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Vascular calcification (VC) is prevalent in hypertension, diabetes mellitus,

chronic kidney disease, and aging and has been identified as an important

predictor of adverse cardiovascular events. With the complicated mechanisms

involved in VC, there is no effective therapy. Thus, a strategy for attenuating the

development of VC is of clinical importance. Recent studies suggest that grape

exosome-like nanoparticles (GENs) are involved in cell–cell communication as

a means of regulating oxidative stress, inflammation, and apoptosis, which are

known to modulate VC development. In this review, we discuss the roles of

GENs and their potential mechanisms in the development of VC.

KEYWORDS

grape exosome-like nanoparticles, vascular calcification, vascular smooth muscle
cells, exosomes, osteogenic phenotype differentiation

Introduction

Vascular calcification (VC) is a pathological process characterized by abnormal

deposition of hydroxyapatite (HA) crystals in the arterial intima or media of vascular

walls, which can result in increased vascular stiffness and decreased vascular compliance

(Nicoll and Henein, 2014; Bryan and Simon, 2015; Lanzer et al., 2021). VC commonly

occurs in patients with chronic kidney disease (CKD), diabetes, and aging, and it is

significantly associated with an increased risk of cardiovascular morbidity and mortality
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in these populations. The formation of VC is a complex and

highly regulated pathological process, similar to bone

development and chondrogenesis (Nakahara et al., 2017).

Previous research has reported that VC is caused by

hyperphosphatemia (Lee et al., 2020) and other risk factors

including inflammation, oxidative stress, lipid deposition, and

apoptosis. Despite its global clinical burden, no effective

therapies are available to deal with VC due to its complicated

underlying mechanisms.

Compelling epidemiological evidence suggests that fruit and

vegetable consumption can improve lipid metabolism and

endothelial function (Luc et al., 2004), lower blood pressure

(John et al., 2002), and reduce oxidative stress (John et al., 2002;

Zino et al., 1997). Plant-derived exosome-like nanoparticles

(PDENs) were isolated and purified from plants that have

lipid bilayers and functional cytosolic components such as

mRNA, miRNA, proteins, and plant-homologous bioactive

small molecules that can protect against vascular disease and

cardiovascular-related mortality (Lichtenstein and Russell, 2005;

Zhang et al., 2016a). Therefore, PDENs have been widely used to

treat a variety of conditions (Mohadeseh et al., 2022) including

pneumonia (Yun et al., 2021), intestinal inflammatory disease

(Mu et al., 2016), cutaneous wounds (Yağız et al., 2021), and

tumors (Meng et al., 2019). The therapeutic utility of PDENs is

based on their anti-inflammatory, anti-oxidative, and anti-

apoptotic properties. Grape exosome-like nanoparticle (GEN)

is one of the most important PDENs. In this context, we consider

GENs and discuss their potential role in VC prevention and

treatment.

GENs

Molecular composition of GENs

GENs derived from grapes, including proteins, lipids, RNA

(mRNAs, miRNAs, and lncRNAs), and natural small molecular

compounds, can be transferred to recipient cells and exert

biological effects, acting as messengers in intercellular or

cross-species communication to treat disease by regulating

biological functions (Hadi et al., 2007; Baomei et al., 2014;

Doyle and Wang, 2019). Few studies have clarified the

compositions and mechanisms of proteins in GENs. A

previous study indicated that the proteins in GENs are similar

to those found in animal-derived exosomes, with a lower protein

content (Songwen et al., 2013). GENs were found to contain

proteins that regulate glucose and lipid metabolism (Songwen

et al., 2013). Many studies have indicated the presence of

phosphatidylethanolamine, phosphatidylcholine, phosphatidic

acid, digalactosyl diacylglycerol, monogalactosyl diacylglycerol,

phosphatidylinositol, and phosphatidylserine in GENs. However,

compared with exosomes in animal cells, GENs contain almost

no cholesterol (Songwen et al., 2013; Qilong et al., 2016).

