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The incidence of melanoma has increased rapidly over the past few decades,

with mortality accounting for more than 75% of all skin cancers. The high

metastatic potential of Melanoma is an essential factor in its high mortality.

Vascular angiogenic system has been proved to be crucial for the metastasis of

melanoma. An in-depth understanding of angiogenesis will be of great benefit

to melanoma treatment and may promote the development of melanoma

therapies. This review summarizes the recent advances and challenges of anti-

angiogenic agents, including monoclonal antibodies, tyrosine kinase inhibitors,

human recombinant Endostatin, and traditional Chinese herbal medicine. We

hope to provide a better understanding of the mechanisms, clinical research

progress, and future research directions of melanoma.
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1 Introduction

Melanoma is one of the most aggressive and fatal skin cancer types, characterized by

rapid growth, a long dormancy time, high rates of late-stage recurrence, and extensive

metastasis (Eddy and Chen, 2020; Filippi et al., 2020). Its incidence has steadily increased

over the past few decades, posing a significant threat to human health worldwide (Li et al.,

2022). The considerable risk factor for Melanoma is UV radiation via direct DNA damage

and harmful effects on the skin (Sample and He, 2018). Acquired and congenital nevus are

also risk factors for melanoma (Li et al., 2019a). Approximately 25% of patients with

melanoma develop from nevus, and 5%–15% of patients with a family history were

susceptible to melanoma (Armstrong and Cust, 2017). Indeed, patients with melanoma

who were diagnosed at an early stage could be cured by surgical removal. However, tumor

metastasis always occurs after initial treatments and is a fundamental cause of the

recurrence in patients with melanoma. Although, clinical therapeutic options for

melanoma are plentiful, such as chemotherapy, immunotherapy, and other targeted

therapies, the prognosis of advanced melanoma remains severe (Ramelyte et al., 2017;
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Xiao et al., 2019; Goldinger et al., 2022). Thus, a new and effective

therapeutic method is still needed to treat melanoma.

Angiogenesis is a complex process of forming new blood

vessels, generally regulated by pro-angiogenic and anti-

angiogenic factors (Halder et al., 2018; Wang et al., 2018).

However, it is not in dynamic balance in various solid

tumors, such as melanoma (Luciano et al., 2021; Parmar and

Apte, 2021). Developing a rich vascular network seems vital for

melanoma cells during the vertical growth phase, because

melanoma cells require lots of nutrients and oxygen to sustain

their vertical growth (Pandita et al., 2021). Therefore,

angiogenesis is essential for the occurrence and development

of melanoma. In 1966, the concept of tumor angiogenesis in

melanoma was first proposed by Warren and Shubik (Warren

and Shubik, 1966). Since then, anti-angiogenic drugs have been

identified as an essential therapeutic measure for treating

melanoma (Liu et al., 2022a; Hu et al., 2022; Wohlfeil et al.,

2022). These studies suggest that inhibiting angiogenesis will

bring new insights into the treatment of melanoma.

In this review, we have elucidated the clinical trials and

detailed mechanisms of anti-angiogenesis drugs in melanoma

treatment, such as monoclonal antibodies (Bevacizumab,

Ramucirumab, Aflibercept, Ontuxizumab), tyrosine kinase

inhibitors (Sorafenib, Lenvatinib, Imatinib, Sunitinib,

Pazopanib, Axitinib) and human recombinant Endostatin. At

the same time, we will further discuss the anti-angiogenic activity

of Traditional Chinese herbal medicine. In addition, we will also

elucidate potential mechanisms of resistance to anti-angiogenic

agents, giving an outlook on the specific targets which would be

helpful to the successful therapy of malignant melanoma.

2 Mechanism of angiogenesis

Angiogenesis, forming new blood vessels depending on pre-

existing vasculatures (Koo and Kume, 2013), is an essential

indicator of tumor proliferation, survival, and distant

metastasis in various solid tumors, including melanoma (Cho

et al., 2019). Melanoma cells have acquired the ability to induce

angiogenesis to meet the increasing nutritional and oxygen

needs, especially when cells are in a vertical growth phase of

continued proliferation (Straume et al., 1999; Sobierajska et al.,

2020). Generally, pro-angiogenic and anti-angiogenic factors are

in a dynamic balance (Kazerounian and Lawler, 2018). However,

this balance of angiogenesis is often out of control in melanoma.

As a result, large amounts of pro-angiogenic factors are release

and the expression of the receptors of these factors upregulate in

tumor cells. Pro-angiogenic factors will play a dominant role in

angiogenesis, leading to the formation of new blood vessels

(Rodrigues and Ferraz, 2020). Then, with an adequate supply

of nutrients, tumor cells can increase rapidly without control and

become more invasive, ultimately leading to metastasis. The

growth factors and cytokines are the potential targets for

angiogenesis and have been well-studied in melanoma therapy

(Figure 1).

Some critical functional enzymes and adhesion factors have

been discussed in melanoma, including vascular endothelial

growth factor A (VEGF-A), placental growth factor (PlGF),

interleukin-8 (IL-8), primary fibroblast growth factor (bFGF),

platelet-derived growth factor (PDGF), angiopoietin (Ang),

urokinase plasminogen activator (uPA), integrin, and MMPs

(Singh et al., 2010; Laurenzana et al., 2017; Zhang et al., 2018a;

Lacal and Graziani, 2018; Pekkonen et al., 2018; Zhang et al.,

2019; Czarnecka et al., 2020; Ten Voorde et al., 2021). Vascular

endothelial growth factor (VEGF), the first described cytokine,

stimulates the formation of new blood vessels in tumors (Senger

et al., 1983). There are seven types of this gene family, including

VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F, and

placental growth factors (Shibuya, 2011). Accordingly, the VEGF

receptor (VEGFR) is a member of the tyrosine kinase receptor

family, including five subtypes (VEGFR-1, VEGFR-2, VEGFR-3,

NRP-1, and NRP-2) (Zhao et al., 2021). To our knowledge,

VEGFRs are the most crucial factors in cancer angiogenesis. For

instance, VEGF induces phosphorylation of VEGFR and

activates its downstream signaling to enhance vascular

expansion and permeability of tumor cells (Fernandez-Cruz

et al., 2019). Meanwhile, the other factors (PlGF, IL-8, bFGF,

PDGF, Ang, uPA, integrin, and MMPs) are also produced by

melanoma cells and endothelial cells. These pro-angiogenic

growth factors and cytokines commonly induce their

downstream signaling effects through paracrine and autocrine

mechanisms. Interestingly, their corresponding receptors are

frequently overexpressed by melanoma cells (Peters et al.,

2020). Many studies showed that inhibiting pro-angiogenic

growth factors and cytokines could attenuate the formation of

new blood vessels and inhibit angiogenesis (Muppala et al., 2017;

