2018; Lan, 2021) (p = .43, $I^2 = 0\%$) and >4 weeks in two studies (Yu Zhou et al., 2017; Hanhua Cao et al., 2019) (p < .00001, $I^2 = 98\%$), suggesting some heterogeneity. A randomeffects model showed a significant difference between the groups

(n = 96, MD = -1.76, 95% CI = -2.08 to -1.44, p < .00001; n = 166, MD = -1.66, 95% CI = -2.95 to -.38, p = .01; Figure 6B). However, the combined analysis showed significant statistical heterogeneity (Chi-squared = 51.82; degrees of freedom = 3; I² = 94%). The cause of heterogeneity was difficult to analyze due to the small number of studies. This might be because the scoring process is subjective.

3.3.1.3.3 Oral and external treatment with CHM.

In one study (Qing Wu et al., 2020), the experimental group was administered oral and external treatment with CHM and WM and the control group was administered WM. A fixed-effects model showed significant difference in pruritus between the groups after treatment (n = 78, MD = -1.15, 95% CI = -1.37 to -.93, p < .0000; Figure 6C).

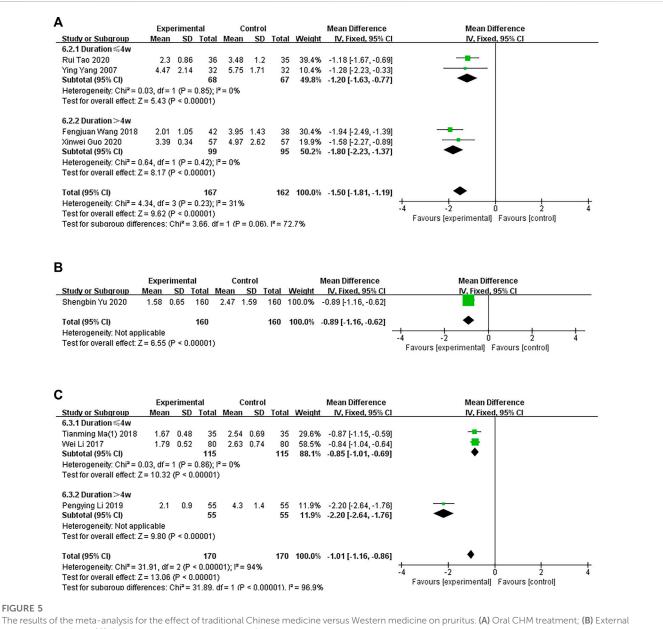
3.4 Secondary outcomes

3.4.1 Dermatology Life Quality Index

3.4.1.1 CHM versus WM

In four studies involving 434 patients, the DLQI was applied to assess the quality of life of patients with CP. A subgroup analysis showed that one (Xinwei Guo et al., 2020) study compared the administration of oral CHM with WM (p = .02), and three studies (Wei and Li, 2017; Liu, 2018; Liu, 2019) compared the administration of oral and external CHM treatment with WM (p < .00001, I² = 94%). The pooled analysis showed that the DLQI scores of patients in the CHM groups were lower than those of patients in the control groups (MD = -1.80, 95% CI = -2.98 to -.62, p = .003 < .05; Figure 7A).

3.4.1.2 Combination of CHM and WM versus WM


A combination of CHM and WM was used in four studies (Figure 7B). A subgroup analysis was conducted to determine the differences in the methods of administration. Three studies (Yine and Li, 2017; Tianming Ma and Liu, 2018; Bin Zhao, 2021) compared the administration of oral CHM with WM (p = .17, $I^2 = 43\%$), and one study (Yu Zhou et al., 2017) compared the administration of oral and external CHM treatment with WM treatment (p < .00001). The pooled analysis showed that the DLQI scores of patients in the CHM and WM groups were significantly lower than those of patients in the control groups (MD = -2.37, 95% CI = -2.61 to -2.13, p < .00001).

3.4.2 Effective rate

In total, 20 studies (Ying Yang et al., 2006; Wei and Li, 2017; Yine and Li, 2017; Yu Zhou et al., 2017; Liu, 2018; Ma, 2018; Qi, 2018; Tianming Ma and Liu, 2018; Yang et al., 2018; Zhang, 2018; Hanhua Cao et al., 2019; Li, 2019; Liu, 2019; Qing Wu et al., 2020; Rui Tao et al., 2020; Yu, 2020; Bin Zhao, 2021; Lan, 2021; Liu, 2021; Tianhua Quan et al., 2021) consisting of 1,895 patients reported the effective rate. Among them, seven studies compared CHM with WM (Ying Yang et al., 2006; Wei and Li, 2017; Liu, 2018; Qi, 2018; Liu, 2019; Rui Tao et al., 2020; Yu, 2020), and 13 studies compared a combination of CHM and WM with the same WM (Yine and Li, 2017; Yu Zhou et al., 2017; Ma, 2018; Tianming Ma and Liu, 2018; Yang et al., 2020; Bin Zhao, 2021; Lan, 2021; Liu, 2021; Tianhua Quan et al., 2020; Bin Zhao, 2021; Lan, 2021; Liu, 2021; Tianhua Quan et al., 2020; Bin Zhao, 2021; Lan, 2021; Liu, 2021; Tianhua Quan et al., 2020; Bin Zhao, 2021; Lan, 2021; Liu, 2021; Tianhua Quan et al., 2020; Bin Zhao, 2021; Lan, 2021; Liu, 2021; Tianhua Quan et al., 2021).

3.4.2.1 CHM versus WM

Seven studies compared CHM with WM (p = .14, $I^2 = 38\%$), and a fixed-effects model was used to perform the meta-analysis. A

treatment with CHM; **(C)** Oral and external treatment with CHM.

subgroup analysis was conducted to determine the differences in the methods of administration. Three studies (Ying Yang et al., 2006; Qi, 2018; Rui Tao et al., 2020) compared the administration of oral CHM with WM (I² = 64%, RR: 1.42; 95% CI = 1.23–1.64, p < .00001), one study (Yu, 2020) compared the administration of external CHM with WM (RR: 1.25; 95% CI = 1.14–1.36), p < .00001), and three studies (Wei and Li, 2017; Liu, 2018; Liu, 2019) compared the administration of oral and external CHM treatment with WM (I² = 0%, RR: 1.19; 95% CI = 1.09–1.29; p < .0001). The results of the meta-analysis showed that the effective rate of patients in the CHM groups was higher than those of patients in the control groups (Figure 8A).

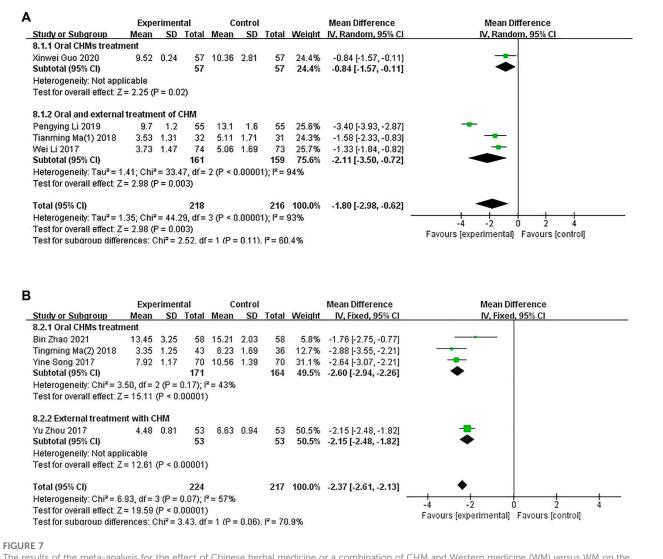
3.4.2.2 Combination of CHM and WM versus WM

In total, 13 studies compared a combination of CHM and WM with WM (p = .36, $I^2 = 8\%$). A fixed-effects model was used for

conducting the meta-analysis. A subgroup analysis was conducted to examine the differences in the administration methods used. Eight studies (Yine and Li, 2017; Ma, 2018; Tianming Ma and Liu, 2018; Yang et al., 2018; Li, 2019; Bin Zhao, 2021; Liu, 2021; Tianhua Quan et al., 2021) compared the administration of oral CHM and WM with WM (I² = 0%, RR: 1.25; 95% CI = 1.17–1.34, p < .00001), four studies (Yu Zhou et al., 2017; Zhang, 2018; Hanhua Cao et al., 2019; Lan, 2021) compared the administration of external CHM and WM with WM (I² = 71%, RR: 1.43; 95% CI = 1.23–1.65, p < .00001), and one study (Qing Wu et al., 2020) compared the administration of oral and external CHM and WM with WM (RR: 1.15; 95% CI = 1.00–1.33; p = .05). The results of the meta-analysis showed a significant difference in the effective rate between the groups when the administration method of CHM was oral or external (p < .00001), but no significant difference was observed between the groups when a combination of oral and