MiRNAs in GENs are mostly from the miR169 family, which

shares two sequences with human miRNAs (hsa-miR-4480 and

hsa-miR-4662a-5p). Further research has revealed that some

miRNAs can directly target the expression of inflammatory

factor genes such as IL-6, IL-2, IL-5, and IL-1 (Songwen et al.,

2013). In vitro data have indicated that miRNAs from GENs can

specifically bind to mammalian miRNAs, affecting many

important biological processes (Juan et al., 2018). In addition,

natural small molecular compounds from grapes were found in

GENs, such as procyanidin, polyphenol, and ACH09 (Figure 1;

Table 1).

Biological characteristics of GENs

Small vesicles derived from plants were first observed with a

bilayer membrane structure by electron microscopy in 1968

(Marchant and Robards, 1968). PDENs have been identified

and isolated in numerous plants over decades of research and

purified and confirmed using characterization techniques such as

dynamic light scattering, zeta potential, and Western blotting

(Nader et al., 2021). The average diameter of the GEN population

was 37.47–380.5 nm. Zeta potential measurements indicated that

GENs have a negative zeta potential ranging from -69.6 mV to

+2.52 mV, with an average potential of -26.3–8.14 mV (Wenbo

et al., 2021). GENs can maintain particle size and surface charge

stability at physiological temperatures (37°C). In addition, GENs

can exhibit significant stability after being stored in deep-freeze

conditions (−80°C) for half a year. Biological molecules’ integrity

of GENs can withstand repeated freeze–thaw cycles in the

laboratory. GENs are smaller and more homogeneous in

simulated gastric fluid and simulated intestinal fluid, with a

lower zeta potential (Wenbo et al., 2021). GENs can be taken

up by multiple cells including endotheliaocytes, lymphocytes,

macrophagocytes, and others via the endocytic pathway, and the

findings indicated that GEN uptake by recipient cells is energy-

dependent. F4/80 macrophages and stem cells in the intestine

consume GENs (Songwen et al., 2013). The cytochalasin D and

the macrolide antibiotics, bafilomycin A1 and concanamycin A,

which are highly specific V-ATPase inhibitors, significantly

inhibit GEN uptake (Songwen et al., 2013). PDEN distribution

in vivo varies depending on the route of administration. For

example, GENs were found primarily in the distal small intestine,

cecum, and colon after passing through the stomach and

proximal small intestine after oral administration (Songwen

et al., 2013). 1,1-Dioctadecyl-3,3,3,3-

tetramethylindotricarbocyaine iodide (DiR) fluorescent signals

are predominantly detected in the liver, lungs, kidneys, and

splenic tissues 72 h after a tail vein or intraperitoneal

injection, whereas intramuscular injections of DiR-labeled

grapefruit-derived nanovectors (GNVs) are predominantly

localized in the muscle. The majority of DiR-labeled GNVs

were found in the lungs and brain after intranasal
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administration. No signal was found in lung tissue 72 h after

intranasal administration (Qilong et al., 2016) (Figure 1).

Applications of GENs as natural carriers

Similar to artificial liposomes, GENs are capable of delivering

drugs, siRNA, DNA, and proteins to various types of cells, and

the specificity of GEN is able to be increased by introducing

targeting ligands for increasing curative effect (Zhang et al.,

2016). Compared with artificial carriers, GENs possess high

biocompatibility, low immunogenicity, and easy modifiability,

which could cross the blood–brain barrier but could not pass

through the placental barrier. Thus, GENs have better security

and bright clinical applied prospect as drug carriers.

At present, the common methods of loading nucleic acid

therapeutic agents in animal-derived exosomes adopt cell

transfection and then collect agent-loaded exosomes (El-

Andaloussi et al., 2012). By contrast, there are many methods

of loading drugs in PDENs including co-incubation, sonication,

repetitive freeze–thawing, and electroporation that provide

convenience for drug loading (Cong et al., 2022).