Horvathova et al., 2019; Palanisamy et al., 2019). In this review,

we summarized these clinical anti-angiogenic drugs and

Traditional Chinese herbal medicine in melanoma (Table 1,

Table 2, and Table 3), hoping to improve the clinical

effectiveness of anti-angiogenic drugs in treating melanoma.

3 Anti-angiogenic agents in
melanoma

3.1 Monoclonal antibody

3.1.1 Bevacizumab
Bevacizumab, a humanized VEGF monoclonal antibody, is

the leading anti-angiogenic agent for clinical use in advanced

melanoma (Corrie et al., 2018). It shows anti-tumor effects by

preventing the binding of VEGF with its receptors and inhibiting

the growth of endothelial cells and vessel formation (Presta et al.,

1997). To evaluate the effects of Bevacizumab on patients with

melanoma, 1344 patients (median age 56 years) who had resected
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FIGURE 1
Angiogenesis, angiogenesis signaling pathways and anti-angiogenesis targets in melanoma cells. Pro-angiogenic factors are released by
melanoma cells, and can bind receptors expressed on endothelial cells, which leads to initiation of the downstream signaling effects to stimulate
melanoma proliferation, metastasis and differentiation. Combining this process with anti-angiogenesis compounds (monoclonal antibodies and
TKIs) can effectively inhibit tumor angiogenesis. In addition, the anti-angiogenic factor Endostatin can interact with pro-angiogenic factors to
influence angiogenesis in the tumor microenvironment. TKIs: tyrosine kinase inhibitors; TGF: transforming growth factor; TGFR: transforming
growth factor receptor; VEGF: Vascular endothelial growth factor; VEGFR: Vascular endothelial growth factor receptor; PDGF: Platelet-derived
growth factor; PDGFR: Platelet-derived growth factor receptor; FGF: Fibroblast growth factor; FGFR: Fibroblast growth factor receptor; PI3K:
Phosphoinositide 3-kinases; STAT: Signal transducer and activator of transcription protein; JAK: Janus protein tyrosine kinase; MEK: Mitogen-
activated protein kinase; mTOR: Mammalian target of rapamycin.

TABLE 1 Summary of clinical stage and ongoing evaluation of anti-angiogenic agents in melanoma.

Class Agent Company Mechanism of action

Monoclonal antibody Bevacizumab Roche VEGF

Ramucirumab (Cyramza) Eli Lilly VEGFR2

Aflibercept Bayer AG Binds to circulating VEGF-A

Ontuxizumab (MORAB-004) Morphotek Inc interferes with Endosialin function

TKIs Sorafenib Bayer AG Receptor tyrosine kinase inhibitor

Sunitinib Pfizer —

Imatinib Novartis BCR/ABL, v-Abl, PDGFR, c-kit

Lenvatinib Eisai Co., Ltd. VEGFR 1–3, FGFR 1–4, PDGFRα, c-KIT, RET

Pazopanib Novartis VEGFR, PDGFRβ, c-Kit, FGFR1, c-Fms

Axitinib Pfizer VEGFR、Kit、PDGFR

Endostatin — Simcere VEGFR
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TABLE 2 Overview of clinical studies in melanoma cancer of anti-angiogenic therapy.

Drug Indication Phase Pivotal
study

End points Status Main conclusion

Bevacizumab melanoma AVAST-
M

ISRCTN
81261306

OS: 64%, no significant difference;
DFI: 51% vs. 45%

Recruiting Adjuvant Bevacizumab can improve
DFI, but not OS.

BRAF mutation
melanoma

OS: 63% vs. 55%; DFI: 48%
vs. 40%

BRAF mutation status may benefit
from Bevacizumab

Bevacizumab +
paclitaxel +
carboplatin

advanced
melanoma

II NCT02023710 median PFS: 4.8 months vs.
3.0 months; median OS:
13.6 months vs. 9.0 months; ORR:
19.7% vs. 13.2%

Unknown PFS and OS of Bevacizumab group
are better than CPB group alone

Ramucirumab metastatic
melanoma

II NCT00533702 median PFS: 2.6 months vs.
1.7 months; median OS:
8.7 months vs. 11.1 months; PR: 9
(17.3%) vs. 2 (4.0%); SD: 19
(36.5%) vs. 21 (42.0%)

Completed Ramucirumab with dacarbazine was
associated with an acceptable safety
profile in MM patients. PFS appeared
greater in combination therapy

Ziv-Aflibercept +
Pembrolizumab

naïve melanoma IB NCT02298959 ORR: 16.7% Active, not
recruiting

The combination demonstrates an
acceptable safety profile and is being
studied in sarcoma and anti-PD-1-
resistant melanoma

Ziv-Aflibercept + IL-2 inoperable Stage
III/IV melanoma

II NCT00450255 PFS: 6.9 months vs. 2.3 months;
OS: no significant difference;
ORR: 22% vs. 17%; SD: 65%
vs. 48%

Completed The combination therapy was found
to significantly improve PFS.

