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Neurological diseases impose a tremendous and increasing burden on global

health, and there is currently no curative agent. Puerarin, a natural isoflavone

extracted from the dried root of Pueraria montana var. Lobata (Willd.) Sanjappa

and Predeep, is an active ingredient with anti-inflammatory, antioxidant, anti-

apoptotic, and autophagy-regulating effects. It has great potential in the

treatment of neurological and other diseases. Phosphatidylinositol 3-kinases/

protein kinase B (PI3K/Akt) signal pathway is a crucial signal transduction

mechanism that regulates biological processes such as cell regeneration,

apoptosis, and cognitive memory in the central nervous system, and is

closely related to the pathogenesis of nervous system diseases.

Accumulating evidence suggests that the excellent neuroprotective effect of

puerarin may be related to the regulation of the PI3K/Akt signal pathway. Here,

we summarized the main biological functions and neuroprotective effects of

puerarin via activating PI3K/Akt signal pathway in neurological diseases. This

paper illustrates that puerarin, as a neuroprotective agent, can protect nerve

cells and delay the progression of neurological diseases through the PI3K/Akt

signal pathway.
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1 Introduction

With the aging of the population and the increase in life expectancy, the prevalence of

neurological diseases is increasing, causing a huge health burden worldwide (Charlson

et al., 2019). Including Alzheimer’s disease (AD), Parkinson’s disease (PD), traumatic

brain injury (TBI), stroke, intracerebral hemorrhage (ICH), epilepsy, and other

neurological diseases, affecting about one billion people worldwide, involving people

of all ages, races and socioeconomic status (Misra et al., 2018). Neurological disorders

have become the second leading cause of death in the world (Evans-Lacko et al., 2018),

and it is also an important cause of disability and premature death. At present, there are

few drugs to treat and prevent these diseases, which makes neurological diseases have
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become an obvious challenge (Zhou et al., 2019). Therefore, there

is an urgent need to develop new drugs for the treatment of

various nervous system diseases. The variety of neurological

diseases with a wide range of neuropathological features,

including neurological damage, cognitive dysfunction, and

motor coordination disorders, has led to complex and diverse

pathogenesis and involved signaling pathways, hindering the

development of new drugs. Phosphatidylinositol 3-kinase/

protein kinase B (PI3K/Akt) signal pathway participates in

many cellular processes such as cell proliferation,

differentiation, protein synthesis, and apoptosis, and is the key

mechanism for the occurrence and development of central

nervous system diseases (Matsuda et al., 2019). Focusing on

the PI3K/Akt pathway, it is of great significance to seek reliable

treatments and new drugs for neurological diseases.

Chinese herbal medicine and its natural products have the

advantages of multiple targets and few adverse reactions, so they

have a good prospect in the treatment of nervous system diseases

(Yang et al., 2017). Puerarin is an isoflavone with high bioactivity.

It is a key active substance extracted from the traditional Chinese

medicine Kudzu root (Gegen in Chinese), the dried root of

Pueraria montana var. Lobata (Willd.) Maesen & S. M.

Almeida ex Sanjappa & Predeep. Experimental and clinical

studies have reported that puerarin has been widely used in

the treatment of cardiovascular disease (Zhou et al., 2021),

diabetes mellitus and its complications (Bai et al., 2021),

cancer (Ahmad et al., 2020), osteoporosis (Cao et al., 2022),

nonalcoholic fatty liver (Wang B. et al., 2019) and endometriosis

(Meresman et al., 2021). In recent years, puerarin has attracted

much attention because of its excellent neuroprotective effect in

AD, PD, and other central nervous system diseases. The

activation of the PI3K/Akt pathway is an important way for

puerarin to play a neuroprotective role. In this article, we

summarized the research on puerarin protecting the nervous

system by regulating PI3K/Akt pathway, in order to provide

significant implications for elucidating the mechanism of

puerarin in treating nervous system diseases and get further

promotion in clinical application.

2 PI3K/AKT signal pathway and the
nervous system

PI3K/Akt signal pathway is one of the classical pathways to

regulate the cell cycle, which plays an important role in cell

division, differentiation, and survival. PI3K is an intracellular

phosphatidylinositol kinase and an important anti-apoptotic

regulatory factor. Protein kinase B (PKB), also known as Akt,

is an intracellular serine/threonine protein kinase. A cascade

reaction pathway involving multiple signaling molecules

centered on PI3K and Akt is called the PI3K/Akt signal

pathway, and its activation and signal transduction regulates

various physiological responses of the body. In response to

various growth factors and neurotrophic factors,

transmembrane receptors such as receptor tyrosine kinases

(RTKs) undergo autophosphorylation, causing PI3K to be

activated on the plasma membrane. Activated PI3K catalyzes

the production of the second messenger phosphatidylinositol-

3,4,5-trisphosphate (PIP3), which in turn recruits Akt for

phosphorylation (p-Akt) at the plasma membrane. p-Akt

initiates downstream effectors including mammalian target of

rapamycin (mTOR), glycogensynthasekinase3β (GSK3β), and
actin-related proteins, and exerts a variety of mechanisms to

significantly affect cell growth and survival. Among them,

mTOR, as a highly conserved serine/threonine kinase, is the

core downstream factor of the PI3K/Akt signal pathway, which

can be activated directly or indirectly by Akt. Meanwhile, mTOR

is also an activator of Akt (Long et al., 2021). After activation,

mTOR can directly act on p70 ribosomal S6 protein kinases one

and 2 (p70S6K1/2), eukaryotic initiation factor 4 E-binding

proteins (4 E-BPs), and other proteins involved in translation

regulation, thereby initiating the protein synthesis, transcription,

autophagy, metabolism, cell growth and proliferation (Lipton

and Sahin, 2014).