GEN isolation and purification

Isolation and purification of GENs are similar to those of

exosomes in animal cells or body fluids. A combination of

differential centrifugation and sucrose density-gradient

ultracentrifugation is the “gold standard” to extract abundant

GENs in a short time (Zhang et al., 2016). First, grapes are ground

in a blender to extract juice and the juice is strained through a

sieve or a piece of gauze. Next, differentially centrifugation (500 g

for 10 min, 2,000 g for 20 min, 5,000 g for 30 min, and 10,000 g

for 1 h) is used to remove large grape fibers, and then supernatant

ultracentrifugation is used to concentrate GENs at 100,000 g for

2 h. Finally, for purification of the GENs, the concentrated

solutions of GEN are transferred to a discontinuous sucrose

gradient [8%, 30%, 45%, and 60% (g/v)] and ultracentrifuged at

150,000 g for 2 h to remove other vesicles and aggregates of

proteins or RNA. The bands in the 30% and 45% layers are

purified GENs. In addition, GEN concentration is determined by

measuring the protein concentration using a BCA protein

quantification assay kit (Songwen et al., 2013; Wenbo et al.,

2021). GENs allow for large-scale production as they are plentiful

and inexpensive.

GENs: potential mechanisms for VC
therapy

Oxidative stress

The occurrence and development of VC are influenced by

oxidative stress for two primary reasons: 1. increased cellular

endogenous reactive oxygen species (ROS) levels; 2. an imbalance

in ROS generation and ROS scavenging. Excessive ROS causes

oxidative damage to DNA (Hongmei et al., 2010; Roberto et al.,

2012), lipids, and proteins, inducing phenotypic transformation

of vascular smooth muscle cells (VSMCs) by activating the Akt

FIGURE 1
Structure of grape exosome-like nanoparticles (GENs) served as a bioactive vesicle for inhibiting the osteogenic differentiation of vascular
smooth muscle cells.
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signaling pathways and upregulating Runx2, an essential

osteogenic transcription factor (Ting et al., 2021). Excess

oxidized low-density lipoprotein (OxLDL) hastens VSMC

transdifferentiation into osteoblast-like cells (Zhang et al.,

2016b). Diabetes, in particular, has been shown to play a

synergistic role in VC via the advanced glycation end product

and advanced glycation end product receptor, further increasing

the correlation between hyperglycemia and oxidase stress from

NADPH oxidase (Hongmei et al., 2010; Mody et al., 2001).

GENs were reported to be functional nanoparticles with the

ability to scavenge ROS and protect against non-specific cell damage

caused by ROS (Songwen et al., 2013). Zhang et al. synthesized

polyphenol nanoparticles from grape seeds with adjustable size,

excellent biocompatibility, and ROS scavenging capacity. The role

of nanoparticles in preventing cell damage caused by ROS,

accelerating wound healing, inhibiting ulcerative colitis, and

regulating oxidative stress in dry eye syndrome has been validated

(Songwen et al., 2013). Wang et al. created a drug delivery system

based on grapeseed extract loaded with solid lipid nanoparticles to

improve bioavailability and aqueous solubility compared with the

parent compound. They discovered that nanoparticles reduce

oxidative stress in respiratory epithelia and are anti-inflammatory

and anti-apoptotic (Tianyou et al., 2021). Polygalloyl polyflavan-3-ols

were reported to be associated with the cardiovascular disease-

TABLE 1 Bioactive small molecules of GENs and their effects on the vascular system.