~	Experimental	Control		Mean Difference	Mean Difference
Study or Subgroup 6.2.2 Duration≪4w	Mean SD Total	Mean SD	Total Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Bin Zhao 2021	2.97 0.32 58	3.07 0.3	58 10.8%	-0.10 [-0.21, 0.01]	•
Chan Li 2019	1.14 0.27 38				·
Saigian Hu 2018	2.06 0.87 44				
Tianhua Quan 2021	0.47 0.73 30	1.3 0.15		-0.83 [-1.10, -0.56]	+
Tingming Ma(2) 2018	1.35 0.51 43				-
Xiaojing Yang 2018	2.46 1.08 40		40 8.9%	-0.89 [-1.41, -0.37]	
Yinping Ma 2018	1.64 0.33 42		43 9.7%	-2.32 [-2.70, -1.94]	
Subtotal (95% CI)	295		288 69.8%		•
Heterogeneity: Tau ² = 0.	.38; Chi ² = 187.36, df	= 6 (P < 0.000	101); I ^z = 97%		
Test for overall effect: Z		107 (1			
6.2.3 Duration >4w					
Shaogun Qi 2019	2.02 1.05 75	2.64 1.74	75 9.2%	-0.62 [-1.08, -0.16]	
Xiaohui Liu 2021	0.75 0.22 32				÷
Yinge Song 2017	2.07 0.56 70				
Subtotal (95% CI)	177	0.01 0.02	177 30.2%	-0.80 [-1.32, -0.29]	•
Heterogeneity: Tau ² = 0.		2 (P < 0.0001			
Test for overall effect: Z =		•			
Total (05% Ch	470		465 400 00	0.051424 0.501	▲
Total (95% CI) Heterogeneity: Tau ² = 0.	472	- 0 /0 < 0 000	465 100.0%	-0.95 [-1.31, -0.59]	—
Test for overall effect: Z:		- 9 (F × 0.000	01),1 - 90%		-4 -2 0 2 4
Test for subaroup differe		= 1 (P = 0.55)	1 ² = 0%		Favours [experimental] Favours [control]
7.1.1 Duration ≤4w					
	1.1 0.3 20 48 00; Chi² = 0.62, df = 1	8.571 2.201 2.9 0.7 (P = 0.43); I ² =		-1.36 [-2.41, -0.31] -1.80 [-2.13, -1.47] - 1.76 [-2.08, -1.44]	*
Jing Zhang 2018 2. Lan Ding 2021 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	1.1 0.3 20 48 00; Chi² = 0.62, df = 1	2.9 0.7	20 27.1% 48 44.8%	-1.80 [-2.13, -1.47]	*
Jing Zhang 2018 2. Lan Ding 2021 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z = 7.1.2 Duration >4w	1.1 0.3 20 48 00; Chi ² = 0.62, df = 1 10.84 (P < 0.00001)	2.9 0.7 (P = 0.43); I ² =	20 27.1% 48 44.8% 0%	-1.80 [-2.13, -1.47] -1.76 [-2.08, -1.44]	
Jing Zhang 20182.Lan Ding 2021Subtotal (95% Cl)Heterogeneity: $Tau^2 = 0.0$ Test for overall effect: Z =7.1.2 Duration >4wHanhua Cao 20193	1.1 0.3 20 48 00; Chi ² = 0.62, df = 1 10.84 (P < 0.00001) 2.42 0.06 30	2.9 0.7 (P = 0.43); I ² = 4.75 1.03	20 27.1% 48 44.8% 0% 30 26.7%	-1.80 [-2.13, -1.47] - 1.76 [-2.08, -1.44] -2.33 [-2.70, -1.96]	→ → +
Jing Zhang 2018 2. Lan Ding 2021 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 7.1.2 Duration >> 4w Hanhua Cao 2019 Yu Zhou 2017 Subtotal (95% CI) Heterogeneity: Tau ² = 0.6	$\begin{array}{ccccc} 1.1 & 0.3 & 20 & & & \\ & & & & & \\ & & & & & \\ & & & & \\ 00; Chi^2 = 0.62, df = 1 & & \\ & & & & \\ 10.84 (P < 0.00001) & & \\ & & & & \\ 2.42 & 0.06 & 30 & & \\ & & & & \\ 1.22 & 0.38 & 53 & & \\ & & &$	2.9 0.7 ($P = 0.43$); $I^2 =$ 4.75 1.03 2.24 0.41	20 27.1% 48 44.8% 0% 30 26.7% 53 28.4% 83 55.2%	-1.80 [-2.13, -1.47] -1.76 [-2.08, -1.44]	
Jing Zhang 2018 2. Lan Ding 2021 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 7.1.2 Duration $>$ 4w Hanhua Cao 2019 Yu Zhou 2017 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	1.1 0.3 20 48 00; Chi ² = 0.62, df = 1 10.84 (P < 0.00001) 2.42 0.06 30 1.22 0.38 53 83 84; Chi ² = 41.47, df = 1 2.54 (P = 0.01)	2.9 0.7 ($P = 0.43$); $I^2 =$ 4.75 1.03 2.24 0.41	20 27.1% 48 44.8% 0% 30 26.7% 53 28.4% 83 55.2%); I ² = 98%	-1.80 [-2.13, -1.47] -1.76 [-2.08, -1.44] -2.33 [-2.70, -1.96] -1.02 [-1.17, -0.87] -1.66 [-2.95, -0.38]	
Jing Zhang 2018 2. Lan Ding 2021 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 7.1.2 Duration >-4w Hanhua Cao 2019 Yu Zhou 2017 Subtotal (95% CI) Heterogeneity: Tau ² = 0.6	1.1 0.3 20 48 00; Chi ² = 0.62, df = 1 10.84 (P < 0.00001) 2.42 0.06 30 1.22 0.38 53 83 84; Chi ² = 41.47, df = 1 2.54 (P = 0.01) 131 46; Chi ² = 51.82, df = 1 4.49 (P < 0.00001)	2.9 0.7 (P = 0.43); I ² = 4.75 1.03 2.24 0.41 I (P < 0.00001) 3 (P < 0.00001)	20 27.1% 48 44.8% 0% 30 26.7% 53 28.4% 83 55.2%); ² = 98% 131 100.0%); ² = 94%	-1.80 [-2.13, -1.47] -1.76 [-2.08, -1.44] -2.33 [-2.70, -1.96] -1.02 [-1.17, -0.87]	+ + + + + + + + + + + + + + + + + + +
Jing Zhang 2018 2. Lan Ding 2021 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 7.1.2 Duration >-4w Hanhua Cao 2019 Yu Zhou 2017 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.4 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.4 Test for overall effect: Z = Total (95% Cl) Heterogeneity: Tau ² = 0.4 Test for overall effect: Z = Test for subaroup differe	1.1 0.3 20 48 00; Chi ² = 0.62, df = 1 : 10.84 (P < 0.00001) 2.42 0.06 30 1.22 0.38 53 83 84; Chi ² = 41.47, df = : : 2.54 (P = 0.01) 131 46; Chi ² = 51.82, df = : : 4.49 (P < 0.00001) inces: Chi ² = 0.02, df = : Experimental lean SD Total M	2.9 0.7 (P = 0.43); I ² = 4.75 1.03 2.24 0.41 (P < 0.00001) 3 (P < 0.00001) = 1 (P = 0.89). I Control ean SD To	20 27.1% 48 44.8% 0% 30 26.7% 53 28.4% 83 55.2%); I ⁼ 98% 131 100.0%); I ⁼ 94% I ⁼ 94%	-1.80 [-2.13, -1.47] -1.76 [-2.08, -1.44] -2.33 [-2.70, -1.96] -1.02 [-1.17, -0.87] -1.66 [-2.95, -0.38] -1.64 [-2.36, -0.93] -1.64 [-2.36, -0.93] -1.64 [-2.36, -0.93]	
Jing Zhang 2018 2. Lan Ding 2021 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 7.1.2 Duration >4w Hanhua Cao 2019 3 Yu Zhou 2017 Subtotal (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z = Total (95% CI) Heterogeneity: Tau ² = 0.4 Test for overall effect: Z = Test for subaroup differe Study or Subgroup M Qing Wu 2020	1.1 0.3 20 48 00; Chi ² = 0.62, df = 1 10.84 (P < 0.00001) 2.42 0.06 30 1.22 0.38 53 83 84; Chi ² = 41.47, df = 1 2.54 (P = 0.01) 131 46; Chi ² = 51.82, df = 1 2.54 (P < 0.00001) 131 46; Chi ² = 0.02, df = 1 2.54 (P < 0.00001) 131 46; Chi ² = 51.82, df = 1 2.54 (P < 0.00001) 131 46; Chi ² = 51.82, df = 1 2.54 (P < 0.00001) 131 46; Chi ² = 51.82, df = 1 2.54 (P < 0.00001) 131 46; Chi ² = 51.82, df = 1 46; Chi ² = 51.82, df = 1 46; Chi ² = 51.82, df = 1 47; Chi ² = 51.82, df = 1 46; Chi ²	2.9 0.7 (P = 0.43); P = 4.75 1.03 2.24 0.41 1 $(P < 0.00001)$ 3 $(P < 0.00001)$ 5 $(P = 0.89), f$ Control ean <u>SD To</u> 2.38 0.51	20 27.1% 48 44.8% 0% 30 26.7% 53 28.4% 83 55.2%); I ² = 98% 131 100.0% I ² = 94% I ² = 0% Me tal Weight I 39 100.0% -1	-1.80 [-2.13, -1.47] -1.76 [-2.08, -1.44] -2.33 [-2.70, -1.96] -1.02 [-1.17, -0.87] -1.66 [-2.95, -0.38] -1.64 [-2.36, -0.93] -1.64 [-2.36, -0.93] -1.64 [-2.36, -0.93] -1.64 [-2.36, -0.93]	Favours (experimental) Favours (control) Mean Difference
Jing Zhang 2018 2. Lan Ding 2021 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 7.1.2 Duration >4w Hanhua Cao 2019 Yu Zhou 2017 Subtotal (95% CI) Heterogeneity: Tau ² = 0.4 Test for overall effect: Z = Total (95% CI) Heterogeneity: Tau ² = 0.4 Test for overall effect: Z = Test for subaroup differe Study or Subgroup M Qing Wu 2020 Total (95% CI)	1.1 0.3 20 48 00; Chi ² = 0.62, df = 1 : 10.84 (P < 0.00001) 2.42 0.06 30 1.22 0.38 53 83 84; Chi ² = 41.47, df = : : 2.54 (P = 0.01) 131 46; Chi ² = 51.82, df = : : 4.49 (P < 0.00001) inces: Chi ² = 0.02, df = : Experimental tean <u>SD Total M</u> 1.23 0.48 39 : 39	2.9 0.7 (P = 0.43); P = 4.75 1.03 2.24 0.41 1 $(P < 0.00001)$ 3 $(P < 0.00001)$ 5 $(P = 0.89), f$ Control ean <u>SD To</u> 2.38 0.51	20 27.1% 48 44.8% 0% 30 26.7% 53 28.4% 83 55.2%); I ² = 98% 131 100.0%); I ² = 94% I ² = 0% Me tal Weight I	-1.80 [-2.13, -1.47] -1.76 [-2.08, -1.44] -2.33 [-2.70, -1.96] -1.02 [-1.17, -0.87] -1.66 [-2.95, -0.38] -1.64 [-2.36, -0.93] -1.64 [-2.36, -0.93] -1.64 [-2.36, -0.93] -1.64 [-2.36, -0.93]	Favours (experimental) Favours (control) Mean Difference V, Fixed, 95% Cl
Jing Zhang 2018 2. Lan Ding 2021 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 7.1.2 Duration >4w Hanhua Cao 2019 2 Yu Zhou 2017 Subtotal (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z = Total (95% CI) Heterogeneity: Tau ² = 0.4 Test for subaroup differe Study or Subgroup M Qing Wu 2020	1.1 0.3 20 48 00; Chi ² = 0.62, df = 1 : 10.84 (P < 0.00001) 2.42 0.06 30 1.22 0.38 53 83 84; Chi ² = 41.47, df = : : 2.54 (P = 0.01) 131 46; Chi ² = 51.82, df = : : 4.49 (P < 0.00001) inces: Chi ² = 0.02, df = : Experimental lean <u>SD Total M</u> 1.23 0.48 39 : 39 cable	2.9 0.7 (P = 0.43); P = 4.75 1.03 2.24 0.41 1 $(P < 0.00001)$ 3 $(P < 0.00001)$ 5 $(P = 0.89), f$ Control ean <u>SD To</u> 2.38 0.51	20 27.1% 48 44.8% 0% 30 26.7% 53 28.4% 83 55.2%); I ² = 98% 131 100.0% I ² = 94% I ² = 0% Me tal Weight I 39 100.0% -1	-1.80 [-2.13, -1.47] -1.76 [-2.08, -1.44] -2.33 [-2.70, -1.96] -1.02 [-1.17, -0.87] -1.66 [-2.95, -0.38] -1.64 [-2.36, -0.93] -1.64 [-2.36, -0.94] -1.64 [-2.36, -0.94]	Favours [experimental] Favours [control]
Jing Zhang 2018 2. Lan Ding 2021 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 7.1.2 Duration >4w Hanhua Cao 2019 3 Yu Zhou 2017 Subtotal (95% CI) Heterogeneity: Tau ² = 0.4 Test for overall effect: Z = Total (95% CI) Heterogeneity: Tau ² = 0.4 Test for subgroup M Qing Wu 2020 Total (95% CI) Heterogeneity: Not applied	1.1 0.3 20 48 00; Chi ² = 0.62, df = 1 : 10.84 (P < 0.00001) 2.42 0.06 30 1.22 0.38 53 83 84; Chi ² = 41.47, df = : : 2.54 (P = 0.01) 131 46; Chi ² = 51.82, df = : : 4.49 (P < 0.00001) inces: Chi ² = 0.02, df = : Experimental lean <u>SD Total M</u> 1.23 0.48 39 : 39 cable	2.9 0.7 (P = 0.43); P = 4.75 1.03 2.24 0.41 1 $(P < 0.00001)$ 3 $(P < 0.00001)$ 5 $(P = 0.89), f$ Control ean <u>SD To</u> 2.38 0.51	20 27.1% 48 44.8% 0% 30 26.7% 53 28.4% 83 55.2%); I ² = 98% 131 100.0% I ² = 94% I ² = 0% Me tal Weight I 39 100.0% -1	-1.80 [-2.13, -1.47] -1.76 [-2.08, -1.44] -2.33 [-2.70, -1.96] -1.02 [-1.17, -0.87] -1.66 [-2.95, -0.38] -1.64 [-2.36, -0.93] -1.64 [-2.36, -0.94] -1.64 [-2.36, -0.94]	Favours (experimental) Favours (control) Mean Difference V, Fixed, 95% Cl