PI3K/Akt signal pathway has been proven to play an

important role in the pathogenesis of neurological diseases

(Matsuda et al., 2019) and is one of the most important

regulatory pathways for neuronal survival, capable of

regulating neurogenesis and synaptic plasticity (Manning and

Toker, 2017). Activation of the PI3K/Akt pathway promotes

neuronal survival in the presence of in vitro hypoxia, excitotoxic

neuronal death, and in vivo ischemic neuronal death (Lai, Zhang,

and Wang, 2014). Multiple studies have demonstrated

significantly reduced levels of p-PI3K and p-Akt in injured

brain cells. Inhibition of the PI3K/Akt pathway exacerbates

ischemic neuronal death (Endo et al., 2006). Activation of

PI3K/Akt signal pathway can significantly improve acute brain

injury such as cerebral hemorrhage (Krafft et al., 2013; Cui et al.,

2017) and subarachnoid hemorrhage (Hao et al., 2014; Xie et al.,

2018). Akt is considered a therapeutic target in neurological

diseases that impact neuronal survival. Excitotoxicity is a critical

link between ischemia and neuronal death (Molina et al., 2021).

Akt is able to inhibit the death signal BAD (Noshita et al., 2002),

the forkhead transcription factor (Trotman et al., 2006), and the

proline-rich Akt substrate (Saito et al., 2004) in excitotoxicity and

stroke models. Akt phosphorylates and inhibits the death-

signaling protein GSK-3β, which is implicated in the

pathogenesis of several neurological diseases (Chigusa et al.,

2017). GSK-3β is one of the direct substrates of Akt, involved

in synapse formation and microglia activation, and is able to

regulate a variety of biological activities such as cell metabolism,

apoptosis, inflammation, and oxidative stress. Over-activated

GSK-3β leads to excitotoxic neuronal damage (French and

Heberlein, 2009). In addition, its over-activation can cause

synaptic defects, promote the hyperphosphorylation of tau to

form neurofibrillary tangles, ultimately leading to diseases such
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as AD (Golpich et al., 2015; Abdallah et al., 2021). p-Akt inhibits

its activity by phosphorylating GSK-3β, and phosphorylation

GSK-3β (p-GSK-3β) is neuroprotective. p-GSK-3β induces the

accumulation of MCL-1 protein of the Bcl-2 family, and exert an

anti-apoptotic effect to protect neuronal cells (Banach et al.,

2022). Studies have reported that Akt is a key mediator of several

aspects of neurite growth, including elongation, branching, and

caliber (Read and Gorman, 2009). Akt is able to phosphorylate

GSK-3β to promote neurite growth (Ooms et al., 2006). The

PI3K/Akt/mTOR pathway has been shown to promote the

growth and branching of hippocampal neurons and plays an

important role in the development of brain structures (Chen

et al., 2003). Akt is a major upstream regulator of mTOR. mTOR

is involved in the entire brain function, regulating neuronal cell

synaptic plasticity, myelin formation, memory and retention

(Lipton and Sahin, 2014). Studies have shown that mTOR is

able to increase the length and complexity of dendrites (Jin et al.,

2012). mTOR also promotes axonal regeneration in the adult

central nervous system (Abe et al., 2010). In addition, mTOR can

regulate a variety of downstream factors involved in

neuroprotection. The sterol-response binding proteins

(SREBPs) are one of the transcription factors regulated by

mTOR and are involved in nutrient sensing, excitotoxicity,

myelination and neurodegenerative diseases (Lebrun-Julien

et al., 2014). mTOR regulates the transcription and translation

of hypoxia inducible factor 1α (HIF1α), which mediates

mechanisms associated with stroke and neurodegenerative

diseases. Recent studies have reported that Eukaryotic

Elongation Factor-2 Kinase (eEF2K) is essential for the

physiopathology of the nervous system. eEF2K is able to

influence synaptic plasticity, memory, and regulate protein

translation in dendrites. Increased eEF2K expression is

observed in AD, PD and epilepsy, and its phosphorylation is

reduced as a key downstream effector of mTOR (Ballard et al.,

2021). In conclusion, targeting PI3K/Akt is of great value for

studying the pathogenesis of neurological diseases and new drug

development.

3 Puerarin regulates PI3K/AKT signal
pathway to protect the nervous
system

3.1 Overview of puerarin

Puerarin has the chemical structure of 7,4’-dihydroxy-8-C-

glucosylisoflavone (Figure 1), molecular formula C21H20O9,

molecular weight 416.38 (Zhou Y. X. et al., 2014). Studies

have shown that puerarin can be detected rapidly and

extensively in most organs such as the hippocampus, heart,

and lungs after intravenous administration (Anukunwithaya

et al., 2018; Zhang, 2019). Also, puerarin can be quickly

eliminated. Puerarin also crosses the blood-brain barrier and

is widely distributed in the hippocampus, cerebral cortex,

striatum, and other regions of the brain, but at low levels

(Kong et al., 2017). The gastrointestinal absorption and

bioavailability of puerarin are poor. The absorption in both

the stomach and intestine of rats was 20% (Chen et al., 2018),

and the absolute oral bioavailability in rats (5 mg/kg, 10 mg/kg)

was 7% (Anukunwithaya et al., 2018). Daidzein is the major

hydrolytic metabolite of puerarin (Jung et al., 2014), which was

formed by cytochrome P450 proteins in the liver microsomes

(Wen et al., 2008). Glucuronoside is the main metabolite of

puerarin, which is excreted in the urine and feces

(Anukunwithaya et al., 2018). UDP-glucuronosyltransferase

1A1 is the principal enzyme responsible for puerarin

metabolism in human liver microsomes (Luo et al., 2012).