Small
molecules of GENs

Functions Reference

Procyanidin Attenuation of oxidative damage and apoptosis El-Andaloussi et al. (2012)

Regulation of glucose metabolism: prevention of pancreatic
dysfunction and preservation of a higher glucagon/insulin ratio

Downing et al. (2017), Rodríguez et al. (2022), and
Grau-Bové et al. (2020)

Regulation of lipid metabolism: inhibition of adipogenesis and
stimulation of lipolysis

Wei S et al. (2018)

Retardation of glycated low-density lipoprotein induced-
cardiomyocyte apoptosis

Li et al. (2019)

Inhibition of AGE-induced proliferation and migration of VSMCs Cai et al. (2011)

Anti-inflammatory effects Yin et al. (2015) and Liu et al. (2020)

Flavonoids based on the C6-C3-C6

skeleton and the non-flavonoids
Modulation of the intestinal microbiota Lu et al. (2021) and Rasines-Perea and Teissedre (2017)

Regulation of cholesterol and lipoprotein metabolism Myers et al. (2009)

Inhibition of LDL oxidation and attenuation of the development of
atherosclerosis

Magyar et al. (2012) and Miyagi et al. (1997)

Anti-inflammatory effects Albers et al. (2004)

Inhibition of platelet activation and aggregation Pace-Asciak et al. (1996) and Keevil et al. (2000)

Inhibition of digestion enzymes, improvement of insulin resistance,
and inhibition of advanced glycation end product (AGE) formation

Rasines-Perea and Teissedre (2017), Xiao and Högger (2014),
Chen and Jiang (2016), and Cao et al. (2015)

ACH09 Prevention of oxidative stress and enhanced activity of the
superoxide dismutase

da Costa et al. (2020)

Improvement of insulin resistance and increase of GLUT-4 Santos et al. (2017)

Amelioration of hypertension da Costa et al. (2020)

Reversion of increases in adiposity, plasma triglyceride levels, and
glucose levels

Resende et al. (2013)

Polygalloyl polyflavan-3-ols Inhibition of human platelet aggregation Shanmuganayagam et al. (2012) and Nassiri-Asl and
Hosseinzadeh (2016)

Amelioration of low-density lipoprotein oxidation Shanmuganayagam et al. (2012)

Myricetin Lesser degree of cellular infiltration Nassiri-Asl and Hosseinzadeh (2016) and Tiwari et al. (2009)

Slowing the development of high blood pressure and reversion of
metabolic alterations

Godse et al. (2010)

Increase the levels of antioxidant agents Borde et al. (2011)

Resveratrol Amelioration of low-density lipoprotein oxidation and reduction of
lipid peroxidation

Breuss and Atanasov (2019)

Inhibition of cyclooxygenase-1 (COX-1), COX-2, and nuclear
factor-κB(NF-κB)

Kundu et al. (2006), Yeung et al. (2004), and Meng et al.
(2021)

Increase in the formation of vasculoprotective nitric oxide (NO) Leikert et al. (2002) and Wallerath et al. (2002)

Suppression of advanced glycation end product (AGE)-induced
proliferation of VSMCs

Mizutani et al. (2000)

Inhibition of platelet aggregation Wang et al. (2002) and Pace-Asciak et al. (1995)
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protective effects of grapes as they inhibit platelet aggregation and

oxidation of OxLDL (Yee-Ling and Shun-Wan, 2014). By inducing

nitric oxide production and acting on the insulin signaling pathways,

ACH09 (grape skin extract) was found to be extremely effective

against obesity, hypertriglyceridemia, hyperglycemia, insulin

resistance, and oxidative stress (Shanmuganayagam et al., 2012).

According to Angela C et al., grape consumption may lower blood

pressure and plasma ROS levels, reduce atherosclerotic plaque

formation, and maintain normal serum AST levels (Resende et al.,

2013). Several studies have found that grapeseed and grape skin

extracts have anti-diabetic effects, improving glucose tolerance and

insulin sensitivity in diabetic patients (Chis et al., 2009; Yanni et al.,

2015). In the diet-induced obesity mouse models, ACH09 restored

decreased plasma and mesenteric artery antioxidant activities of

superoxide dismutase, catalase, and glutathione peroxidase

(Shanmuganayagam et al., 2012). Several studies have shown that

resveratrol slows progression and reduces mortality in CKD rat

models, which is attributed to its inhibitory effect on oxidative

stress (Byon et al., 2008). Polyphenolic flavonoids derived from

grape seeds have been shown to reduce lipid peroxides and

carbonylated protein levels in Wistar albino rats. The grape

extract increased antioxidant activity in plasma and liver tissues,

helping to regulate blood lipids, protect liver cells, and improve blood

glucose (Yanni et al., 2015) and suggesting that GENs can improve

VC by reducing oxidative stress.