external methods of CHM administration was performed (p = .05; Figure 8B).


3.4.3 Recurrence rate

Four studies (Qing Wu et al., 2020; Rui Tao et al., 2020; Bin Zhao, 2021; Tianhua Quan et al., 2021) consisting of 185 patients reported the recurrence rate. Among them, one study (Rui Tao et al., 2020) compared CHM with WM, where the patients were followed up for 3 months after treatment. Three studies compared a combination of

CHM and WM with the same WM, in which, two studies (Bin Zhao, 2021; Tianhua Quan et al., 2021) had a follow-up for 1 month after treatment, and one study (Qing Wu et al., 2020) had a follow-up for 3 months after treatment.

3.4.3.1 CHM versus WM

A fixed-effects model was used for conducting the metaanalysis of the studies that compared CHM with WM. Significant differences were observed in the recurrence rate

The results of the meta-analysis for the effect of Chinese herbal medicine or a combination of CHM and Western medicine (WM) versus WM on the Dermatology Life Quality Index score. (A) CHM versus WM; (B) Combination of CHM and WM versus WM.

between the CHM and WM groups (n = 55, RR: .28; 95% CI = .11-.69; p = .006 < .01; Figure 9A).

3.4.3.2 Combination of CHM and WM versus WM

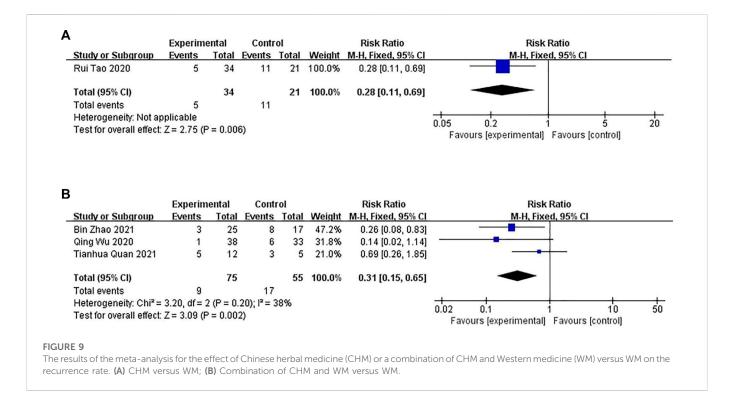
Three studies compared the combination of CHM and WM versus WM (p = .20, $I^2 = 38\%$). A fixed-effects model was used for conducting the meta-analysis. The recurrence rate between the combination of CHM and WM groups differed significantly (n = 130, RR: .31; 95% CI = .15–.65; p = .002 < .01; Figure 9B).

3.4.4 Safety

In total, 13 studies conducted with 1,094 patients reported adverse events (AEs). One study compared CHM with a placebo, and the AEs of the CHM group included anorexia and gastrointestinal discomfort (such as indigestion). Five studies compared the combination of CHM with WM. AEs in the CHM groups included dryness of the mouth, insomnia, nausea, headache, dizziness, and gastrointestinal side effects (such as nausea, vomiting, constipation, stomach discomfort, and loss of appetite). Seven studies compared the combination of CHM and WM with the same WM and reported AEs, including rash, fatigue, insomnia, gastrointestinal side effects, headache, and dizziness. No serious adverse reactions were observed.

A subgroup analysis of treatment methods showed that in one study, the incidence of adverse reactions was reported in the CHM group compared with the placebo group (p = .02), and a fixed-effects model showed no significant difference between the groups (n = 42, RR = 26.60, 95% CI = 1.71-414.89, p = .02). Five studies compared CHM with WM (p = .12, I² = 46%), and a fixed-effects model showed that the rate of adverse effects on patients in the CHM groups was higher than that on the participants in the control groups (n = 439 RR = .33, 95% CI = .19-.57, p < 0,001). Seven studies compared the combination of CHM and WM with WM (p = .90, I² = 0%), and a fixed-effects model showed that the incidence of adverse reactions between the groups was not significantly different (n = 613, RR = 1.09, 95% CI = .68-1.75, p = .73; Figure 10).