The toxicity of puerarin in experimental animals is low, but

FIGURE 1
The chemical structure of puerarin. In the ball and stick model, grey, red, and white balls represent carbon, oxygen, and hydrogen atoms,
respectively. (National Center for Biotechnology Information (2022). PubChemCompound Summary for CID 5281807, Puerarin. Retrieved 17 August
2022 from (https://pubchem.ncbi.nlm.nih.gov/compound/5281807).
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its toxicity has yet to be re-evaluated in clinical studies (Zhang,

2019). Although puerarin is easy to extract, its chemical

structural properties result in poor solubility and permeability,

resulting in its low oral bioavailability (Yu et al., 2022). Therefore,

it is not feasible to increase the bioavailability by increasing the

dose alone in clinical application, but it will increase the toxic side

effects of the drug. At present, injection is the main mode of

administration of puerarin (China Food and Drug

Administration, http://app1.sfda.gov.cn/datasearchcnda/face3/

dir.html). In order to improve the bioavailability of puerarin

injections, the formulation must be supplemented with

polyvinylpyrrolidone (PVP) or high concentrations of

propylene glycol. However, this has consequently led to

adverse effects such as fever and vascular irritation, limiting

its widespread clinical use. To overcome this limitation,

microemulsions and self-microemulsifying drug delivery

systems (Zhang, 2019), dendrimers (Gu et al., 2013),

nanoparticle carriers (Chen et al., 2019), nanocrystals (Xiong

et al., 2019) and other drug delivery systems were used to

improve the bioavailability and brain targeting of puerarin. In

addition, structural biotransformation of puerarin using sucrose

amylosucrase (Ding et al., 2022), microbial and free enzymes (Liu

B. et al., 2016) was also able to improve the bioavailability of

puerarin. All of the above are of great value in advancing the

research and application of puerarin.

Up to now, puerarin has been widely proven to have

pharmacological activities such as vasodilator, anti-

inflammatory, antioxidant, anti-apoptotic, regulating

autophagy, anti-insulin resistance, anti-cancer, etc. It has

protective effects on cell damage caused by pathological

factors and has shown good efficacy in the treatment of

various diseases (Ma et al., 2022). Clinically, puerarin has

been approved by China Food and Drug Administration as a

vasodilator in the treatment of patients with coronary heart

disease and hypertension (Huang et al., 2021). Puerarin has

significant anti-inflammatory and antioxidant effects. It has

been shown that puerarin reduced the mRNA and protein

levels of Tumor necrosis factor-α (TNF-α), interleukin 6 (IL-

6), and IL-1β in a mouse model of myocardial ischemia/

reperfusion (MI/R) injury, inhibited NLRP3 inflammasome

and protected the heart (Wang et al., 2020). Puerarin can

significantly reduce reactive oxygen species (ROS) production,

while excessive ROS can activate downstream apoptotic factors

such as cytochrome C and apoptosis-inducing factors, and

induce apoptosis (Liang et al., 2019). Puerarin can reduce

ROS by increasing the gene expression of MnSod and Gpx-1,

which are scavengers of ROS. It is also possible that puerarin can

reduce the levels of lipid peroxidation product mitochondrial

malondialdehyde (MDA) and increase superoxide dismutase

(SOD) by reducing the production of ROS. Atherosclerosis is

a pathological process characterized by a chronic inflammatory

response, which is closely related to the inflammatory response of

vascular endothelial cells. Puerarin modulates mitochondrial

function in lipopolysaccharide-stimulated human umbilical

vein endothelial cells, inhibits the expression of inflammatory

factors and oxidative stress damage, increases autophagy and

mitochondrial antioxidant capacity, and is considered to be a

natural antioxidant for the treatment of atherosclerosis (Liang

et al., 2019). Puerarin significantly increased the levels of

antioxidant markers such as superoxide dismutase, glutathione

peroxidase, and catalase in serum and liver of NAFLD, and

decreased the levels of TNF-α, IL-18, and IL-1β (Zhou J. F. et al.,

2022). Puerarin also mediates hepatoprotective effects by

inhibiting oxidative stress and inflammation through the

microRNA (miR)-34a-5p/Sirt1 axis (Hao et al., 2022). The

efficacy of puerarin against preeclampsia is also related to its

anti-inflammatory effect (Guo et al., 2022). In addition, puerarin

also reduces pro-inflammatory factors in the chronic

unpredictable mild stress (CUMS) rat model of depression via

the gut-brain axis, and increases the level of anti-inflammatory

factors, thereby achieving an antidepressant effect (Song et al.,

2022). Recently, Zeng et al. (2022) also explored the anti-

inflammatory mechanism of puerarin, suggesting that the

anti-inflammatory effect of puerarin may be achieved by

regulating multiple metabolic pathways and metabolites

related to ferroptosis. Puerarin can improve diabetes and a

series of complications by anti-inflammation and reducing

oxidative stress. At the same time, it can also lower blood

glucose, improve insulin resistance, and protect pancreatic β-
cells through anti-apoptotic effects (Chen et al., 2018; Xu et al.,

2021). Based on these diverse pharmacological effects, puerarin

has been confirmed to have good anticancer potential and can

exert therapeutic effects on cancer by blocking the cell cycle,

inhibiting cell migration, inducing apoptosis, and regulating

autophagy (Ahmad et al., 2020; Murahari et al., 2020).

Puerarin also promotes the proliferation and differentiation of

rat primary osteoblasts and human osteoblastic MG-63 cells by

altering cell cycle distribution (Zhang et al., 2007; Wang et al.,

2013), In contrast, puerarin inhibits vascular smooth muscle cell

proliferation in the diabetic setting (Zhu et al., 2010).