Inflammation

Chronic inflammation is known to contribute to VC. When

monocyte-derived macrophages are recruited and activated in

mineralized areas, mineral deposition is triggered (Koji et al.,

2012). Excess production of proinflammatory factors such as

TNF-α, IL-1, and IL-6 can accelerate the formation of VC by

increasing the expression of BMP2 and decreasing the expression

ofMGP (Koji et al., 2012; Kay et al., 2016). Boström Kristina et al.

found that TNF-α, L-1β, and TGF-β can induce and promote

endothelial-to-mesenchymal transition, sensitizing aortic

endothelial cells to BMP-9-induced osteogenic differentiation

and enhancing BMP-9-induced mineralization (Kristina, 2005).

GENs were found to inhibit intestinal inflammation in a mouse

model of DSS-induced colitis (Songwen et al., 2013). A near-infrared

fluorescent dye, DiR, was used to trace the in vivo distribution

imaging in mice; it was found that GENs can be absorbed by

intestinal stem cells by penetrating the intestinal mucosal barrier

through the Wnt/catenin signaling pathway, stimulating Lgr5hi

intestinal stem cell proliferation, accelerating the regeneration of

small intestinal mucosa, and promoting rapid recovery of intestinal

structure. Axin-2, cyclin D1, c-myc, and EGFR expression were found

to be significantly upregulated in dextran sulfate sodium (DSS)-

induced colitis. It was found that oral administration of GENprotects

mice from DSS-induced colitis compared to the PBS control. Orally

administered edible plant GENs induce nuclear translocation of

macrophage nuclear factor-erythroid-derived 2-related factor-

2(Nrf2) and intestinal Wnt/TCF4 activation in mice. Nuclear

translocation of Nrf2 and Wnt/TCF4 activation are important in

anti-inflammatory responses (Songwen et al., 2013).

Furthermore, by inhibiting nuclear factor kappa-light-chain-

enhancer of activated B cell (NF-ҡB) activation and COX-2

expression, resveratrol and other biologically active substances can

reduce pro-inflammatory cytokines, PGE2 and PGD2 levels, and

neutrophil infiltration (Cianciulli et al., 2012; Panaro et al., 2012;

Gonzalo et al., 2019). Proanthocyanidins were loaded into solid lipid

nanoparticles and used to treat inflammatory airway diseases

(Baomei et al., 2014). Grape phenolic compounds have anti-

inflammatory, anti-cancer, and anti-aging properties (Castellani

et al., 2018). A previous study found that grape polyphenols may

reduce nitric oxide inactivation via oxidant enzymes to prevent

inflammation. The main symptoms are lower hypersensitive-c-

reactive-protein and IL-6 levels in the blood (Fahimeh et al.,

2020). Based on these findings, we hypothesize that GENs lower

VC by inhibiting chronic inflammation.

Apoptosis

Apoptosis of VSMCs occurs prior to the formation of calcified

nodules. ProudfootD et al. reported that inhibiting apoptosis with the

caspase inhibitor z-VAD-FMK reduced calcification in nodules by

approximately 40%, but when apoptosis was stimulated in nodular

cultures with anti-Fas IgM, calcification was increased 10-fold

(Proudfoot et al., 2000). Furthermore, they found that apoptotic

VSMCs can produce matrix vesicles and apoptotic bodies, both of

which have the ability to concentrate calcium and act as nucleating

structures for calcium crystal formation (Proudfoot et al., 2000). They

found that apoptosis occurs before calcification and that it activates

the early promoter in VC.