Ontuxizumab metastatic
melanoma

II NCT01335009 median PFS: 8.3 weeks; 24-week
PFS: 11.4%; median OS:
31.0 weeks; SD: 40.9%

Completed Ontuxizumab at both doses was well
tolerated. Effectiveness of single-
agent Ontuxizumab at these doses in
melanoma was low

Sorafenib metastatic uveal
melanoma

II NCT02517736 PFS: 31.2%; OS: 62.5% Completed 41.4% of patients required dose
modifications, and demonstrated no
improvement in HRQoL

Sorafenib +
chemotherapy
(gemcitabine or
cisplatin)

metastatic
collecting duct
carcinoma

II NCT01762150 OS: 12.5 months; ORR: 30.8%;
DCR: 84.6%

Completed This combination may be a suitable
option for patients who have low
Eastern Cooperative Oncology
Group performance status or less
metastatic sites

Lenvatinib melanoma I NCT00121680 PR: 15.6%; SD: 24.7% Completed The toxicity, pharmacokinetics, and
anti-tumor activity of Lenvatinib are
encouraging. Low angiopoietin-1
ratio was correlated with longer PFS.

Lenvatinib +
pembrolizumab

unresectable stage
III/IV melanoma

II NCT03776136 ORR: 21.4%; median PFS:
4.2 months; OS: 14.0 months

Active, not
recruiting

Lenvatinib plus pembrolizumab as a
potential regimen for this population
of high unmet need

Imatinib c-Kit mutations
melanoma

II NCT00881049 median PFS: 4.5 months
(mucosal), 2.7 (acral), and 5.0
(unknown-primary); Median OS:
18.0 months (mucosal), 21.8
(acral), 11.5 (unknown-primary)

Completed KIT-alterations tend to be sensitive
to Imatinib

Sunitinib acral and mucosal
melanomas

II NCT00577382 2-month PF: 52%; DCR: 44% Completed The activity of Sunitinib was not
dependent on the presence of a KIT
mutation. However, the medication
was poorly tolerated, and there were
no prolonged responses

Pazopanib +
paclitaxel

metastatic
melanoma

II NCT01107665 6-month PFS: 8 months; median
OS: 12.7 months

Completed This combination was well-tolerated
and demonstrated significant activity

Axitinib II NCT03383237 median PFS: 4.0 months; median
OS: 12.0 months; DCR: 86.7%

Unknown

(Continued on following page)
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cutaneous melanoma were recruited (Corrie et al., 2018). They

were randomized into the adjuvant Bevacizumab (7.5 mg/kg

intravenous every 3 weeks for 1 year) group and the standard

observation group. Results showed that the overall survival (OS)

at 5 years of the two groups was 64%. However, compared with

the observation group, the disease-free interval (DFI) of the

Bevacizumab group was 51%, implying that the DFI was

improved in the Bevacizumab group. This clinical research

also showed that patients with BRAF mutations tended to

have poorer OS without Bevacizumab treatment (Corrie et al.,

2018). Moreover, a phase II study assessed the activity of

Bevacizumab in combination with paclitaxel and carboplatin

in patients with advanced melanoma (Yan et al., 2021).

114 patients were enrolled in this research, and patients were

randomly assigned to a CPB (carboplatin + paclitaxel +

Bevacizumab) group and a CP (carboplatin + paclitaxel)

group. The median progression-free survival (PFS) in the CPB

group was 4.8 months, which was longer than that in the CP

group (3.0 months). The overall response rate (ORR) of the two

groups was 19.7% (CPB) and 13.2% (CP), respectively.

Meanwhile, the median OS in the CPB group (13.6 months)

was also significantly longer than in the CP group (9.0 months).

A phase III trial was undertaken to evaluate the serum vitamin D

in patients with resected stage IIB–IIIB melanoma after

Bevacizumab treatment (Lipplaa et al., 2018). Patients with

resected stage IIB-C and IIIA-C melanoma randomly

receiving Bevacizumab (7.5 mg/kg every 3 weeks) or

observation. One year later, vitamin D levels of patients did

not predict prognostic markers DFI (HR = 0.98 per 10 nmol/L

increase) or OS (HR = 0.96 per 10 nmol/L increase).

Interestingly, longer DFI was observed in stage II melanoma

patients after Bevacizumab treatment with higher vitamin D

levels. Further exploration is warranted in the future.

3.1.2 Ramucirumab
Ramucirumab is a fully humanized anti-VEGF-2monoclonal

antibody that inhibits tumor growth and angiogenesis (Goode

and Smyth, 2016; Jagiela et al., 2021). The safety, tolerability, and

effectiveness of Ramucirumab when used alone or in

combination with dacarbazine in patients with metastatic

TABLE 2 (Continued) Overview of clinical studies in melanoma cancer of anti-angiogenic therapy.

Drug Indication Phase Pivotal
study

End points Status Main conclusion

recurrent
advanced
melanoma

As a second or above-line therapy in
patients with malignant melanoma.
The toxicity was manageable

Axitinib +
toripalimab

advanced
melanoma

IB NCT04640545 ORR: 48.3%; median PFS:
7.5 months; TRAEs: 97%

Recruiting The combination was tolerable and
showed promising anti-melanoma
activity

Endostatin +
chemotherapy

advanced or
recurrent mucosal
melanomas

II NCT04699214 PFS: 4.9 months; OS: 15.3 months Recruiting This combination was efective and
safe. High LMR was correlated with
favorable PFS and OS in this patient
population

TABLE 3 Summary of evaluation of Traditional Chinese herbal medicine in melanoma.

Compound Source Mechanism of action

Betulinic Acid Plane and birch trees Autophagy, HIF-1/VEGF-FAK signaling pathway

Genistein Soybean blocks PGE2

apigenin Vegetables, fruits, celery and parsley TNF-α, PI3K/Akt/mTOR signaling pathway