3.2 Puerarin and PI3k/Akt signal pathway

Nevertheless, the potential mechanisms and direct targets for

the diverse therapeutic effects of puerarin remain unclear. Many

studies have pointed out that the activation of the PI3K/Akt

signal pathway may be a key pathway for puerarin to protect the

survival of various cells. Embryonic stem cells are the best

platform for the research and screening of new drugs (Xi

et al., 2010). Yin et al. (2015) found that puerarin could

down-regulate the transcription level of RE1 silencing

transcription factor (rest), a key factor for maintaining the

self-renewal of embryonic stem cells, and up-regulate miR-21,

a downstream target of rest, by activating PI3K/Akt pathway,

thereby inhibiting the self-renewal of murine embryonic stem
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cells and turning them into endoderm and ectoderm

differentiation. Endothelial-mesenchymal transition (EndMT)

is closely related to cardiac fibrosis. Puerarin can inhibit

EndMT and improve cardiac fibrosis. It was shown (Li et al.,

2020) that puerarin alleviates HO-stimulated EndMT in human

coronary artery endothelial cells (HCAECs) by inhibiting ROS

and activating PI3K/Akt pathway. Chen et al. (2022) conducted a

study using two animal models of pulmonary arterial

hypertension (PAH), a rat model of monocrotaline (MCT)-

induced PAH and a mouse model of hypoxia-induced hypoxic

pulmonary hypertension (HPH). They confirmed that puerarin

can effectively improve the structural and functional

abnormalities of the pulmonary artery and right ventricle, and

restore the PI3K/Akt pathway downregulated by MCT and

hypoxia. Wang et al. (2022) treated cigarette smoke extract

(CSE)-stimulated human bronchial epithelial cells (HBECs)

with different concentrations of puerarin. The significant

efficacy of puerarin in reducing ROS content and apoptosis

was confirmed. It was also found that puerarin inhibited

mitochondrial autophagy and bronchial epithelial cell

apoptosis by activating PI3K/Akt/mTOR pathway and down-

regulating DRP1 and FUN14 domain protein 1 (FUNDC1)

expression. In diabetes, apoptosis is the predominant form of

pancreatic β-cell death. Puerarin significantly inhibited CoCl2-

induced pancreatic β-cell apoptosis and reduced ROS production
and pro-apoptotic Bcl-2-associated X protein (Bax), and

upregulated Sod2 and Gpx1. It is suggested that puerarin can

act directly on pancreatic β-cell through anti-apoptotic and

antioxidant effects by activating the PI3K/Akt pathway (Li

et al., 2014). Puerarin rapidly activated Akt in mouse

insulinoma β-cells (MIN6) and also restored the diminished

p-Akt induced by CoCl2. Puerarin improved insulin resistance

also by activating PI3K/Akt pathway (Xu et al., 2021). In terms of

anti-osteoporosis, the mechanism by which puerarin promotes

proliferation and differentiation of rat primary osteoblasts and

human osteoblastic MG-63 cells is also achieved by increasing

Akt basal phosphorylation levels in a PI3K-dependent manner

(Zhang et al., 2007; Wang et al., 2013). Anti-osteoclast apoptosis

is usually a key target for the prevention of glucocorticoid-

induced osteoporosis. The PI3K/Akt pathway also mediates

the inhibition of glucocorticoid-induced apoptosis in human

fetal osteoblastic cells (hFOB1.19) by puerarin Yu et al.

(2015). The PI3K/Akt pathway can be activated in a variety of

human cancers, affecting the activity of transcriptional

regulators. Elevated expression of its downstream factor

mTOR often suggests a poor prognosis of cancer (Ahmad

et al., 2020). In cancer diseases including non-small cell lung

cancer (Hu et al., 2018), bladder cancer (Jiang et al., 2018), mantle

cell lymphoma (Gan and Yin, 2015), chondrosarcoma (Huang

et al., 2017), and other cancer diseases, puerarin was able to

downregulate their PI3K, p-Akt, and mTOR levels, induce

autophagy, inhibit tumor cell proliferation, and increase

apoptosis. It can be seen that puerarin may have a

bidirectional regulation of the PI3K/Akt pathway. In addition,

the mechanisms by which puerarin inhibited apoptosis in human

papillomavirus-positive HeLa cervical cancer cells (Jia et al.,

2019) and ameliorated NAFLD induced by high fat and high

sucrose diet in mice (Wang S. et al., 2019) were also closely

related to PI3K/Akt/mTOR pathway.

Puerarin is also a natural phytoestrogen. Because of its

estrogenic activity, puerarin can regulate the apoptosis of MG-

63 cells through the estrogen receptor-dependent PI3K/Akt

pathway (Wang et al., 2013) and inhibit the oxidative injury

of Mouse hepatoma Hepa1c1c7 and HepG2 cells (Hwang and

Jeong, 2008). In addition, puerarin also phosphorylated eNOS at

the Ser1177 site of the reductase structural domain in EA.

hy926 human endothelial cells to produce NO, which in turn

protected endothelial cells (Hwang et al., 2011).

In conclusion, PI3K/Akt signal pathway is the key

mechanism by which puerarin exerts protective effects on

various cells. A review of the research progress of puerarin

protection against neurological diseases using the PI3K/Akt

signal pathway as the target is valuable to elucidate the

mechanism of puerarin protection against neuronal cells.

3.3 Puerarin improves neurological
diseases by activating PI3K/Akt signal
pathway

Puerarin has potent neuroprotective effects due to its

excellent anti-inflammatory, antioxidant, and anti-apoptotic

properties (Yu et al., 2022). Recent studies have provided

much evidence suggesting that puerarin may ameliorate

neurological disorders by activating the PI3K/Akt signal

pathway (Table 1 and Figure 2).

3.3.1 Nerve cell injury
PC12 cells are a differentiated cell line of rat adrenal

medullary pheochromocytoma with general characteristics

of neuroendocrine cells. It has been widely used in

neurophysiological and neuropharmacological studies

(Wang et al., 2015). Liang and Xie (Liang and Xie, 2017)

used TNF-α to induce neurotoxicity in PC12 cells. It was

found that puerarin significantly promoted Akt (Ser473)

phosphorylation and inhibited TNF-α-induced apoptosis.

Application of PI3K inhibitor LY294002 attenuated the

effect of puerarin, indicating that puerarin inhibited TNF-

α-induced apoptosis in PC12 cells by activating the PI3K/Akt

pathway. Zhang et al. (2012) reported the effect and

mechanism of puerarin on oxidative stress-induced

neurotoxicity in PC12 cells. The results showed that

puerarin was able to dose-dependently inhibit H2O2-

induced PC12 cells from apoptosis under oxidative stress

by increasing the production of p-Akt and apoptotic factor

p-BAD (Bcl-2/Bcl-XL-antagonist). These protective effects
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TABLE 1 Neuroprotective effects of puerarin on neurological diseases via modulating PI3K/Akt signal pathway.