	Experimental	Contr			Risk Ratio	Risk Ratio
Study or Subgroup		I Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
8.2.1 Oral CHMs treatm Fengiuan Wang 2018	ent 39 4:	2 30	38	9.7%	1.18 [0.98, 1.41]	L
Rui Tao 2020	34 3		35		1.57 [1.19, 2.09]	
Ying Yang 2007	30 33		32	5.6%	1.67 [1.21, 2.29]	
Subtotal (95% CI)	110		105		1.42 [1.23, 1.64]	•
Total events	103	69				
Heterogeneity: Chi ^z = 5.5 Test for overall effect: Z			%			
8.2.2 External treatmen						
Shengbin Yu 2020	155 16				1.25 [1.14, 1.36]	
Subtotal (95% CI) Total events	160 155	124	160	38.3%	1.25 [1.14, 1.36]	•
Heterogeneity: Not appli		124				
Test for overall effect: Z =		001)				
8.2.3 Oral combined wit	th topical treatn	nent				
Pengying Li 2019	52 5				1.18 [1.02, 1.37]	-
Tianming Ma(1) 2018	31 33		31	8.5%	1.11 [0.96, 1.29]	+
Wei Li 2017	71 7.		73		1.23 [1.08, 1.40]	↓
Subtotal (95% CI)	161		159	39.8%	1.19 [1.09, 1.29]	•
Total events Heterogeneity: Chi ² = 1.0	154 11 df = 2 (P = 0)	128 00: 17 - 08	4			
Heterogeneity: Chi* = 1.1 Test for overall effect: Z =			0			
restion overall ellett. Z.	- 1.00 (1 - 0.000	~)				
Total (95% CI)	43	1	424	100.0%	1.26 [1.19, 1.34]	•
Total events	412	321				
Heterogeneity: Chi ² = 9.0			%		-	0.2 0.5 1 2 5
Test for overall effect: Z =						Favours (experimental) Favours (control)
Test for subaroup differe	ences: Chi* = 4.3	18. df = 2 (F	^o = 0.11	 I* = 54.3 	%	
	Experimental	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup		l Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
8.3.1 Oral CHMs treatm	ent				M-H, Fixed, 95% Cl	
8.3.1 Oral CHMs treatm Bin Zhao 2021	ent 49 58	3 37	58	10.0%	M-H, Fixed, 95% Cl 1.32 [1.06, 1.66]	
8.3.1 Oral CHMs treatm	ent	3 37 3 30			M-H, Fixed, 95% Cl	
8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019	ent 49 58 36 38 28 30 40 43	3 37 3 30 0 23 3 29	58 38 30 38	10.0% 8.1%	M-H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44]	
8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021	ent 49 54 36 34 28 30 40 43 31 32	3 37 3 30 0 23 3 29 2 24	58 38 30 38 32	10.0% 8.1% 6.2% 8.3% 6.5%	M.H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59]	
8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021 Xiaojing Yang 2018	ent 49 58 36 38 28 30 40 43 31 32 35 40	3 37 3 30 0 23 3 29 2 24 0 27	58 38 30 38 32 40	10.0% 8.1% 6.2% 8.3% 6.5% 7.3%	M.H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.66]	
8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021 Xiaojing Yang 2018 Yinge Song 2017	ent 49 56 36 38 28 30 40 43 31 32 35 40 64 70	3 37 3 30 0 23 3 29 2 24 0 27 0 50	58 38 30 38 32 40 70	10.0% 8.1% 6.2% 8.3% 6.5% 7.3% 13.5%	M-H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51]	
8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018	ent 49 58 36 34 28 30 40 43 31 32 35 44 64 70 41 42	3 37 3 30 0 23 3 29 2 24 0 27 0 50 2 36	58 38 30 38 32 40 70 43	10.0% 8.1% 6.2% 8.3% 6.5% 7.3% 13.5% 9.6%	M.H. Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [1.08, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34]	
8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaobui Liu 2021 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI)	ent 49 58 36 34 28 30 40 42 31 32 35 40 64 70 41 42 353	3 37 3 30 2 23 3 29 2 24 0 27 0 50 2 36	58 38 30 38 32 40 70	10.0% 8.1% 6.2% 8.3% 6.5% 7.3% 13.5%	M-H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51]	
8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018	ent 49 54 36 33 40 47 41 33 35 44 64 77 41 45 35 324 30, df = 7 (P = 0.1)	3 37 3 30 0 23 3 29 2 24 0 27 0 50 2 36 3 256 97); ² = 0%	58 38 30 38 32 40 70 43 349	10.0% 8.1% 6.2% 8.3% 6.5% 7.3% 13.5% 9.6%	M.H. Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [1.08, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34]	
8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1.1 Test for overall effect: Z	ent 49 5i 36 3i 40 4; 31 3; 35 44 64 7i 41 4; 324 30, df = 7 (P = 0.) 6.28 (P < 0.000	3 37 3 30 0 23 3 29 2 24 0 27 0 50 2 36 3 256 97); ² = 0%	58 38 30 38 32 40 70 43 349	10.0% 8.1% 6.2% 8.3% 6.5% 7.3% 13.5% 9.6%	M.H. Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [1.08, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34]	
 8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021 Xiaohui Liu 2021 Xiaoing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.1 Test for overall effect: Z = 8.3.2 External treatment 	ent 49 5 36 3 40 4 31 3 35 4 64 7 41 4 35 324 324 324 32, 4 5, 2 4 5, 2 4 4 5, 4 5, 4 6 4 7 4 1, 4 5, 5 324 5, 2 6, 2 7, 1 6, 2 7, 1 6, 2 7, 1 6, 4 7, 1 6, 2 7, 1 7,	3 37 3 30 1 23 3 29 2 24 1 27 0 50 2 36 3 256 977; I ² = 0%	58 38 30 38 32 40 70 43 349 6	10.0% 8.1% 6.2% 6.5% 7.3% 13.5% 9.6% 69.5 %	M.H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34] 1.25 [1.17, 1.34]	
 8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.1 Test for overall effect: Z = 8.3.2 External treatment Hanhua Cao 2019 	ent 49 56 36 32 28 31 40 41 31 35 35 41 64 77 464 77 324 30, df = 7 (P = 0.0 6, 28 (P < 0.000 t with CHMS 27 31	3 37 3 30 0 23 3 29 2 24 0 27 0 50 2 36 3 256 377; F= 0% 001)	58 38 30 38 32 40 70 43 349 6 30	10.0% 8.1% 8.3% 6.5% 7.3% 13.5% 9.6% 69.5 %	M.H, Fixed, 95% Cl 1.32 [1.06, 1.86] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34] 1.25 [1.17, 1.34]	
 8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021 Xiaohui Liu 2021 Xiaoing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.1 Test for overall effect: Z = 8.3.2 External treatment 	ent 49 5 36 3 40 4 31 3 35 4 64 7 41 4 35 324 324 324 32, 4 5, 2 4 5, 2 4 4 5, 4 5, 4 6 4 7 4 1, 4 5, 5 324 5, 2 6, 2 7, 1 6, 2 7, 1 6, 2 7, 1 6, 4 7, 1 6, 2 7, 1 7,	3 37 3 30 0 23 3 29 2 24 0 27 0 50 2 36 3 256 877; I [≠] = 0% 001) 0 23 3 6	58 38 30 38 32 40 70 43 349 6	10.0% 8.1% 6.2% 6.5% 7.3% 13.5% 9.6% 69.5 %	M.H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.28 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.17 [0.93, 1.48] 3.33 [1.58, 7.04]	
8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1.1 Test for overall effect: Z = 8.3.2 External treatmen Hanhua Cao 2019 Jing Zhang 2018	49 56 36 33 40 42 31 32 35 44 64 71 42 35 324 36 30, df = 7 (P = 0.) 6.28 (P < 0.000)	3 37 3 30) 23 3 29 2 24) 27) 50 2 36 3 256 977; I ² = 0% 01)) 23 3 6 0 12	58 38 30 38 32 40 70 43 349 6 30 28	10.0% 8.1% 8.3% 8.5% 7.3% 13.5% 9.6% 69.5% 6.2% 1.6%	M.H, Fixed, 95% Cl 1.32 [1.06, 1.86] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34] 1.25 [1.17, 1.34]	
 8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.4 Test for overall effect: 2: 8.3.2 External treatment Hanhua Cao 2019 Jing Zhang 2018 Lan Ding 2021 Yu Zhou 2017 Subtotal (95% CI) 	ent 49 56 36 33 28 31 40 42 31 32 35 44 64 77 41 42 324 30, df = 7 (P = 0.1) 6.28 (P < 0.001 t with CHMS 27 31 20 24 19 21 48 62 13'	3 37 3 30 2 23 3 29 2 24 0 27 0 50 2 36 3 256 97); ² = 0% 001) 0 23 3 6 0 12 3 39 1	58 38 30 38 32 40 70 43 349 6 30 28 20	10.0% 8.1% 6.2% 8.3% 6.5% 7.3% 9.6% 9.6% 69.5% 6.2% 1.6% 3.2%	M.H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51] 1.7 [1.01, 1.34] 1.25 [1.17, 1.34] 1.17 [0.93, 1.48] 3.33 [1.58, 7.04] 1.56 [1.09, 2.30]	
8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1.1 Test for overall effect: Z 8.3.2 External treatmen Hanhua Cao 2019 Jing Zhang 2018 Lan Ding 2021 Yu Zhou 2017 Subtotal (95% CI) Total events	ent 49 51 36 34 28 34 40 42 31 32 35 44 64 77 41 42 324 30, df = 7 (P = 0.) 6.28 (P < 0.000) t with CHMS 27 30 20 22 19 22 19 21 48 55 324 13 114	3 37 3 30 0 23 3 29 2 24 0 27 0 50 2 36 3 256 97); ₽=0% 001) 0 23 3 6 0 12 3 39 1 80	58 38 30 38 32 40 70 70 43 349 6 6 30 28 20 53 131	10.0% 8.1% 6.2% 8.3% 6.5% 7.3% 13.5% 69.5% 69.5%	M.H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34] 1.25 [1.17, 1.34] 1.17 [0.93, 1.48] 3.33 [1.58, 7.04] 1.58 [1.09, 1.30]	
 8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.4 Test for overall effect: 2: 8.3.2 External treatment Hanhua Cao 2019 Jing Zhang 2018 Lan Ding 2021 Yu Zhou 2017 Subtotal (95% CI) 	ent 49 5 36 34 28 33 40 4 31 33 35 44 64 74 41 42 35 324 30, df = 7 (P = 0.1 5.28 (P < 0.000 t with CHMS 27 31 20 24 19 22 48 53 13' 114 14.45, df = 3 (P = 0.1)	3 37 3 30 1 23 3 29 2 24 0 27 0 50 2 36 87 1 = 0% 0 12 3 6 0 12 3 39 1 80 0.02); ² = 7	58 38 30 38 32 40 70 70 43 349 6 6 30 28 20 53 131	10.0% 8.1% 6.2% 8.3% 6.5% 7.3% 13.5% 69.5% 69.5%	M.H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34] 1.25 [1.17, 1.34] 1.17 [0.93, 1.48] 3.33 [1.58, 7.04] 1.58 [1.09, 1.30]	
8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1.1 Test for overall effect: Z 8.3.2 External treatmen Hanhua Cao 2019 Jing Zhang 2018 Lan Ding 2021 Yu Zhou 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 10 Test for overall effect: Z	ent 49 51 36 34 40 42 31 32 35 44 64 76 41 42 324 30, df = 7 (P = 0.) 6.28 (P < 0.000) t with CHMS 27 30 19 26 48 55 19 26 19 27 11 37 11 4 13 55 13 55 14 55 14 55 15 55 16 55 17 5	3 37 3 30 0 23 3 29 2 24 0 27 0 50 2 36 3 256 977; F=0% 001) 0 23 3 6 0 12 3 36 0 12 3 39 1 80 0.022; F=7 001)	58 38 30 38 32 40 70 70 43 349 6 6 30 28 20 53 131	10.0% 8.1% 6.2% 8.3% 6.5% 7.3% 13.5% 69.5% 69.5%	M.H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34] 1.25 [1.17, 1.34] 1.17 [0.93, 1.48] 3.33 [1.58, 7.04] 1.58 [1.09, 1.30]	