Jatrorrhizine Coptis Chinensis Interferes the expression of VE-cadherin

Berberine Coptis Chinensis Suppresses pro-angiogenic factors

Capsaicin Chili Autophagy, the tNOX-SIRT1 axis

Silymarin Silybum marianum Angiogenic biomarkers

Honokiol Magnolia tree Hypoxia-inducible-factor, pro-angiogenic genes

Parthenolide Michelia champaca L NF-lB/AP-1/VEGF signaling pathway

Cryptotanshinone Salvia miltiorrhiza PI3K/Akt/mTOR signaling pathway, MMP/TIMP system and HIF-1α
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melanoma were assessed (Carvajal et al., 2014). In a phase II

study, 106 patients with metastatic melanoma were enrolled from

14 centers in America. Patients received Ramucirumab at a dose

of 10 mg/kg every 3 weeks (q3w) or Ramucirumab 10 mg/kg plus

dacarbazine 1000 mg/m2 intravenously q3w. The Median PFS in

the Ramucirumab group was 2.6 months compared with

1.7 months in the combination group. The Median OS of the

Ramucirumab group was 8.7 months, and 11.1 months of

combination therapy, respectively. (Carvajal et al., 2014). The

combination group (Ramucirumab plus dacarbazine) showed

safety at grade 3/4 toxicities. In conclusion, the preliminary

effectiveness of Ramucirumab plus dacarbazine demonstrated

the importance of VEGFR-2 inhibition in treating metastatic

melanoma. A phase Ia/Ib study of LY3300054 (a new

programmed cell death ligand 1 (PD-L1) inhibitor) as

monotherapy or in combination with Ramucirumab, neratinib

(a type II MET kinase inhibitor) or abemaciclib in patients with

solid tumors was conducted. As a result, LY3300054 was well

tolerated when administered alone or concurrently with

Ramucirumab. No adverse events associated with the

combination were observed. Durable clinical effects were

observed in LY3300054 dose (phase Ia) as monotherapy or

combined with Ramucirumab (Patnaik et al., 2021).

3.1.3 Aflibercept
Aflibercept (VEGF Trap) is a selective humanized

IgG1 monoclonal antibody, which can block the interaction of

VEGF and its receptors (VEGFR1 and VEGFR2). Angiogenesis

could cause immune suppressions in multiple solid tumors (Li

et al., 2021). To investigate the effects of the therapy (Ziv-

Aflibercept + pembrolizumab) on melanoma, a phase IB trial

was conducted (Rahma et al., 2022). Ziv-Aflibercept (2–4 mg/kg)

or pembrolizumab (2 mg/kg) was administered intravenously

every 2 weeks. No dose-limiting toxicities were observed at the

initial dose level, and 2 of 33 patients had a complete response,

and 1 had a partial response. The combination group showed an

acceptable safety profile with anti-tumor activity in melanoma.

The study is currently being carried out in patients with anti-PD-

1-resistant melanoma (NCT02298959) (Rahma et al., 2022). The

VEGF family takes a pivotal part in mediating tumor and lymph

angiogenesis as well as the innate and adaptive immunities of the

host (Fagiani et al., 2016; Boudria et al., 2019; Gloger et al., 2020;

Menzel et al., 2020). As reported, Interleukin-2 (IL-2), a growth

factor for T and NK cells, plays a significant role in melanoma

(Pretto et al., 2014; Lee et al., 2016). To investigate the effect of

Aflibercept with IL-2 on metastatic melanoma, a phase II study

was implemented (Tarhini et al., 2018). 89 patients were enrolled

and randomly divided into the combination group (Aflibercept +

IL-2) or the IL-2 isolated group. Results showed that the PFS of

the combination group was 6.9 months, and that of the IL-2 alone

group was 2.3 months. Although there were no significant

differences in OS between the two groups, the PFS of IL-2 and

Ziv-Aflibercept group significantly improved compared with IL-2

alone group, suggesting that anti-VEGF combined with

immunosuppressive agents might be an excellent therapeutic

option for patients with melanoma.

3.1.4 Ontuxizumab
Ontuxizumab (MORAB-004), the first monoclonal antibody

that interferes with the function of Endosialin, plays an essential

role in tumor growth and angiogenesis. The clinical activity and

tolerability of Ontuxizumab were evaluated in a phase II study

(D’Angelo et al., 2018). In this trial, patients with metastatic

melanoma who had received at least one prior systemic treatment

received Ontuxizumab weekly at 2 or 4 mg/kg. The median PFS

was 8.3 weeks in the Ontuxizumab group. Moreover, the overall

grade 1 or 2 adverse events were nausea (36.8%), headache

(55.3%), chills (42.1%), and fatigue (48.7%). In summary, the

effectiveness of Ontuxizumab (2 or 4 mg/kg) in melanoma was

poor. Clinical trials aimed at evaluating the effectiveness of

Ontuxizumab alone, and in combination with other active

drug may yield better results.

3.2 Tyrosine kinase inhibitors

Tyrosine kinase inhibitors (TKIs) are involved in

tumorigenesis and progression, which aims to inhibits the

catalytic function of kinases and then blocks the activation of

downstream signaling cascade (Bellantoni and Wagner, 2021;

Salmaso et al., 2021). In recent years, TKIs have identified as

critical targets for drug discovery (Choi et al., 2021; Mohammadi

and Gelderblom, 2021; Yang et al., 2022). Summary of clinical

stage and ongoing evaluation of TKIs might contribute to a

comprehensive understanding of TKIs therapies in cancer.

3.2.1 Sorafenib
Sorafenib is a raf kinase inhibitor, which can also inhibit the

tyrosine kinase activity of various receptors, including VGFR-2,

VEGF-3, PDGF-β, KIT, FLT-3, and other receptors. Sorafenib

has dual anti-tumor effects (Ortega-Muelas et al., 2021), which

can not only directly inhibit the proliferation of tumor cells by

mediating RAF/MEK/ERK pathway but also cut off the nutrition

of tumor cells through inhibiting the formation of new blood

vessels (Spirli et al., 2012). To evaluate the safety, effectiveness,

health-related quality of life (HRQoL), and the non-progression

rate of Sorafenib (800 mg per day), a multicenter, single-arm

phase II trial was conducted in patients with metastatic uveal

melanoma. (Mouriaux et al., 2016). After 24 weeks of oral

administration, the PFS and OS in the Sorafenib group were

31.2% and 62.5%, respectively. However, 41.4% of patients

required dose adjustment due to toxicity and without

improvement of HRQoL. Simultaneously, to evaluate the

safety and effectiveness of Sorafenib plus chemotherapy

(gemcitabine or cisplatin) in metastatic melanoma patients

with collecting duct carcinoma, a randomized, single-arm, and
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multicenter study was carried out (Sheng et al., 2018). The data

showed the median OS in the combination group (Sorafenib plus

chemotherapy) was about 12.5 months, and the ORR was 30.8%.