Diseases Cells/Animal Doses Dissolution/
Administration

Mechanism Related targets refs

Up-regulation Down-
regulation

Nerve cell injury TNF-α-induced
PC12 cells

25, 50 µM Dissolved in DMSO at
10 mM

Activating PI3K/Akt
pathway; Anti-
apoptotic

Bcl-2, p-Akt (Ser473) Enzymatic activity
of caspase-3 and -9,
cleaved caspase-
3, Bax

Liang
and Xie.
(2017)

Nerve cell injury H2O2-induced
apoptosis of
differentiated
PC12 cells

4, 8, 16 μM Dissolved in DMSO at
10 mM

Activating PI3K/Akt
pathway; Anti-
inflammatory;
Antioxidant; Anti-
apoptotic

p-Akt, p-BAD Zhang
et al.
(2012)

Lead
encephalopathy

Lead acetate-induced
PC12 cells

30 μM Unclear Activating PI3K/Akt/
GSK-3β pathway;
Antioxidant

GSH, GSH/GSSG
ratio, GCLc, nuclear
Nrf2, ARE, p-Akt,
p-GSK-3β

ROS, LPO, cytosolic
Nrf2

Li et al.
(2014)

AD Aβ25-35-induced
PC12 cell

50, 100,
200 µM

Solubilized in 1,2-
propanediol

Activating PI3K/Akt
pathway; Anti-
apoptotic

Bcl-2, p-BAD, p-Akt Bax, cleaved
caspase-3,
cytochrome c

Xing
et al.
(2011)

AD Aβ25-35-induced BV-2
and mouse primary
microglial cells

20, 100 µM Dissolved in saline Activating PI3K/Akt
pathway; Antioxidant;
Anti-apoptotic

Bcl-2, p-Akt Bax, cleaved
caspase-3,
cytochrome c, ROS

Wang
et al.
(2014b)

AD APP/PS1 transgenic
mice

30 mg/kg/day Oral, solubilized in 1,2-
propanediol

Activating Akt/GSK-3β
pathway; Antioxidant

pAkt-Ser473, pSer9-
GSK-3β, GSH, HO-1

LPO, MDA Zhou
et al.
(2014a)

PD MPTP-lesioned mice;
PC12 cells

50,
150 mg/kg/
day; 50 μM

via i.p. Injection; Dissolved in
100μl saline containing 50%
1,3-propanediol

Activating PI3K/Akt
pathway; Activating
ERK1/2 pathway

TH, p-Akt, MAP2,
β3-tubulin, nuclear
Nrf2, p-ERK1/2,
HO-1

Zhao
et al.
(2015b)

PD MPTP-lesioned mice 0.04,
0.12 mg/kg/d

via i.p. Injection Activating PI3K/Akt
pathway; Antioxidant

p-Akt, DA, DOPAC,
Lamp 2A,
GDNF, GSH

ROS Zhu et al.
(2014)

PD MPP+-induced SH-
SY5Y cells

50 μM Dissolved in DMSO Activating PI3K/Akt
pathway; Anti-
apoptotic; Inhibiting
programmed cell death

p-Akt Nuclear p53, Puma,
Bax, caspase-3

Zhu et al.
(2012)

ICH-induced
early brain injury

Collagenase IV
injection-induced rat

50,
100 mg/kg

via i.p. Injection, dissolved in
DMSO

Activating PI3K/Akt
pathway; Anti-
inflammatory;
Antioxidant; Anti-
apoptotic

PI3K, p-Akt, Bcl-2 Bax, cleaved
caspase-3, TNF-α,
IL-1β, IL-6

Zeng
et al.
(2021)

Ischemic stroke I/R Rat 50,
100 mg/kg

via i.p. Injection, dissolved in
10% methyl glycol

Activating Akt/GSK-3β/
MCL-1 pathway; Anti-
apoptotic

p-Akt1, p-GSK-3β,
MCL-1

Cleaved caspase-3 Tao et al.
(2017)

Hypoxic brain
injury

Hypoxia-induced
NSCs

20-100 μM Unclear Activating PI3K/Akt
pathway; Activating
MEK/ERK pathway;
Anti-apoptotic

miR-214, p-PI3K, p-
Akt, p-MEK, p-ERK

Cleaved caspase-3,
cleaved caspase-9

Wang
et al.
(2019a)

SCI T8 laminectomy-
induced rat

25, 50,
100 mg/kg

via i.p. Injection, dissolved in
DMSO

Activating PI3K/Akt
pathway; Anti-
inflammatory; Anti-
apoptotic

GAP-43, Bcl-2, PI3K,
p-Akt (Ser473)

GFAP, OX-42,
TNF-α, IL-1β, IL-6,
Bax, cleaved
caspase-3

Zhang
et al.
(2016)

TBI Feeney weight-drop rat
model

200 mg/kg via i.p. Injection, dissolved in
the vehicle (cremophor:
ethanol:normal saline ¼ 1:
1:4)

Activating PI3K/Akt
pathway; Antioxidant

p-Akt, GSH MDA, MPO Wang
et al.
(2014b)