 8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.1 Test for overall effect: Z = 8.3.2 External treatment Hanhua Cao 2019 Jing Zhang 2018 Lan Ding 2021 Yu Zhou 2017 Subtotal (95% CI) Total events Heterogeneity: Chi² = 10 	ent 49 51 36 34 40 42 31 32 35 44 64 76 41 42 324 30, df = 7 (P = 0.) 6.28 (P < 0.000) t with CHMS 27 30 19 26 48 55 19 26 19 26 10 26 19 26 10 26 19	3 37 3 30 0 23 3 29 2 24 0 27 0 50 2 36 3 256 3 77; F = 0% 001) 0 23 3 6 0 12 3 39 1 80 0.02); F = 7 001) ment	58 38 30 38 32 40 70 70 43 349 6 6 30 28 20 53 131	10.0% 8.1% 6.2% 8.3% 6.5% 7.3% 13.5% 69.5% 69.5%	M.H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.22 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.27 [0.93, 1.48] 3.33 [1.58, 7.04] 1.58 [1.09, 2.30] 1.23 [1.22, 1.48] 1.43 [1.23, 1.65]	
 8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.1 Test for overall effect: Z = 8.3.2 External treatment Hanhua Cao 2019 Jing Zhang 2018 Lan Ding 2021 Yu Zhou 2017 Subtotal (95% CI) Total events Heterogeneity: Chi² = 10 Test for overall effect: Z = 8.3.3 Oral combined with 	ent 49 5 36 34 40 4; 31 35 41 4; 35 44 64 74 41 4; 324 30, df = 7 ($P = 0$.) = 6.28 ($P < 0.000$ t with CHMS 27 31 20 22 19 22 48 5; 114 145, df = 3 ($P = 0$.) = 4.76 ($P < 0.000$ th topical treatm	3 37 3 30 0 23 3 29 2 24 0 27 0 50 2 36 8 2 56 877; I ^P = 0% 001) 0 23 3 6 0 12 3 6 0 12 3 39 1 80 0.02; I ^P = 7 001) 1 80 0.02; I ^P = 7 001)	58 38 30 38 32 40 70 40 70 349 6 6 30 28 20 5 3 131 1%	10.0% 8.1% 6.2% 8.3% 6.5% 13.5% 9.6% 69.5% 69.5% 69.5% 1.6%	M.H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34] 1.25 [1.17, 1.34] 1.17 [0.93, 1.48] 3.33 [1.58, 7.04] 1.58 [1.09, 1.30]	
8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1.1 Test for overall effect: Z 8.3.2 External treatment Hanhua Cao 2019 Jing Zhang 2018 Lan Ding 2021 Yu Zhou 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 10 Test for overall effect: Z 8.3.3 Oral combined wit Oing V/u 2020 Subtotal (95% CI)	49 51 36 34 28 31 28 31 31 32 35 44 64 74 40 4 35 44 64 74 40 4 35 324 30, df = 7 (P = 0.) 6.28 (P < 0.000	3 37 3 30 0 23 3 29 2 24 0 27 0 50 2 36 8 2 56 877; I ^P = 0% 001) 0 23 3 6 0 12 3 6 0 12 3 39 1 80 0.02; I ^P = 7 001) 1 80 0.02; I ^P = 7 001)	58 38 30 38 32 40 70 43 349 6 5 3 349 6 5 3 131 1%	10.0% 8.1% 6.2% 8.3% 6.5% 9.6% 69.5% 6.2% 1.6% 3.2% 21.6% 8.9%	M.H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.86] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.23 [1.22, 1.48] 1.23 [1.22, 1.48] 1.43 [1.23, 1.65] 1.15 [1.00, 1.33]	
 8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.1 Test for overall effect: Z = 8.3.2 External treatmen Hanhua Cao 2019 Jing Zhang 2018 Lan Ding 2021 Yu Zhou 2017 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1 Test for overall effect: Z = 8.3.2 External treatmen Hanhua Cao 2019 Jing Zhang 2018 Lan Ding 2021 Yu Zhou 2017 Subtotal (95% CI) Total events Heterogeneity: Chi² = 10 Test for overall effect: Z = 8.3.3 Oral combined with Qing Wu 2020 Subtotal (95% CI) 	ent 49 51 36 32 31 40 4 31 32 35 44 64 77 41 42 324 30 df = 7 ($P = 0.0$ 5.28 ($P < 0.00$ t with CHMS 27 31 20 24 19 21 48 65 114 (45, df = 3 ($P = 0$, 1) 48 65 13 14 (45, df = 3 ($P = 0$, 2) 48 63 38 38 cable	3 37 3 300 2 23 3 29 2 24 0 27 0 500 2 36 3 26 8 256 8 77; I [≠] = 0% 001) 0 23 3 6 0 12 3 39 1 80 0.022; I [≠] = 7 001) 1 80 1 80	58 38 30 38 32 40 70 43 349 6 5 3 349 6 5 3 131 1%	10.0% 8.1% 6.2% 8.3% 6.5% 9.6% 69.5% 6.2% 1.6% 3.2% 21.6% 8.9%	M.H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.86] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.23 [1.22, 1.48] 1.23 [1.22, 1.48] 1.43 [1.23, 1.65] 1.15 [1.00, 1.33]	
8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1.1 Test for overall effect: Z 8.3.2 External treatmen Hanhua Cao 2019 Jing Zhang 2018 Lan Ding 2021 Yu Zhou 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 10 Test for overall effect: Z 8.3.3 Oral combined wif Qing Wu 2020 Subtotal (95% CI) Total events Heterogeneity: Not appli Test for overall effect: Z	ent 49 51 36 34 28 31 40 4; 31 32 35 44 64 76 41 4; 324 30, df = 7 ($P = 0$); 6.28 ($P < 0.000$ t with CHMS 27 31 20 22 19 26 48 52 19 26 48 52 114 14 14 15 16 3 ($P = 0$); 114 13 13 14 14 15 16 3 ($P = 0$); 13 114 13 38 38 38 cable = 1.93 ($P = 0.05$)	3 37 3 30 2 24 0 27 0 27 0 27 0 27 0 27 0 27 0 27 0 23 3 6 0 23 3 6 0 23 3 6 0 23 3 6 0 23 3 6 0 23 3 6 0 23 3 8 0 12 3 33 1 80 0.020; I ^p = 7 7001 ent 33 33 33	58 38 30 38 32 43 349 6 6 30 28 20 53 131 1% 39 39	10.0% 8.1% 6.2% 8.3% 6.5% 9.6% 69.5% 6.2% 10.5% 21.6% 8.9% 8.9%	M.H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.22 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.15 [1.00, 1.33] 1.15 [1.00, 1.33] 1.15 [1.00, 1.33]	
 8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.1 Test for overall effect: Z 8.3.2 External treatment Hanhua Cao 2019 Jing Zhang 2018 Lan Ding 2021 Yu Zhou 2017 Subtotal (95% CI) Total events Heterogeneity: Chi² = 10 Test for overall effect: Z 8.3.3 Oral combined wit Qing Wu 2020 Subtotal (95% CI) Total events Heterogeneity: Chi² = 10 Test for overall effect: Z 	ent 49 56 36 33 28 30 40 42 31 35 35 44 64 77 41 42 324 30 df = 7 (P = 0.1 5.28 (P < 0.000 4.000 27 31 20 22 19 20 48 57 114 48 57 13 114 48 57 13 14 48 57 13 13 13 13 13 13 13 13 13 13	3 37 3 30 0 23 3 29 2 24 0 27 0 50 2 36 3 266 97); I ^P = 0% 001) 0 23 3 6 0 12 3 39 1 80 0.02); I ^P = 7 001) 1 80 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	58 38 30 38 32 43 349 6 6 30 28 20 53 131 1% 39 39	10.0% 8.1% 6.2% 8.3% 6.5% 9.6% 69.5% 69.5% 6.2% 1.6% 3.2% 21.6%	M.H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.29 [1.05, 1.59] 1.30 [1.01, 1.86] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.23 [1.22, 1.48] 1.23 [1.22, 1.48] 1.43 [1.23, 1.65] 1.15 [1.00, 1.33]	
 8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaohui Liu 2021 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.1 Test for overall effect: Z= 8.3.2 External treatmen Hanhua Cao 2019 Jing Zhang 2018 Lan Ding 2021 Yu Zhou 2017 Subtotal (95% CI) Total events Heterogeneity: Chi² = 10 Test for overall effect: Z= 8.3.3 Oral combined wit Qing Wu 2020 Subtotal (95% CI) Total events Heterogeneity: Not appli Test for overall effect: Z= 1otal (95% CI) Total events Heterogeneity: Not appli Test for overall effect: Z= 1otal (95% CI) 	ent 49 51 36 33 28 33 40 42 31 32 35 44 64 77 41 42 324 30 df = 7 (P = 0.2) 5.28 (P < 0.000 t with CHMS 27 32 20 22 19 22 19 22 48 52 13' 114 145 df = 3 (P = 0.2) 54 6 20 (P < 0.000 145 df = 3 (P = 0.005) 38 33 38 33 38 33 38 33 38 33 38 33 39 33 30 3 30 3 30 33 30 33	3 37 3 30 2 24 0 27 0 50 2 36 3 256 97); ² = 0% 001) 0 23 3 6 0 12 3 39 1 80 0.02); ² = 7 001) 1 80 1 23 3 39 1 33 3 33 3 33 3 369 3 369	58 38 32 40 70 43 349 6 5 30 28 20 531 1% 39 39 519	10.0% 8.1% 6.2% 8.3% 6.5% 9.6% 69.5% 6.2% 10.5% 21.6% 8.9% 8.9%	M.H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.22 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.15 [1.00, 1.33] 1.15 [1.00, 1.33] 1.15 [1.00, 1.33]	M.H. Fixed, 95% CI
 8.3.1 Oral CHMs treatm Bin Zhao 2021 Chan Li 2019 Tianhua Quan 2021 Tingming Ma(2) 2018 Xiaojing Yang 2018 Yinge Song 2017 Yinging Ma 2018 Subtotal (95% CI) Total events Heterogeneity: Chi² = 1.1 Test for overall effect: Z 8.3.2 External treatment Hanhua Cao 2019 Jing Zhang 2018 Lan Ding 2021 Yu Zhou 2017 Subtotal (95% CI) Total events Heterogeneity: Chi² = 10 Test for overall effect: Z 8.3.3 Oral combined wit Qing Wu 2020 Subtotal (95% CI) Total events Heterogeneity: Chi² = 10 Test for overall effect: Z 	ent 49 51 36 34 28 34 40 4; 31 3; 35 44 64 77 41 4; 324 30, df = 7 (P = 0.) 6.28 (P < 0.000) t with CHMS 27 30 19 22 48 5; 114 14 14 14 15 16 20 (P < 0.000) t with CHMS 27 30 11 11 15 15 17 17 18 20 20 21 19 22 38 38 38 38 cable = 1.93 (P = 0.5) 52; 476 (1, df = 12 (P = 2) 52 475 475 52 475 475 52 475 475 52 475 475 52 475 475 52 475 475 52 475 52 475 52 475 52 475 52 475 52 52 475 52 52 475 52 52 475 52 52 52 52 52 52 52 52 52 5	3 37 3 30 0 23 3 29 2 24 0 27 0 50 2 36 3 256 977; ²= 0% 001) 0 23 3 6 0 12 3 39 1 80 0.02); ²= 7 001) 1 80 0.02); ²= 7 01) 1 80 0.02); ²= 7 01) 1 80 0.02); ²= 7 01) 1 80 0.02); ²= 7 01) 1 80 0.02); ²= 7 00 1 80 0.02); ²= 7 00 1 80 0.02); ²= 7 00 0.02); ²= 7 0.02); ²= 7 0.02); ²= 7 0.02); ²= 8 0.02); ²= 7 0.02); ²= 8 0.02); ²= 7 0.02); ²= 8 0.02); ²= 8 0.02); ²= 8 0.02); ²= 8 0.02); ²= 7 0.02); ²= 8 0.02); ²= 8 0.02); ²= 7 0.02); ²= 7 0.02); ²= 7 0.02); ²= 8 0.02); ²= 7 0.02); ?= 7	58 38 32 40 70 43 349 6 5 30 28 20 531 1% 39 39 519	10.0% 8.1% 6.2% 8.3% 6.5% 9.6% 69.5% 6.2% 10.5% 21.6% 8.9% 8.9%	M.H, Fixed, 95% Cl 1.32 [1.06, 1.66] 1.20 [1.00, 1.44] 1.22 [0.98, 1.52] 1.22 [1.00, 1.48] 1.22 [1.05, 1.59] 1.30 [1.01, 1.66] 1.28 [1.09, 1.51] 1.17 [1.01, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.25 [1.17, 1.34] 1.15 [1.00, 1.33] 1.15 [1.00, 1.33] 1.15 [1.00, 1.33]	