Delightfully, the PFS for Sorafenib plus chemotherapy was

improved in metastatic melanoma patients with CDC.

3.2.2 Lenvatinib
Lenvatinib (E7080) is an oral multiple tyrosine kinase

inhibitor (TKI) that shows effects on VEGFR1-3, FGFR1-4,

PDGFR, and KIT to inhibit tumor angiogenesis (Okamoto

et al., 2013). Moreover, Lenvatinib inhibits human umbilical

vein endothelial cell proliferation and tube formations to

reduce tumor growth (Capozzi et al., 2019; Iwasa et al., 2020).

In a phase I trial, the safety and clinical effectiveness of

Lenvatinib were assessed in patients (n = 77) with

melanoma (Hong et al., 2015). 18 patients received

Lenvatinib at a dose of .1–3.2 mg twice a day (BID) (7 days

on, 7 days off), while 33 patients received it at an amount of

3.2–12 mg BID and the dose of 10 mg BID in 26 patients,

respectively. Preliminary results from this phase I trial shows

that Lenvatinib had partial clinical response of 15.6% with a

stable disease (SD) ≥23 weeks. The authors also found the

dose-limiting toxicities of Lenvatinib included fatigue,

hypertension, and proteinuria (Hong et al., 2015). Besides,

a decrease in the angiopoietin-1 ratio was considered a

significant factor associated with prolonged PFS in

melanoma patients. At the same time, angiogenesis and

apoptosis-related biomarkers were related to PFS in

melanoma patients treated with Lenvatinib. Subsequently,

a multicenter, open-label phase Ib/II study (Arance et al.,

2022) was taken in melanoma (ClinicalTrials.gov identifier:

NCT03776136). Briefly, 103 patients with melanoma were

enrolled. Preliminary results showed that the median study

follow-up was 15.3 months, and ORR in the total population

was 21.4%. The adverse events occurred in 47 (45.6%)

patients in Grades 3–5 (Arance et al., 2022). Accordingly,

the anti-angiogenic therapy combined with immunotherapy

displays promising anti-tumor activities and expected safety

profiles in patients with melanoma.

3.2.3 Imatinib
A successful TKI, Imatinib, demonstrates its anti-angiogenic

activity against multiple targets, including v-Abl, c-Kit, and

PDGFR (Knol et al., 2015). Recent reports showed that c-Kit

mutations were more common in acral and mucosal melanomas

(Knol et al., 2015; Sabbah et al., 2021). In a study, 130 KIT-altered

melanoma patients were pooled from five medical centers (Jung

et al., 2022). Mucosal melanoma was associated with high PFS,

whereas exon 17 mutations were associated with low PFS.

Imatinib has shown significant activity as a therapeutic agent

in metastatic melanoma patients harboring aberrations in c-Kit.

Thereby, promising prospects of Imatinib in melanoma

applications could occur in the future.

3.2.4 Sunitinib
Sunitinib, an oral multi-kinase inhibitor, has been used in

melanoma and targets VEGF receptor, KIT receptor, and other

receptors (Yeramian et al., 2012). It is well known that the VEGF

and KIT are potential targets for alternative therapeutics in

malignant melanoma, and they are recognized to play a

pivotal role in the pathogenesis and metastasis of melanoma

(Graells et al., 2004; Curtin et al., 2006). Based on the part of

VEGF and KIT in melanoma, they conducted a phase II trial of

Sunitinib for patients with acral and mucosal melanomas

(Buchbinder et al., 2015). Patients received 37.5 mg and

50 mg Sunitinib daily. The results showed that the toxicity

was acceptable, and the disease control rate was 44%.

Fortunately, 20% or more of the patients were alive, and

progression-free at 2 months, encouraging the activity of

Sunitinib in acral and mucosal melanomas. The results

indicated Sunitinib had greater effectiveness in patients with

primary KIT exon 9 mutations or wild-type status than in those

with direct KIT exon 11 mutations. However, the responses of

Sunitinib in patients with non-KIT-mutated indicated Sunitinib

might have other targets associated with melanoma growth. The

tolerance of Sunitinib was poor, and no lengthy response was

observed in patients. With the multi-target features, a

combination of Sunitinib and other inhibitors might provide a

considerable promise in the future.

3.2.5 Pazopanib
Pazopanib is an oral TKI that binds to VEGFR1-3, c-KIT,

PDGFR-α, and PDGFR-β, which are often abnormally activated

during tumorigenesis (Goh et al., 2010). A clinical trial using

Pazopanib combined with various cytotoxic chemotherapies was

investigated in BRAF wild-type metastatic melanoma patients

(Fruehauf et al., 2018). 60 patients were included in this study

and received Pazopanib and paclitaxel. The final dates displayed

that the combination of the Pazopanib plus paclitaxel was well-

tolerated, and the significant activity was close to the current

first-line therapy for metastatic melanoma. Moreover, the

immunological events and metabolic responses induced by

Pazopanib plus paclitaxel was evaluated in a study. 90 patients

received Pazopanib/paclitaxel, Pazopanib was given 400 mg,

BID. Paclitaxel was given 150 mg/m2 body surface.

Interestingly, they observed that melanoma cells could be

rescued by M2 macrophages after Pazopanib treatment

(Thurneysen et al., 2016). Thus, therapies that inhibit tumor-

associated macrophages might be feasible and have potential for

melanoma patients.

3.2.6 Axitinib
Axitinib is a TKI that targets VEGFR-1, VEGFR-2, c-SRC,

Kit, and RET (Roviello et al., 2016). Preclinical studies had

demonstrated the vital role of the VEGF signaling pathway in

melanoma (Peng et al., 2016). Importantly, Yuan et al. (2022)

conducted a single-center, single-arm phase II trial in patients
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with advanced recurrent melanoma. Patients orally received

Axitinib daily. Regarding the toxicity, results elaborated that

Axitinib was well tolerated, and the observed toxicity levels were

mild and manageable. In summary, Axitinib might play a vital

role in metastatic melanoma, and further investigations of

Axitinib alone or in combination with chemotherapy should

be taken.