Epileptic Pentylenetetrazol-
induced seizures in
mice

320 mg/kg via i.p. Injection Activating PI3K/Akt/
GSK-3β pathway; Anti-
inflammatory;
Antioxidant

p-PI3K/PI3K, p-Akt/
Akt, p-GSK-3β/
GSK-3β, SOD

MDA, IL-6, TNF-α Guan
et al.
(2021)

ap., intraperitoneal; DMSO, dimethylsulfoxide; MPP+, 1-methyl-4-phen-ylpyridinium iodide; I/R, ischemia/reperfusion; LPO, lipid hydroperoxide; APP/PS1, amyloid precursor protein/

presenilin-1; T8, the eighth thoracic segment; MPO, myeloperoxidase; MPTP, 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine; DOPAC, dihydroxyphenylacetic acid; DA, dopamine; TH,

tyrosine hydroxylase; NSCs, neural stem cells; GDNF, glial cell line-derived neurotrophic factor; GCLc, glutamate cysteine ligase catalytic subunit; MAP2, microtubule-associated protein 2.
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were reversed by the highly specific PI3K inhibitor

wortmannin, suggesting that puerarin may exert

antioxidant and anti-apoptotic effects by activating the

PI3K/Akt pathway. The central nervous system is the

main target of lead poisoning, and neuronal oxidative

stress is the key mechanism (Lu et al., 2013). Puerarin has

great potential to treat lead neurotoxicity-related diseases

due to its excellent antioxidant effect. It was noted (Li et al.,

2014) that puerarin significantly attenuated ROS and lipid

hydroperoxide levels in lead acetate-induced PC12 cells, and

induced phosphorylation of Akt and GSK-3β. In addition,

puerarin also elevated the level of glutathione (GSH), a

cellular antioxidant, and upregulated the expression of

glutamate cysteine ligase catalytic subunit (GCLc), a major

rate-limiting enzyme for GSH synthesis. Puerarin induces

nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear

accumulation, thus exerting a role in regulating GSH

biosynthetic enzymes. The above protective effect of

puerarin could be blocked after using LY294002. It

indicates that puerarin exerts an antioxidant mechanism

to ameliorate lead poisoning injury in neuronal cells,

mainly through activation of the PI3K/Akt/GSK-3β

pathway. In summary, puerarin exerts anti-apoptotic,

antioxidant, and anti-inflammatory effects to ameliorate

neuronal cell injury through activation of the PI3K/Akt

pathway.

3.3.2 Alzheimer’s disease
AD is a neurodegenerative disease characterized by

progressive memory and cognitive impairment, and behavioral

and motor disorders. The main pathological features are plaques

of β-amyloid (Aβ) and neurofibrillary tangles composed of

hyperphosphorylated tau. As well as extensive synaptic and

neuronal loss, oxidative stress and neuroinflammation, for

which there is no effective treatment (Knopman et al., 2021).

More and more studies have confirmed that puerarin can

effectively improve AD cognitive dysfunction through multiple

mechanisms (Yu et al., 2022). Puerarin reduces Aβ deposition,

decreases protein levels of hyperphosphorylated tau and its

phosphorylation levels, alleviates neuroinflammation, and

prevents neuronal loss (Huang et al., 2019). Puerarin can

improve synaptic plasticity impairment in AD by regulating

the p38 MAPK-CREB signal pathway (Liu C. et al., 2021).

Increased ROS production can directly impair synaptic

FIGURE 2
Puerarin protects neurons by regulating the PI3K/Akt pathway. Different colors are used to represent that puerarin protects neurons through
anti-apoptosis, antioxidation, and anti-inflammation, which are closely related to the regulation of the PI3K/Akt pathway by puerarin.
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plasticity and cause cognitive dysfunction (Butterfield and

Halliwell, 2019). Puerarin can increase the activity of oxidative

stress markers glutathione peroxidase (GSH-Px) and superoxide

dismutases (SOD) in brain tissue, and reduce ROS generation

and the level of lipid peroxidation product malondialdehyde

(MDA) (Zhao J. et al., 2015). Puerarin also alleviated Aβ25-35-

induced PC12 cell apoptosis and increased the Bcl-2/Bax ratio

(Zhang et al., 2008). PI3K/Akt pathway is one of the important

mechanisms by which puerarin ameliorates AD cognitive

impairment. It was shown Xing et al. (2011) that puerarin

was able to activate Akt phosphorylation in Aβ25-35-induced

PC12 cells. Meanwhile, puerarin up-regulated the levels of Bcl-2

and p-BAD, and down-regulated Bax and cleaved caspase-3. It is

suggested that puerarin improves Aβ25-35-induced PC12 cell

apoptosis depending on PI3K/Akt pathway. Wang C. et al.

(2014) used Aβ25-35-induced BV-2 and mouse primary

microglial cells as AD models and further confirmed that the

anti-apoptotic effect of puerarin on AD is dependent on PI3K/

Akt signal pathway. In addition, they found that Aβ25-35-induced

primary microglial cells exhibited disruption of mitochondrial

membrane potential and increased ROS production, which was

inhibited by puerarin. Zhou Y. et al. (2014) also confirmed that

puerarin can activate the Akt/GSK-3β signal pathway in amyloid

precursor protein/presenilin-1 (APP/PS1) mice and induce

Nrf2 nuclear translocation in the hippocampus. Puerarin also

down-regulated lipid hydroperoxide and MDA, and up-

regulated the levels of GSH and antioxidant enzyme heme

oxygenase-1 (HO-1). These results suggest that puerarin

improves AD cognitive dysfunction by exerting antioxidant

effects, rather than by altering soluble or insoluble Aβ1-42
levels. In addition, puerarin can activate PI3K/Akt/eNOS

pathway to reduce ROS production and avoid neuronal death

(Lu et al., 2014; Liu et al., 2019). It can be seen that puerarin has a

good therapeutic prospect in improving AD cognitive

dysfunction, and its mechanism is closely related to PI3K/

Akt-mediated anti-apoptosis and antioxidant. However, there

are still few studies on the mechanism of improvement of AD by

puerarin, and more studies targeting PI3K/Akt pathway are

needed in the future. This is of great interest to elucidate the

mechanism of action of puerarin in improving AD.

3.3.3 Parkinson’s disease
PD is the second major neurodegenerative disorder

characterized by progressive loss of nigrostriatal dopaminergic

neurons, manifested by bradykinesia, rigidity, or resting tremor.