The results of the meta-analysis for the effect of Chinese herbal medicine (CHM) or a combination of CHM and Western medicine (WM) versus WM on the effective rate. (A) CHM versus WM; (B) CHM versus WM.

3.5 GRADE for the main comparisons

The GRADE quality of evidence was evaluated for each outcome. The quality of evidence for pruritus, the DLQI score, and the recurrence rate were low or very low; the quality of evidence for the effective rate was high, and the quality of evidence for the rate of adverse effects was moderate (Table 4).

3.6 Description of the CHM

Several herbs were included in the 24 studies evaluated. The top 15 most frequently used herbs were used more than six times and included Divaricate Saposhniovia Root, Liquorice root, Light yellow Sophora Root, Chinese Angelica, Paeonia lactiflora, Densefruit Pittany Root-bark, Wolfiporia cocos, Fine leaf Schizonepeta Herb, Szechuan Lovage Rhizome,

Rehmannia Glutinosa, Fructus Kochiae, Common Cnidium Fruit, Cicada Slough, Large head Atractylodes Rh, and Dan-Shen root (Table 5).

4 Discussion

4.1 Summary of evidence

Many studies have shown that CHM is effective in treating CP; however, no available treatment method meets the requirements of evidence-based medicine. Systematic reviews and meta-analyses contribute to the development of evidence-based medicine and are the best source of clinical evidence [15]. We conducted a systematic review of RCTs on CHM for CP. In this systematic review, we evaluated the efficacy and safety of CHM (or a combination of CHM and WM) in treating CP. We included 24 RCTs, with 2,288 patients. The results showed that CHM (or a combination of CHM and WM) was significantly more effective than WM in improving pruritus degree, the DLQI score, the effective rate, and the recurrence rate of CP.

We found that the treatment of CP by administering CHM significantly improved the degree of pruritus compared to the placebo. CHM had a more significant effect than WM on the improvement of the degree of pruritus, the DLQI score, and the effective rate in CP. Subgroup analysis was conducted on the groups of participants who were treated *via* different drug administration methods and treatment courses. The results showed that oral administration was the most effective, followed by a combination of oral and external treatment. The effect of the treatment on reducing itching improved with the increase in the duration of treatment. These results showed that performing monotherapy with CHM can improve the symptoms of CP patients. Regarding the comparison of the combination of CHM and WM with WM, the meta-analysis showed that CHM combined with WM in CP treatment is significantly more effective in improving the degree of pruritus, the DLQI score, the effective

rate, and the recurrence rate. The combination of CHM and WM was the most effective when topically applied. These results indicated that CHM as an adjunctive therapy can improve the symptoms of CP patients.

Regarding the effect of the patient recurrence rate, the disease recurrence rate in the CHM and combination of CHM and WM treatment groups was lower than that in the WM treatment group. Thirteen studies that investigated the safety of CHM treatment reported AEs, including dryness of the mouth, insomnia, nausea, dizziness, rash, fatigue, gastrointestinal side effects, headache, and dizziness. The results of the meta-analysis for the effect of the AEs showed no significant difference in the incidence of AEs between the CHM and placebo groups, between the CHM and WM groups, and between the combination of CHM and WM and WM-only groups. This indicated that CHM might be recommended for treating patients with CP.

4.2 Implications for practice

This meta-analysis revealed that CHM is safe and might be used for monotherapy or adjuvant therapy to improve pruritus and the DLQI score of patients with CP. A descriptive analysis based on included RCTs indicated a great diversity in the detailed composition of the herbs in the CHM prescribed for patients with CP. We found that among the CHM included in the studies, Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk, *Glycyrrhiza glabra* L, *Sophora flavescens* Aiton, *Angelica sinensis* (Oliv.) Diels, *Paeonia lactiflora* Pall, *Dictamnus dasycarpus* Turcz, *Smilax glabra* Roxb, *Sesamum indicum* L, *Conioselinum anthriscoides* "Chuanxiong," *Rehmannia glutinosa* (Gaertn.) DC, *Bassia scoparia* L.) A.J. Scott, *Cnidium monnieri* L.) Cusson, *Tabernaemontana divaricata* L.) R. Br. ex Roem. and Schult, *Atractylodes macrocephala* Koidz, *Salvia miltiorrhiza* Bunge were frequently used as the most effective prescriptions for treating chronic itching. These findings should be further considered when formulating commonly used CHM for CP treatment.

Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
7.2.1 CHMs versus Place	bo						
Mehrzad Mehrbani 2015	17	24	0	18	0.8%	26.60 [1.71, 414.89]	· · · · · · · · · · · · · · · · · · ·
Subtotal (95% CI)		24		18	0.8%	26.60 [1.71, 414.89]	
Total events	17		0				
Heterogeneity: Not applica	able						
Test for overall effect: Z = :	2.34 (P = 0.	02)					
7.2.2 CHMs versus West	ern medicii	ne					
Fengjuan Wang 2018	2	42	11	38	15.3%	0.16 [0.04, 0.70]	
Pengying Li 2019	4	55	16	55	21.2%	0.25 [0.09, 0.70]	
Rui Tao 2020	4	36	17	35	22.8%	0.23 [0.09, 0.61]	
Xinwei Guo 2020	4	57	0	57	0.7%	9.00 [0.50, 163.40]	
Ying Yang 2007	1	32	1	32	1.3%	1.00 [0.07, 15.30]	
Subtotal (95% CI)		222		217	61.2%	0.33 [0.19, 0.57]	•
Total events	15		45				
Heterogeneity: Chi ² = 7.35	, df = 4 (P =	= 0.12);	² = 46%				
Test for overall effect: Z =	4.02 (P < 0.	0001)					
7.2.3 CHMs and Western	medicinev	/ersus	Western	medic	ine		
Qing Wu 2020	4	39	3	39	4.0%	1.33 [0.32, 5.57]	
Saiqian Hu 2018	3	43	2	43	2.6%	1.50 [0.26, 8.53]	
Tianhua Quan 2021	2	30	4	30	5.3%	0.50 [0.10, 2.53]	
Tingming Ma(2) 2018	2	43	3	36	4.3%	0.56 [0.10, 3.16]	
Xiaohui Liu 2021	1	32	0	32	0.7%	3.00 [0.13, 71.00]	
Yinge Song 2017	9	70	8	70	10.6%	1.13 [0.46, 2.75]	
Yu Zhou 2017	10	53	8	53	10.6%	1.25 [0.54, 2.92]	
Subtotal (95% CI)		310		303	38.0%	1.09 [0.68, 1.75]	•
Total events	31		28				
Heterogeneity: Chi ² = 2.17			I ² = 0%				
Test for overall effect: Z = 0	0.35 (P = 0.	73)					
Total (95% CI)		556		538	100.0%	0.82 [0.59, 1.12]	•
Total events	63		73				
Total events	4, df = 12 (P = 0.00	04); I ² = 5	8%			
Heterogeneity: Chi ² = 28.6		100000					0.002 0.1 1 10 500
	1.24 (P = 0.	21)					Favours [experimental] Favours [control]

The results of the meta-analysis for the effect of Chinese herbal medicine (CHM) or a combination of CHM and Western medicine (WM) versus WM on the rate of adverse effects.

4.3 Limitations

This study had several limitations: (Rajagopalan et al., 2017) The number and sample size of the included studies were relatively small, which affected the reliability of the conclusions (Villa-Arango et al., 2019) Among the included studies, 11 studies did not report allocation concealment, only one study conducted blinded trials, and the trials in the other studies were not blinded; thus, a certain risk of bias existed (Ständer et al., 2007) The evaluation standard of the degree of itching was single and highly subjective, and the risk of deviation was high (Weisshaar et al., 2019) The formulation composition, dosage, administration method, and CHM treatment duration in RCTs varied widely across studies. Clinical heterogeneity compromised the validity of our findings. The publication bias caused by all the studies being published in China might have partly exaggerated the efficacy of CHM.

4.4 Implications for research

Using CHM for monotherapy or adjuvant therapy is effective in treating CP, and this review provides existing evidence that might help to shape the design of future trials. Although double–blinded trials may be difficult due to the nature of CHM treatment, study investigators should consider alternative strategies to minimize the risk of performance bias. The trials could have also at least blinded the individuals who assessed the trial outcomes. After incorporating these methodologic precautions, study investigators should acknowledge the potential biases arising from the lack of blinding, and address them appropriately in the limitations of their study. For example, the use of the CONSORT 2017 Chinese Herbal Prescription Expansion (Cheng et al., 2017) to report the results of RCTs involving herbal interventions, the use of the CONSORT 2010 Statement (Piaggio et al., 2012), and the RCT design protocol used to study CHM [18] to establish and report RCTs for CHM treatment. Although the findings of this systematic review suggested that the use of CHM treatment might be relatively safe in patients with CP, further studies are needed to confirm our findings. Bian et al., (Bian et al., 2010) established a standard format for reporting adverse drug reactions in CHM, which might improve the ways to report adverse drug reactions. Regardless, both study investigators and authors should ensure a strict methodology and proper reporting, to reduce potential biases in trials evaluating the effectiveness of herbal medicine for the treatment of CP. Additionally, the effectiveness of TCM depends on accurately differentiating and treating the syndrome. Therefore, drug prescriptions must be distinguished based on different syndromes of diseases. When evaluating the therapeutic effects of CHM treatment, syndrome differentiation and treatment should be accurately conducted, and individualized TCM prescriptions should be formulated to treat specific diseases. For example, a study (Bensoussan et al., 1998) showed

TABLE 4 Summary of GRADE.

			Quality asse	ssment			No of pa	tients		Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Reporting bias	Intervention	Control	Relative (95% Cl)	Absolute		
Pruritus (24 studies)	RCT	serious ¹	Serious ²	no serious indirectness	no serious imprecision	reporting bias ⁴	1,165	1,147	_	MD 1.01 lower (1.0695 lower)	⊕OOO VERY LOW ^{1,2,4}	IMPORTANT
DLQI (8 studies)	RCT	Serious ¹	very serious ²	no serious indirectness	no serious imprecision	undetected	451	444	_	MD 2.2 lower (2.38–2.01 lower)	⊕⊕OO LOW ^{1,2}	IMPORTANT
Effective rate (17 studies)	RCT	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	768/826 (93%)	597/ 814 (73.3%)	RR 1.27 (1.21–1.32)	198 more per 1,000 (from 154 more to 235 more)	⊕⊕⊕⊕ HIGH ¹	IMPORTANT
								76.7%		207 more per 1,000 (from 161 more to 245 more)		
Recurrence rate (4 studies)	RCT	serious ¹	no serious inconsistency	no serious indirectness	Serious ³	undetected	14/109 (12.8%)	28/ 76 (36.8%)	RR .3 (.17–.53)	258 fewer per 1,000 (from 173 fewer to 306 fewer)	⊕⊕OO LOW ^{1,3}	IMPORTANT
								49.7%		348 fewer per 1,000 (from 234 fewer to 413 fewer)		
Adverse effect rate	RCT	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	63/556 (11.3%)	73/ 538 (13.6%)	RR .82 (.59–1.12)	24 fewer per 1,000 (from 56 fewer to 16 more)	⊕⊕⊕O MODERATE ¹	IMPORTANT
								8.3%		15 fewer per 1,000 (from 34 fewer to 10 more)		

1. Lacking blinding and randomization and allocation are unclear; 2. Substantial heterogeneity; 3. Small sample size; 4. The outcomes of Egger's test suggested publication bias.