Mucosal Melanoma is a severe natural disease (Lian et al.,

2017). Unfortunately, due to the rarity, there are no well-

established therapeutic guidelines for treating mucosal

melanoma (Yi et al., 2011; Lian et al., 2017). In the past

decade, the application of targeted therapies and

immunotherapies has brought light in metastatic cutaneous

melanoma treatment (Kaufman et al., 2018). Xinan Sheng

et al. (2019) had reported the safety and effectiveness of

toripalimab and Axitinib in patients with advanced

melanoma. They found high response rates (48.3% ORR) and

prolonged median PFS for toripalimab and Axitinib. Moreover,

tumor mutational burden (TMB) and PD-L1 expression were

related to higher ORR, consistent with previous reports

(Hellmann et al., 2018). Interestingly, three published

signatures (angiogenesis signatures, inflammation signatures,

and interferon-gamma signatures) for clinical outcomes were

also discussed in their study (Hellmann et al., 2018), which might

be relevant biomarkers for immuno-oncology plus VEGF

therapy. In summary, Axitinib combined with toripalimab

could be a promising option for mucosal melanoma

treatment. Subsequently, a phase III study should be validated

among non-Asian patients in the future.

3.3 Endostatin

Endostatin (20-kDa), a potent endogenous angiogenesis

inhibitor, is the C-terminal fragment of type XVIII collagen

(O’Reilly et al., 1997). Since 1997, Endostatin has shown anti-

angiogenic effects on endothelial cells (Alahuhta et al., 2015; Jia

et al., 2017; Lamattina et al., 2019; Wang et al., 2021a; Shin et al.,

2021; Zhu et al., 2022). In 2005, Endostatin was approved by the

Food and Drug Administration of China to treat non-small-cell

lung cancer (NSCLC) (Wang et al., 2005; Han et al., 2011).

However, the clinical effectiveness of Endostatin is controversial,

which needs further investigation in the treatment of patients

with metastatic melanoma. A real-world study was designed to

evidence the effectiveness and safety of Endostatin plus

chemotherapy for treating patients with metastatic melanoma

(Zhang et al., 2022). In this trial, 43 patients with advanced or

recurrent mucosal melanoma were recruited from Fudan

University Shanghai Cancer Center (April 2017 and August

2020). They were randomly assigned to the two arms

(dacarbazine plus cisplatin arm, temozolomide plus cisplatin).

Simultaneously, patients in the two arms received a placebo or

Endostatin (105 mg/m) intravenously for 168 h. At the end of

this trial, the PFS and OS were 4.9 and 15.3 months, respectively.

Endostatin plus chemotherapy represented well tolerability and a

manageable toxicity profile (Zhang et al., 2022). Overall,

Endostatin provided a novel option for anti-angiogenic

treatment.

Endostatin has been recently identified as a prognostic

biomarker for patients with metastatic melanoma (Nyakas

et al., 2019). Many studies showed Endostatin levels were

closely associated with aggressive phenotypes or poor

outcomes in various malignancies (Alahuhta et al., 2015; Chen

et al., 2018; Zamaratskaia et al., 2020; Zhang et al., 2021a; Zhu

et al., 2022), such as metastatic melanoma (Fukuda et al., 2011;

Liang et al., 2018; Zhang et al., 2022). A phase IV study

demonstrated Endostatin could influence melanoma invasion

by regulating T Cell activation (Nyakas et al., 2019). As a

prognostic biomarker for metastatic melanoma patients,

Endostatin might be helpful in selecting patients for anti-

angiogenic therapy.

3.4 Traditional Chinese herbal medicine

In recent years, anti-cancer compounds extracted from

Traditional Chinese Medicine (TCM) have become a research

hotspot. Several studies have reported significant anti-angiogenic

activities of these compounds in melanoma, the underlying

mechanisms of which are still being studied. Firstly, Betulinic

Acid (BA), an extract from the plane and birch trees, has shown

anti-angiogenic effects in melanoma. An in vitro study indicates

that BA significantly inhibits the proliferation of melanoma cell

lines (Wroblewska-Luczka et al., 2022). Interestingly, the

combination of BA with paclitaxel or docetaxel indicates ideal

drug-drug synergy interactions (Wroblewska-Luczka et al.,

2022). Another study reports that BA demonstrated inhibitory

effects on A375 melanoma cells viamitochondrial apoptosis and

glycolysis pathway (Coricovac et al., 2021). Next, genistein (GS),

derived from the soybean, is a powerful anti-angiogenic agent in

melanoma. It is reported that GS shows an effect on the

Prostaglandin E2 (PGE2) pathway, which has been proven as

essential for its anti-melanoma activity. Furthermore, the

overexpression of IL-8 could be induced by GS through one

of the PGE2 receptors (EP3) in melanoma cells (Venza et al.,

2018). Simultaneously, apigenin, which is a naturally occurring

flavonoid in vegetables, fruits, celery, and parsley, could inhibit

the proliferation and angiogenesis of melanoma cells by

suppressing the secretion of TNF-α and influencing PI3K/Akt/

mTOR signaling pathway (Li et al., 2019b; Ghitu et al., 2019;

Ghitu et al., 2021). Furthermore, jatrorrhizine hydrochloride

(JH), a component of Coptis Chinensis, shows anti-metastatic

and anti-proliferation effects on C8161 human melanoma cells.

Mechanistic studies showed that JH induced G0/G1 cell cycle

arrest in C8161 tumor cells. Moreover, JH reduced the

neovascularization of C8161 cells and disturbed the expression
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of VE-cadherin, suggesting that JH is a new potential anti-

melanoma drug candidate (Liu et al., 2013). To explore other

effective strategies for treating melanoma, Vaid M et al. assessed

the effects of Silymarin (an extract of Silybum marianum) on

melanoma cells. The data showed the therapeutic effect of

Silymarin was associated with angiogenic biomarkers (Vaid

et al., 2015). Besides, honokiol, a compound isolated from the

Magnolia tree, has a therapeutic impact on skin cancer (Leeman-

Neill et al., 2010). More interestingly, the anti-angiogenic

functions of some of these TMCs are strongly associated with

hypoxia-inducible-factor (HIF) and other pro-angiogenic genes

(Vavilala et al., 2012). For instance, Parthenolide (PT), an active

component of the medicinal herb Feverfew, exhibits an anti-

angiogenic effect by regulating the NF-lB/AP-1/VEGF signaling

pathway, encouraging a promising agent for melanoma

treatments (Talib and Al Kury, 2018; Tian et al., 2020).