Like AD, there is still no effective treatment (Aborode et al.,

2022). Several studies have reported that puerarin can improve

PD through neuroprotection and antioxidant effects, but the

specific mechanism is unclear. Nerve growth factor (NGF), a

neurotrophic factor, is significantly downregulated in the

substantia nigra of PD patients and inhibits neuronal

function, growth, and differentiation (Ubhi et al., 2010). The

PI3K/Akt signal pathway is an important mechanism regulating

the neurotrophic activity of NGF (Tzeng et al., 2021). A study by

Zhao J. et al. (2015) noted that puerarin significantly improved

tyrosine hydroxylase levels and motor dysfunction in

dopaminergic neurons of 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-lesioned mice. In PC12 cells, the

combination of NGF (2 ng/ml) with puerarin (50 μM) greatly

enhanced NGF-promoted neurite formation and length, as well

as the levels of microtubule-associated protein 2 (MAP2) and β3-
tubulin. Further studies confirmed that puerarin activates PI3K/

Akt and ERK1/2 pathways to promote Nrf2 into the nucleus,

upregulates HO-1, and subsequently enhances NGF-induced

neurogenesis. ROS is thought to be critical in mediating

dopaminergic neuronal cell death. It has been suggested (Zhu

et al., 2014) that puerarin can exert antioxidant effects by

activating PI3K/Akt pathway, which in turn reduces ROS

production, and upregulates the expression of GSH and glial

cell line-derived neurotrophic factor (GDNF), thereby alleviating

MPTP-induced of motor dysfunction and degeneration of

dopaminergic neurons. Puerarin also ameliorated oxidative

stress-induced reduction in chaperone-mediated autophagy

(CMA) activity, a hallmark of PD pathogenesis (Zhu et al.,

2014; Kuo et al., 2022). In addition, puerarin was able to

activate the PI3K/Akt pathway in 1-methyl-4-phen-

ylpyridinium iodide (MPP+)-induced dopaminergic SH-SY5Y

cells and inhibit p53-mediated caspase-3-dependent

programmed cell death (Zhu et al., 2012). In conclusion,

puerarin is able to restore neurotrophic factor levels and

improve motor dysfunction and dopaminergic neuronal

degeneration in PD by activating the PI3K/Akt pathway. It is

necessary to conduct more experimental and clinical studies.

3.3.4 Intracerebral hemorrhage
ICH refers to primary cerebral parenchymal hemorrhage, a

cerebrovascular disease with high disability and mortality rates

worldwide, for which there is no specific and effective treatment

(Zhou J. et al., 2022). A growing number of studies have shown that

high-intensity oxidative stress, neuroinflammation, and neuronal

apoptosis are important pathogenic mechanisms of secondary

brain injury after ICH (Hu et al., 2016; Zheng et al., 2016; Lan

et al., 2017). Therefore, targeting the regulation of oxidative stress,

inflammatory response, and apoptosis in brain tissue is the key to the

treatment of secondary brain injury after ICH. Zeng et al. (2021)

showed that puerarin was able to activate the PI3K/Akt pathway after

ICH, which in turn inhibited the activation of apoptotic signaling,

reduced oxidative stress, and downregulated the levels of pro-

inflammatory factors, ultimately relieving the early brain injury

after ICH. The results showed that in an ICH rat model induced

by collagenase IV injection, both 50mg/kg and 100mg/kg doses of

puerarin significantly upregulated the expression levels of PI3K and

p-Akt, thereby reducing the histological damage, cerebral edema,

cerebral hematoma volume, and blood-brain barrier damage. In

addition, apoptosis of brain cells was significantly increased after

ICH. The production of ROS around the hematoma increased, and
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the activation of the NF-κB pathway caused a significant increase in

the levels of various inflammatory factors. Puerarin can regulate the

levels of B-cell lymphoma-2 (Bcl-2), Bax, and cleaved caspase-3,

inhibit cell apoptosis, and reduce the levels of ROS and various

inflammatory factors. These results confirmed that puerarin can exert

anti-apoptotic, antioxidant, and anti-inflammatory effects by

activating PI3K/Akt pathway to alleviate early brain injury caused

by ICH. However, there are still relatively few studies on the effects

and mechanisms of puerarin in improving cerebral hemorrhage, and

more evidence is needed to support this.

3.3.5 Ischemic stroke
Ischemic stroke, caused by rupture or occlusion of blood vessels,

can cause irreversible damage to the brain. It is a common cause of

death and severe disability, with millions of people worldwide

suffering from ischemic stroke each year (Benjamin et al., 2019).

Previous studies suggest that puerarin can exert cerebral protective

effects by inhibiting apoptosis after cerebral ischemia (Xu et al., 2005).

In China, puerarin injections have been widely used in the clinical

treatment of patients with acute ischemic stroke. By evaluating

20 randomized controlled trials (RCTs) with 1574 participants as

of 2015, Liu G. et al. (2016) suggested that puerarin improves

neurological impairment after ischemic stroke. Hu et al. (2012)

evaluated 15 RCTs and 1603 patients, and the results showed that

puerarin was more effective than the control treatment for acute

cerebral infarction. Tao et al. (2017) used a rat model of cerebral

ischemia/reperfusion (I/R) as the experimental subject to investigate

the mechanism of puerarin in improving ischemic stroke. The results

showed that puerarin could upregulate p-Akt1 (Ser473), p-GSK-3β
(Ser9), and myeloid cell leukemia-1 (MCL-1), and downregulate

cleaved caspase-3, thereby improving the survival rate of neurons

in cerebral cortex and hippocampus. PI3K inhibitor LY294002 was

able to counteract the neuroprotective effects of puerarin mentioned

above. This study provides a new idea to reveal the mechanism of

puerarin in the treatment of ischemic stroke, but the way of activation

of the PI3K/Akt pathway by puerarin remains to be further elucidated.

In addition, the combination of puerarin and catalpol (an active

monomer isolated from Rehmannia glutinosa) could protect

neurovascular units (neurons, astrocytes, and brain vascular

endothelial cells) by improving edema, anti-inflammation,

antioxidant, and anti-apoptosis, and this protective effect was

dependent on the regulation of PI3K/Akt/mTOR/HIF-1α and

ERK/HIF-1α pathways (Liu et al., 2017). In conclusion, although

puerarin has been widely used in the clinical treatment of acute

ischemic stroke patients, itsmechanism of action is still unclear. PI3K/

Akt pathway may be the key mechanism for puerarin to improve

ischemic stroke, which needs to be further elucidated by numerous

studies in the future.