Accepted name	Chinese name	Family	Number of studies (%)
Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk	Fangfeng	Apiaceae	16 (66.67)
Glycyrrhiza glabra L	Gancao	Fabaceae	15 (62.5)
Sophora flavescens Aiton	Kushen	Fabaceae	12 (50)
Angelica sinensis (Oliv.) Diels	Danggui	Apiaceae	12 (50)
Paeonia lactiflora Pall	Shaoyao	Paeoniaceae	11 (45.83)
Dictamnus dasycarpus Turcz	Baixianpi	Rutaceae	10 (41.67)
Smilax glabra Roxb	Fuling	Smilacaceae	10 (41.67)
Sesamum indicum L	Jingjie	Pedaliaceae	10 (41.67)
Conioselinum anthriscoides "Chuanxiong"	Chuanxiong	Apiaceae	9 (37.50)
Rehmannia glutinosa (Gaertn.) DC	Dihuang	Orobanchaceae	8 (33.33)
Bassia scoparia (L.) A. J. Scott	Difuzi	Amaranthaceae	79 (29.17)
Cnidium monnieri (L.) Cusson	Shechuangzi	Apiaceae	7 (29.17)
Tabernaemontana divaricata (L.) R.Br. ex Roem. and Schult	Chantui	Apocynaceae	6 (25)
Atractylodes macrocephala Koidz	Baizhu	Asteraceae	6 (25)
Salvia miltiorrhiza Bunge	Danshen	Lamiaceae	6 (25)

TABLE 5 The 15 most frequently used ingredients of Chinese herbal medicine in 24 prescriptions.

that the administration of personalized CHM for treating irritable bowel syndrome had better effects than a generic hypnotic prescription. Therefore, appropriate drugs prepared from common herbs should be administered in clinical practice based on specific disease syndromes to improve the efficacy of CHM in treating CP.

5 Conclusion

This meta-analysis and systematic review of 24 RCTs consisted of 2,288 patients. Low certainty evidence suggested that CHM used with or without WM, compared with WM, might have significantly better effects on alleviating pruritus, increasing DLQI scores, and improving the effective rate in patients with CP in clinical practice. Administering CHM did not increase the risk of adverse events. However, more high-quality RCTs are needed to confirm the effectiveness and adverse events of CHM in the treatment of CP.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

Author contributions

JW designed the study. JW, YC, XY, JH, YX, WW, and XW performed the study, including literature search, data selection and extraction, quality assessment, and data analysis. All authors read and approved the final manuscript.

Funding

The authors of this review were supported by the National Natural Science Foundation of China (81973857), Key Laboratory of Sports Medicine in Sichuan Province, and Key Laboratory of the State General Administration of Sports (2022-A041), the Sichuan Provincial Central Government Guided Local Science and Technology Development Project 2022ZYD0103.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer QF declared a shared affiliation, with no collaboration, with one of the authors YX to the handling editor at the time of the review.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2022.1029949/ full#supplementary-material

References

Andrade, A., Kuah, C. Y., Martin-Lopez, J. E., Chua, S., Shpadaruk, V., Sanclemente, G., et al. (2020). Interventions for chronic pruritus of unknown origin. *Cochrane Database Syst. Rev.* 1 (1), 013128. doi:10.1002/14651858.CD013128.pub2

Bedi, M. K., and Shenefelt, P. D. (2002). Herbal therapy in dermatology. Arch. Dermatol 138 (2), 232–242. doi:10.1001/archderm.138.2.232

Bensoussan, A., Talley, N. J., Hing, M., Menzies, R., Guo, A., Ngu, M., et al. (1998). Treatment of irritable bowel syndrome with Chinese herbal medicine: A randomized controlled trial. *Jama* 280 (18), 1585–1589. doi:10.1001/jama.280.18.1585

Bian, Z. X., Tian, H. Y., Gao, L., Shang, H. C., Wu, T. X., Li, Y. P., et al. (2010). Improving reporting of adverse events and adverse drug reactions following injections of Chinese materia medica. *J. Evid. Based Med.* 3 (1), 5–10. doi:10. 1111/j.1756-5391.2010.01055.x

Bin Zhao, L. L. (2021). Clinical effect of self-made Xiaoxun decoction combined with desloratadine citrate disodium tablets in the treatment of chronic urticaria. *Clin. Med. Res. Pract.* 6 (24), 148–150. (in Chinese). doi:10.19347/j.cnki.2096.1413.202124049

Cheng, C. W., Wu, T. X., Shang, H. C., Li, Y. P., Altman, D. G., Moher, D., et al. (2017). CONSORT extension for Chinese herbal medicine formulas 2017: Recommendations, explanation, and elaboration. *Ann. Intern Med.* 167 (2), 112–121. doi:10.7326/m16-2977

Dalgard, F. J., Svensson, Å., Halvorsen, J. A., Gieler, U., Schut, C., Tomas-Aragones, L., et al. (2020). Itch and mental health in dermatological patients across europe: A cross-sectional study in 13 countries. *J. Invest. Dermatol* 140 (3), 568–573. doi:10.1016/j.jid.2019. 05.034

Finlay, A. Y., and Khan, G. K. (1994). Dermatology Life Quality Index (DLQI)--a simple practical measure for routine clinical use. *Clin. Exp. Dermatol* 19 (3), 210–216. doi:10. 1111/j.1365-2230.1994.tb01167.x

Furue, M., Ebata, T., Ikoma, A., Takeuchi, S., Kataoka, Y., Takamori, K., et al. (2013). Verbalizing extremes of the visual analogue scale for pruritus: A consensus statement. *Acta Derm. Venereol.* 93 (2), 214–215. doi:10.2340/00015555-1446

Hanhua Cao, Y. X., Xu, Jingjing, Longju, M., and Ma, Jinqiang (2019). Chinese herbal fumigation combined with gabapentin and hemoperfusion has effect on pruritus in hemodialysis patients. *J. NEW Chin. Med.* 51 (10), 211–213. (in Chinese). doi:10. 13457/j.cnki.jncm.2019.10.060

Hay, R. J., Johns, N. E., Williams, H. C., Bolliger, I. W., Dellavalle, R. P., Margolis, D. J., et al. (2014). The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. *J. Invest. Dermatol* 134 (6), 1527–1534. doi:10.1038/jid.2013.446

Hu, S., and Feng, Y. (2018). Clinical observation on 44 cases of senile skin pruritus treated by traditional Chinese medicine. *Dermatology Venereol.* 40 (02), 239–240. (in Chinese). doi:10.3969/j.issn.1002.1310.2018.02.051

Kretzmer, G. E., Gelkopf, M., Kretzmer, G., and Melamed, Y. (2008). Idiopathic pruritus in psychiatric inpatients: An explorative study. *Gen. Hosp. Psychiatry* 30 (4), 344–348. doi:10.1016/j.genhosppsych.2008.03.006

Lan, Ding J. T. (2021). Effect of self - made yangxue qufeng external washing prescription on skin pruritus of blood deficiency and wind dryness type in hemodialysis patients. *Health World* 20, 146–147. (in Chinese).

Li, C. (2019). Clinical observation of xiaoyang decoction combined with loratadine in the treatment of chronic urticaria. *J. Pract. TRADITIONAL Chin. Med.* 35 (05), 560–561. (in Chinese).

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., et al. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. *Bmj* 339, 2700. doi:10.1136/bmj.b2700

Liu, P. L. L. F. H. (2019). Therapeutic effect of traditional Chinese medicine No. 2 prescription combined with jianpi Jiedu decoction on spleen deficiency and spleen syndrome of common spleen and expression of T lymphocytes in peripheral blood. *Chin. ARCHIVES TRADITIONAL Chin. Med.* 37 (11), 2609–2613. (in Chinese). doi:10.13193/j. issn.1673.7717.2019.11.010

Liu, T. M. X. H. G. (2018). Clinical study of Chinese herbal washing externally and drinking internally on blood deficiency - wind dryness syndrome of neurodermatitis. *Hebei J. TCM* 40 (3), 344–347. (in Chinese). doi:10.3969/j.issn.1002.2619.2018. 03.005

Liu, X. (2021). Effects of Danggui Sini decoction on psoriasis patients with blood Deficiency and windcold type. *Med. J. Chin. People's Health* 33 (21), 90–92. (in Chinese). doi:10.3969/j.issn.16720369.2021.21.033

Lu, P. H., Tai, Y. C., Yu, M. C., Lin, I. H., and Kuo, K. L. (2021). Western and complementary alternative medicine treatment of uremic pruritus: A literature review. *Tzu Chi Med. J.* 33 (4), 350. doi:10.4103/tcmj.t51_20

Ma, T., Chai, Y., Li, S., Sun, X., Wang, Y., Xu, R., et al. (2020). Efficacy and safety of Qinzhuliangxue decoction for treating atopic eczema: A randomized controlled trial. *Ann. Palliat. Med.* 9 (3), 870–882. doi:10.21037/apm.2020.04.17

Ma, Y. (2018). Clinical effect of self-made yangxue zhiyang decoction combined with compound flumetasone ointment in treating chronic eczema and its effect on the levels of immune response factors. *China Pharm.* 27 (07), 42. (in Chinese). doi:10.3969/j.issn. 10064931.2018.07.013

Matterne, U., Apfelbacher, C. J., Vogelgsang, L., Loerbroks, A., and Weisshaar, E. (2013). Incidence and determinants of chronic pruritus: A population-based cohort study. *Acta Derm. Venereol.* 93 (5), 532–537. doi:10.2340/00015555-1572

Matterne, U., Apfelbacher, C. J., Loerbroks, A., Schwarzer, T., Büttner, M., Ofenloch, R., et al. (2011). Prevalence, correlates and characteristics of chronic pruritus: A populationbased cross-sectional study. *Acta Derm. Venereol.* 91 (6), 674–679. doi:10.2340/00015555-1159

Mehrbani, M., Choopani, R., Fekri, A., Mehrabani, M., Mosaddegh, M., and Mehrabani, M. (2015). The efficacy of whey associated with dodder seed extract on moderate-to-severe atopic dermatitis in adults: A randomized, double-blind, placebo-controlled clinical trial. *J. Ethnopharmacol.* 172, 325–332. doi:10.1016/j.jep.2015.07.003

Olek-Hrab, K., Hrab, M., Szyfter-Harris, J., and Adamski, Z. (2016). Pruritus in selected dermatoses. *Eur. Rev. Med. Pharmacol. Sci.* 20 (17), 3628–3641.