Particularly, Cryptotanshinone (CPT), isolates from Salvia

miltiorrhiza, takes a crucial role in angiogenesis-related

diseases. Zhang et al. (2018b) reported that CPT prevented

the growth and metastasis of colon cancer cells via

modulating PI3K/Akt/mTOR signaling, MMP/TIMP system,

and HIF-1α nuclear translocation (Zhu et al., 2016). However,

the clinical use of TCM still has severe limitations, which often

reduce their therapeutic effectiveness. Consequently, it is urgent

to improve their anti-tumor activities in patients.

4 Mechanisms of resistance

Angiogenesis plays a crucial role in regulating vital functions

of tumor cells, including tumor growth, proliferation, and

metastasis (Papaevangelou et al., 2018; Zhang et al., 2021b;

Rampino et al., 2021). In recent years, multiple anti-

angiogenic agents have been developed to treat melanoma

(Huang et al., 2021a; Micheli et al., 2021). However, due to

acquired resistance (Jimenez-Valerio and Casanovas, 2017; Pozas

et al., 2019; Kuczynski and Reynolds, 2020; Watanabe, 2021),

anti-angiogenic agents are limited, including vascular mimicry

(VM), vascular co-option, metabolic symbiosis, upregulation of

alternative pathways, and recruitment of tumor stromal cells.

Moreover, autophagy, a highly mediated adaptive process of

cancers, has been implicated in perturbing resistance to anti-

angiogenic therapy. Firstly, a recent study determined the

inhibitory effect of the BRAFV600E inhibitor vemurafenib on

VM in invasive melanoma cells. As a result, vemurafenib failed to

inhibit the VM ability of A375 melanoma cells in vitro

(Andreucci et al., 2022). Another critical factor, vessel co-

option, seems to play an essential role in mediating resistance

to anti-angiogenic drugs (Kuczynski and Reynolds, 2020). For

instance, several studies have shown vessel co-option is

associated with primary melanoma and organ (brain, lung,

and liver) metastases of melanoma (Lugassy et al., 2014; Szabo

et al., 2015; Bentolila et al., 2016; Barnhill et al., 2018; Rodewald

et al., 2019), which may be an essential factor for poor clinical

effectiveness of anti-angiogenic drugs. Secondly, in terms of the

resistance mechanism to anti-angiogenic therapy, metabolic

symbiosis is also reported in both experimental and clinical

studies (Jimenez-Valerio et al., 2016; Sebestyen et al., 2021).

Both OXPHOS and glycolysis (metabolic symbiosis) have

been identified to be critical for metabolic plasticity in

melanoma, driving acquired resistance to anti-angiogenic

chemotherapy (Kumar et al., 2021). Furthermore, the

abnormal upregulation of both OXPHOS and glycolysis is

significant for melanoma progression (Feichtinger et al., 2018;

Ruocco et al., 2019). Thus, inhibition of glycolysis may be a

promising strategy to overcome Bevacizumab resistance

(Eriksson et al., 2018). Although anti-VEGF therapy is

available, drug resistance often occurs, and malignant tumor

patients are not always responsive. This acquired resistance to

anti-VEGF treatment is involved in other angiogenic pathways,

compensating for the inhibiting effects on cancer cells (Li et al.,

2014; Choi et al., 2015; Mahdi et al., 2019; Yin et al., 2019).

Consequently, combined with multitargeted inhibitors can

refrain angiogenesis more efficiently than monotherapy therapy.

Drug resistance and tumor angiogenesis are affected by the

tumor microenvironment (TME) (Maacha et al., 2019), which is

composed of stromal cells, immune cells, cancer stem cells

(CSCs), blood vessels, tumor cells, lymphatic vessels, and

extracellular matrix (ECM) (Liu et al., 2022b). TME is a

complex network of tumor cells and surrounding components,

where various associated cells and components communicate to

regulate tumor growth (De Palma et al., 2017; Wang et al.,

2021b). Tumor cells generally prefer a hypoxic environment

(Huang et al., 2021b). Unfortunately, long-term use of anti-

angiogenic drugs often aggravates hypoxia. Hypoxia-induced

upregulation of hypoxia-inducible factor (HIF)-1a can induce

the differentiation of tumor cells into CSCs, which is also the

main contribution to drug-resistance of anti-angiogenic therapy

(Zheng et al., 2018; Jiang et al., 2020). As the host immune system

is often disrupted in cancer patients, the increased number of

immunosuppressive cells, such as tumor-mass associated

macrophages (TAMs), T-regs, and myeloid-derived suppressor

cells (MDSCs), will be is responsible for an unfavorable prognosis

of cancer treatment (Hosseini et al., 2019; Qi et al., 2020). For this

reason, stromal cells, a critical surrounding components of tumor

cells, might act as potential therapeutic targets for tumor cells

(Licarete et al., 2020). As discussed above, resistance mechanisms

of anti-angiogenic therapy have been elucidated in cancer, most

of which occurred at the later stage of tumor progression.

Different from those, autophagy seems to be the first defense

process that appears at the cellular level without extracellular

matrix (ECM) or tissue remodeling and needs to understand

better (Chandra et al., 2020; Jena et al., 2021; Wen et al., 2022).

Additional studies have revealed autophagy as a resistance

mechanism and could enhance anti-angiogenic therapeutic

effects (Huang et al., 2018; Zhao et al., 2018; Malhotra et al.,
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2019). However, whether early or late autophagy inhibitors will

overcome the resistance of anti-angiogenic therapy is imperative

to determine.