Grape proanthocyanidins have been found to inhibit H2O2-

induced apoptotic signaling, which is mediated by p53 in

osteoblastic MC3T3-E1 cells (Zhang et al., 2014). Grapeseed

proanthocyanidins have been shown to reduce stress-induced

apoptosis in the endoplasmic reticulum (ER). Another study

found that GSP improved long-term neurological outcomes by

reducing ischemia–reperfusion-induced neuronal apoptosis and

brain injury and inhibiting the expression of ER stress-associated

genes. GSP protects mice against ischemic stroke by reducing

neuronal apoptosis and ER stress-associated apoptosis by

inhibiting GRP78 and caspase-12 (Kun et al., 2019; Yunxia

et al., 2020). Thus, it is possible that VC can be improved

with GENs by decreasing VSMC apoptosis.

Other possible mechanisms

An epidemiological study found that osteoporosis and VC

have age-independent associations (Yunxia et al., 2020; Hak
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et al., 2000). Thandapilly Sijo J et al. discovered CKD patients

with dysregulated calcium and phosphate metabolism. However,

there are some issues to consider in the relationship between

calcium loss from the skeleton in osteoporosis and calcium

deposits in VC (Tofani et al., 2005; Demer et al., 2014; Wei S.

et al., 2018). Grapeseed proanthocyanidin extract induces anti-

osteoporosis effects by increasing bone mineral density and bone

strength (Tofani et al., 2005; Wei Z. et al., 2018).

Furthermore, GENs containing some miRNAs can be uptake

by VSMCs to participate in immunoregulation. Grape flavonoids

can regulate endothelial function and improve endothelial-

dependent vasodilation in the aorta (Stein et al., 1999).

Numerous molecular targets (silent information regulator 1

(SIRT1), 5′ AMP-activated protein kinase (AMPK),

endothelial nitric oxide synthase (eNOS), Nrf2, peroxisome

proliferator-activated receptor (PPAR), Kruppel-like factor 2

(KLF2), and NF-kB) (Nader et al., 2021) were found. Several

recent studies have found that polyphenol extracts from grapes

provide cardiovascular benefits by lowering blood pressure,

improving the relaxation of arterial smooth muscle, increasing

arterial compliance, and attenuating pathological cardiac

hypertrophy (Thandapilly et al., 2012). This approach is

expected to be used in the treatment of VC.

Conclusion

VC is a key factor in the development of cardiovascular

disease. Although the development of therapeutics for the

treatment of VC in experimental treatment has made great

progress, clinical first-line medication is still lacking.

Unfortunately, current anti-VC drugs are primarily based on

phosphate binders and calcimimetic agents, which are restricted

by inefficient drug delivery and short residence time (Lanzer

et al., 2021; Raggi et al., 2011). GENs are expected to serve as

novel drug carriers with synergistic effects for the delivery of anti-

VC drugs due to their high biocompatibility, low

immunogenicity, and easy modifiability (Songwen et al., 2013).

In this review, we discussed the potential treatment

efficacy and various mechanisms of GENs related to

FIGURE 2
Potential regulatory mechanisms of grape exosome-like nanoparticles (GENs) for vascular calcification (VC). Several mechanisms of VC
occurrence are modulated by GENs, including oxidative stress, inflammation, apoptosis, and immune response.
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affecting the VC (Figure 2). Despite the many benefits of

GENs, we still need to consider the following deficiencies in

the treatment of VC: 1. particle size distribution is relatively

nonuniform; larger particles might not penetrate the

intercellular space of vascular endothelium and enter

calcified plaques. 2. The complete removal of plant-derived

impurities cannot be guaranteed in the process of isolation

and purification, causing immune responses. 3. The roles and

functions of GENs against VC are unclear, which still is a

hypothesis based on existing knowledge of VC and GENs.

Therefore, they could have unpredictable effects (Kim et al.,

2022). Overall, GENs demonstrate a potential protective effect

on VC, and they may constitute the next-generation

therapeutics hopefully.
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