Pakfetrat, M., Basiri, F., Malekmakan, L., and Roozbeh, J. (2014). Effects of turmeric on uremic pruritus in end stage renal disease patients: A double-blind randomized clinical trial. *J. Nephrol.* 27 (2), 203–207. doi:10.1007/s40620-014-0039-2

Pereira, M. P., Mühl, S., Pogatzki-Zahn, E. M., Agelopoulos, K., and Ständer, S. (2016). Intraepidermal nerve fiber density: Diagnostic and therapeutic relevance in the management of chronic pruritus: A review. *Dermatol Ther. (Heidelb)* 6 (4), 509–517. doi:10.1007/s13555-016-0146-1

Piaggio, G., Elbourne, D. R., Pocock, S. J., Evans, S. J., and Altman, D. G. (2012). Reporting of noninferiority and equivalence randomized trials: Extension of the CONSORT 2010 statement. *Jama* 308 (24), 2594–2604. doi:10.1001/jama.2012.87802

Qi, F. W. Z. (2018). Effect of using jianpi qushi decoction in the treatment of spleen deficiency and dampness accumulation type eczema and its effect on immune function. *J. Sichuan Traditional Chin. Med.* 36 (06), 178–181. (in Chinese).

Qii, S. (2019). Analysis of therapeutic effect on eczema by using jianpi huashi decoction combined with hydrocortisone butyrate cream. *Chin. J. Aesthetic Med.* 28 (07), 127–130. (in Chinese). doi:10.15909/j.cnki.cn611347/r.003167

Qing Wu, H. J., Wang, Xingxing, Ma, Xiaohong, and Yan, Xiaoning (2020). Clinical effect of oral administration and external application of Qingre Liangxue decoction in the treatm entofpsoriasis. *Clin. Med. Res. Pract.* 5 (29), 142–144. (in Chinese). doi:10.19347/j. cnki.20961413.202029053

Rajagopalan, M., Saraswat, A., Godse, K., Shankar, D. S., Kandhari, S., Shenoi, S. D., et al. (2017). Diagnosis and management of chronic pruritus: An expert consensus review. *Indian J. Dermatol* 62 (1), 7–17. doi:10.4103/0019-5154.198036

Rui Tao, S. Y., Lu, You, Lan, Zhai, Wang, Yingli, and Zhao, Lei (2020). Clinical study on jiangtang huoxue prescription combined with xiaofeng powder in treatment of diabetes with chronic eczema. *Chin. J. Inf. TCM* 27 (06), 34–37. (in Chinese). doi:10.3969/j.issn. 10055304.202001224

Schneider, G., Ständer, S., Kahnert, S., Pereira, M. P., Mess, C., Huck, V., et al. (2022). Biological and psychosocial factors associated with the persistence of pruritus symptoms: Protocol for a prospective, exploratory observational study in Germany (individual project of the interdisciplinary SOMACROSS research unit [RU 5211]). *BMJ Open* 12 (7), e060811. doi:10.1136/bmjopen-2022-060811

Schneider, G., Driesch, G., Heuft, G., Evers, S., Luger, T. A., and Ständer, S. (2006). Psychosomatic cofactors and psychiatric comorbidity in patients with chronic itch. *Clin. Exp. Dermatol* 31 (6), 762–767. doi:10.1111/j.1365-2230.2006.02211.x

Shive, M., Linos, E., Berger, T., Wehner, M., and Chren, M. M. (2013). Itch as a patientreported symptom in ambulatory care visits in the United States. *J. Am. Acad. Dermatol* 69 (4), 550. doi:10.1016/j.jaad.2013.05.029

Ständer, S., Weisshaar, E., Mettang, T., Szepietowski, J. C., Carstens, E., Ikoma, A., et al. (2007). Clinical classification of itch: A position paper of the international forum for the study of itch. *Acta Derm. Venereol.* 87 (4), 291–294. doi:10.2340/00015555-0305

Steinke, S., Zeidler, C., Riepe, C., Bruland, P., Soto-Rey, I., Storck, M., et al. (2018). Humanistic burden of chronic pruritus in patients with inflammatory dermatoses: Results of the European academy of dermatology and venereology network on assessment of severity and burden of pruritus (PruNet) cross-sectional trial. *J. Am. Acad. Dermatol* 79 (3), 457–463. doi:10.1016/j.jaad.2018.04.044

Stumpf, A., Schneider, G., and Ständer, S. (2018). Psychosomatic and psychiatric disorders and psychologic factors in pruritus. *Clin. Dermatol* 36 (6), 704–708. doi:10. 1016/j.clindermatol.2018.08.015

Szepietowski, J. C., Reich, A., and Wiśnicka, B. (2002). Itching in patients suffering from psoriasis. *Acta Dermatovenerol Croat*. 10 (4), 221–226.

Szepietowski, J. C., Reich, A., and Wisnicka, B. (2004). Pruritus and psoriasis. Br. J. Dermatol 151 (6), 1284. doi:10.1111/j.1365-2133.2004.06299.x

Tianhua Quan, X. L., Chen, Yue, Yu, Yahua, and Liu, Huanqiang (2021). Clinical effect observation of Pingwei Xiaozhen Decoction combined with olopatadine hydrochloride tablets in the treatment of chronic urticaria with syndrome of dampheat in hydrochloride tablets in the treatment of chronic urticaria with syndrome of dampheat in stomach and intestinestomach and intestine. *Jilin J. Chin. Med.* 41 (07), 841–845. (in Chinese). doi:10.13463/j.cnki.jlzyy.2021.07.001

Tianming Ma, X. H., and Liu, Guijun (2018). Clinical observation of kushen fafeng pill in treating adult mild to moderate atopic dermatitis. *Hebei J. TCM* 40 (11), 1671–1674. (in Chinese). doi:10.3969/j.issn.1002.2619.2018.11.016

Twycross, R., Greaves, M. W., Handwerker, H., Jones, E. A., Libretto, S. E., Szepietowski, J. C., et al. (2003). Itch: Scratching more than the surface. *Qim* 96 (1), 7–26. doi:10.1093/qjmed/hcg002

Villa-Arango, A. M., Velásquez-Lopera, M. M., and Cardona, R. (2019). Chronic pruritus. Rev. Alerg. Mex. 66 (1), 85–98. doi:10.29262/ram.v66i1.345

Wei, L. I. F. Z., and Li, Yuanwen (2017). Clinical effect of qingshi zhiyang ointment combined with modified xiaofeng zhiyang decoction in treating neurodermatitis. *Chin. J. Exp. Traditional Med. Formulae* 23 (21), 194–199. (in Chinese). doi:10.13422/j.cnki.syfjx.2017210194

Weiss, M., Mettang, T., Tschulena, U., and Weisshaar, E. (2016). Health-related quality of life in haemodialysis patients suffering from chronic itch: Results from GEHIS (German epidemiology haemodialysis itch study). *Qual. Life Res.* 25 (12), 3097–3106. doi:10.1007/ s11136-016-1340-4

Weisshaar, E., Szepietowski, J. C., Dalgard, F. J., Garcovich, S., Gieler, U., Giménez-Arnau, A. M., et al. (2019). European S2k guideline on chronic pruritus. *Acta Derm. Venereol.* 99 (5), 469–506. doi:10.2340/00015555-3164

Xinwei Guo, G. L., Li, Ping, Wang, Yan, and Sun, Liyun (2020). Clinical observation of Modified Chushi Weiling Decoction in the treatment of atopic derm atitis with spleen deficiency and dampness deposition syndrome. *Chin. J. Traditional Chin. Med.* 35 (01), 458–460. (in Chinese).

Xu, Y., Chen, S., Zhang, L., Chen, G., and Chen, J. (2021). The anti-inflammatory and anti-pruritus mechanisms of huanglian Jiedu decoction in the treatment of atopic dermatitis. *Front. Pharmacol.* 12, 735295. doi:10.3389/fphar.2021.735295

Xue, W., Zhao, Y., Yuan, M., and Zhao, Z. (2019). Chinese herbal bath therapy for the treatment of uremic pruritus: meta-analysis of randomized controlled trials. *BMC Complement. Altern. Med.* 19 (1), 103. doi:10.1186/s12906-019-2513-9

Yang, Xiaojing, Zhu, Youjin, Su, Hua, Ma, Lei, Zhou, Xiangzhao, and An, Guozhi (2018). Effect of white tiger soup combined with desloratadine and dexamethasone in the treatment of contact allergic dermatitis. *Mod. J. Integr. Traditional Chin. West. Med.* 27 (03), 253–255+9. (in Chinese).

Yine, Song, and Li, Feng (2017). Clinical effect of Yangxue Tongluo decoction in the treatment of plaque psoriasis and its influence on the levels of IL-6, TNF- α and VEGF. *Mod. J. Integr. Traditional Chin. West. Med.* 26 (21), 2298–2301. (in Chinese).

Ying Yang, Y. W., Yang, Yufeng, Guo, Zhibin, and Zhang, Shangbin (2006). Effect of jianpi zhiyang granule on serum IgE level in patients with atopic dermatitis. *Chin. ARCHIVES TRADITIONAL Chin. Med.* 24 (3), 472–473. (in Chinese). doi:10.3969/j. issn.1672.0709.2007.03.002

Yu, S. (2020). Observation on the curative effect of traditional Chinese medicine fumigation in the Treatment of adult Chronic Eczema. *Dermatology Venereol.* 42 (01), 109–111. (in Chinese).

Yu Zhou, M. Y., Bai, Xinping, Gao, Ying, Han, Han, and Guan, Huiwen (2017). NB-UVB phototherapy combined with decoction bath of self-made prescription for cooling blood and relieving itching for psoriasis vulgaris and its effect on hemorheolog. *Mod. J. Integr. Traditional Chin. West. Med.* 26 (27), 3023–3026. (in Chinese).

Zhang, J. (2018). Clinical observation on the curative effect of traditional Chinese medicine bath in the treatment of psoriasis vulgaris (stationary period). *Mod. Chin. Clin. Med.* 25 (6), 23–25. (in Chinese). doi:10.3969/j.issn. 20956606.2018.06.006