5 Summary and future directions

Anti-angiogenic therapy for tumors has achieved specific

clinical efficacies (Qin et al., 2019; Tong et al., 2019; Liu et al.,

2021a; Yetkin-Arik et al., 2021; Choi et al., 2022), and mainly

manifests the improvements of PFS, which is consistent with the

fact that angiogenesis is a marker of cancer. The in-depth studies

on tumor angiogenesis will become a hot topic in tumor research.

In this review, we discussed the critical roles of angiogenesis in

melanoma growth and progression. Angiogenesis is a highly

complex and dynamic process mediated by pro-angiogenic and

angiogenesis inhibitory factors, which is the basis of anti-

angiogenesis resistance (Tiwari et al., 2018; Cho et al., 2019).

We also discussed the limitations of anti-angiogenic therapies,

challenges, safety, predictive biomarkers, and future directions.

Simultaneously, we explained Traditional Chinese herbal

medicine as a vital anti-angiogenesis option in melanoma

therapy.

Angiogenesis provides an essential target for multiple

therapeutic agents, including Bevacizumab. VEGF is

overexpressed and associated with prognosis in melanoma

patients (Liu et al., 2021b). However, anti-angiogenic therapy

is not as effective as initially hoped, and drug resistance

always occurs in patients with melanoma, especially in

those treated with Bevacizumab monotherapy (Jour et al.,

2016; Zhang et al., 2020). Combinational therapies might be

advantageous as they have multi-mechanisms targeting

individual ligands and receptors to avoid resistance. For

instance, activating mutations at V600 of the BRAF gene is

common in several cancers (Halle and Johnson, 2021),

including approximately 50% of melanoma (Gutierrez-

Castaneda et al., 2020). Therefore, BRAF/MEK inhibitors

have been developed to treat patients with BRAF-mutant

melanoma. Moreover, due to the development of drug

resistance and tumor recurrence, patients with BRAF-

mutant melanoma have a short response time to BRAF/

MEK inhibitors (Kakadia et al., 2018). Fortunately,

angiogenesis inhibitors might be suitable for BRAF-mutant

melanoma patients with acquired resistance to BRAF/MEK

inhibitors (Amann et al., 2017; Martin et al., 2018; Atzori

et al., 2020). Besides, there is a rationale for anti-angiogenic

drugs combined with PARP inhibitors. Combining PARP

inhibitors with anti-angiogenic drugs could provide

synergetic benefits to patients with solid tumors (Tentori

et al., 2007; Ledermann, 2017; Russo and Giavazzi, 2018;

Sachdev et al., 2019; Smith and Pothuri, 2022).

Mechanistically, PARP1 is associated with the stabilizing

of HIF-1α (Hulse et al., 2018), which plays a vital role in

melanocyte transformation and represents an essential

feature in malignant tumor growth, including melanoma

(Malekan et al., 2021).

The therapy of malignant tumors has opened the era of

immunotherapy (Wang et al., 2021c; Zhang and Xiao, 2021;

Zimmermannova et al., 2021). Both immune checkpoint

inhibitors (CPIs) and anti-angiogenic agents have been

widely used in melanoma treatment. Numerous trials

assessing the effectiveness and safety of anti-angiogenic

agents plus CPIs have been taken. The combined strategy

is frequent in clinical trials for patients with unresectable

stage III or IV melanoma. Most importantly, the combined

approaches of Bevacizumab and ipilimumab might

synergistically increase the infiltration of CD163+

dendritic macrophages and CD8+ T Cells via tumor

vasculatures (Hodi et al., 2014; Ott et al., 2015). Another

combination study of Lenvatinib and pembrolizumab has

shown manageable safety and promising anti-tumor

activity in patients with melanoma (Taylor et al., 2020).

Overall, immunotherapy combined with anti-angiogenic

agents does bring survival benefits to patients.

Unfortunately, there are currently no drugs that can

successfully target both immune systems and blood vessels.

Hence few of these drugs could improve tumor progression

effectively without adverse reactions or drug resistance. We

hope to develop specific targeted inhibitors that affect both

immunity and blood vessels to achieve satisfactory anti-

tumor effects and prolong the survival of patients in the

future, such as evaluating the potential synergistic effects of

combined immunotherapy with VEGF inhibitors.

Although modulating angiogenesis appears to be a

potential strategy for melanoma treatment, vascular

disrupting agents have poor selectivity to distinguish tumor

blood vessels from normal blood vessels, thus limiting their

ability to suppress tumor growth (Mukherjee et al., 2020;

Smolarczyk et al., 2021). The development of drugs that

selectively target tumor blood vessels and angiogenesis

drivers may be a direction in the future. Furthermore,

vascular normalization could not only improve the delivery

ratios of drugs but also enhance the therapeutic effects of

combination therapies (Zhou and Gallo, 2009). Interestingly,

anti-angiogenic treatments could affect tumor vessel

normalization, which has synergistic effects when combined

with radiotherapy, chemotherapy, immunotherapy strategies,

and other therapeutic methods (Viallard and Larrivee, 2017;

Liu et al., 2021c; Wang et al., 2021d; Une et al., 2021).

However, the main problem of anti-angiogenic therapies is

how to confirm the optimized time point and suitable dose of

anti-angiogenic agents, which is particularly relevant to

expand the vascular normalization window and obtaining

the most extended survival time of cancer patients. In

addition, prognostic markers, including PFS and PSA

responses, did not display their suitability in determining
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the activity of angiogenesis inhibitors, calling for more energy

in this setting. We highlighted the understanding of the

molecular pathways that contributed to the development

and progression of melanoma, as well as the specific

molecular markers and predictors of each melanoma

subtype. However, it is debatable whether or not anti-

angiogenic therapy should be used as preoperative or

perioperative treatment, which needs to be further explored

in cancers. Although the efficacies of anti-angiogenic drugs

need to be further improved, anti-angiogenic therapies have

become an essential milestone in the history of human cancer

treatment. It is expected to enhance the effectiveness of anti-

angiogenic drugs by understanding the mechanisms of drug

resistance and identifying its reliable predictive markers. In

conclusion, the drug resistances, side effects, limited survival

advantage, and high cancer recurrence rates highlight the

critical need for new targets and strategies for anti-

angiogenic therapies.
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