3.3.6 Hypoxic brain injury
Hypoxia can cause different degrees of brain damage,

especially in neonates. It is a major cause of neonatal death

and disability (Kennedy et al., 2022). MiR-214 is involved in cell

differentiation and apoptosis and is associated with myocardial

damage (Liu S. et al., 2021; Xiao et al., 2021), hepatocellular

carcinoma cell invasion (Zhao et al., 2022), and rectal cancer

(Yang et al., 2021). It was shown that PI3K/Akt/mTOR pathway

mediates hypoxia-induced apoptosis and autophagy (Gong et al.,

2019), and regulation of miR-214 could activate PI3K/Akt/

mTOR pathway to alleviate hypoxia-induced apoptosis and

autophagy. To explore the role and mechanism of puerarin in

ameliorating hypoxic brain injury, Wang B. et al. (2019) isolated

neural stem cells (NSCs) from the hippocampus of E14 rats

treated with hypoxia (an anaerobic gas mixture of 94% N2, 5%

CO2, and 1% O2 for 8 h), and administered puerarin

(20–100 μM) pretreatment. The results showed that puerarin

(60 μM) significantly increased the cell viability of hypoxia-

induced NSCs, and inhibited the expression of cleaved

caspase-3 and -9. Puerarin relieved PI3K and Akt

phosphorylation inhibited by hypoxia, while miR-214

deficiency treatment inhibited the effect of puerarin on PI3K

and Akt phosphorylation. In conclusion, puerarin can activate

PI3K/Akt pathway through upregulation of miR-214 and exert a

protective effect against hypoxic NSCs injury through anti-

apoptosis. The above study suggests that miR-214 may be a

target for geranium to regulate the PI3K/Akt pathway to protect

neuronal cells, but further studies are needed.

3.3.7 Traumatic central nervous system injury
Puerarin has neuroprotective effects against secondary injury

in acute spinal cord injury (SCI) and TBI. SCI is a traumatic

injury caused by mechanical damage to the spinal cord tissue,

which can undergo secondary injury such as neuronal apoptosis,

glial cell activation, axonal degeneration, and ultimately lead to

neurological dysfunction (Noristani, 2022). Zhang et al. (2016)

found that puerarin was able to upregulate PI3K and p-Akt

(Ser473), and significantly restore motor function in a rat model

of SCI by exerting anti-inflammatory and anti-apoptotic effects.

Puerarin can also maintain the survival and cell morphology of

neurons and promote the regeneration of neurons. In addition,

puerarin significantly inhibited the activation of astrocytes and

microglia. It is evident that PI3K/Akt is an important mechanism

by which puerarin protects against secondary injury in SCI.

Primary brain injury in TBI is difficult to intervene in, but

reversible secondary brain injury has critical therapeutic

implications (Bramlett and Dietrich, 2007). Studies have

shown that the degree of oxidative stress is closely related to

the severity of secondary brain injury in TBI, and protection

against secondary brain injury in TBI through antioxidants is of

interest (Wang J. W. et al., 2014). Wang C. et al. (2014)

demonstrated that puerarin can down-regulate MDA,

Myeloperoxidase (MPO), and up-regulate GSH by activating

the PI3K/Akt pathway and improve TBI-induced

neurodegeneration by exerting antioxidant and anti-

inflammatory effects. It can be seen that puerarin has a good

therapeutic prospect in the treatment of SCI and TBI secondary
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injury. The PI3K/Akt pathway may be the key mechanism for

this effect of puerarin in promoting neuronal survival and

regeneration.

3.3.8 Epilepsy
Epilepsy is caused by excessive abnormal discharge of nerve

cells in the brain. Persistent seizures can lead to oxidative stress

and inflammation in the brain, damage brain tissue, and cause

cognitive dysfunction (Knowles et al., 2022). Puerarin is able to

improve epilepsy-induced brain damage through anti-

inflammatory, antioxidant, and anti-apoptotic effects, but the

exact mechanism is unclear (Xie et al., 2014). Guan et al. (2021)

found that puerarin significantly reduced the number, duration,

and mean escape latency of pentylenetetrazol-induced seizures in

mice. Further research found that puerarin improved epileptic

seizures and cognitive function in mice by activating the PI3K/

Akt/GSK-3β signal pathway. Although there are still few studies

on the mechanism of puerarin to ameliorate epilepsy-induced

brain injury, a related study targeting the PI3K/Akt pathway

provides us with new ideas to understand the antiepileptic effects

of puerarin.

4 Conclusion and perspective

The activation of the PI3K/Akt pathway may be the key

pathway for puerarin to ameliorate a variety of diseases and cells;

therefore, it is important to review the research progress of

puerarin in protecting neurological diseases by targeting the

PI3K/Akt pathway. In summary, the mechanism of action of

puerarin in regulating the PI3K/Akt pathway to protect neuronal

cells is complex and mutual, mainly related to antioxidant, anti-

apoptotic and anti-inflammatory, but the specific molecular

mechanisms involved are still unclear. Among them, the

antioxidant effect of puerarin is considered the central

mechanism of action and investigated deeply by many studies.

Although most of the biological effects of puerarin on different

cells have been shown to be related to the regulation of the PI3K/

Akt pathway, there are still many limitations of the existing

studies. For example, current evidence does not explain how

puerarin targets activation of the PI3K/Akt pathway and the

direct target of puerarin action remains unclear. Some arguments

suggest that puerarin (Hwang and Jeong, 2008; Wang et al.,

2013), because of its natural estrogenic activity, may interact

directly with the estrogen receptor, binding to the p85 regulatory

subunit of PI3K in a ligand-dependent manner, which in turn

causes an Akt phosphorylation hierarchical response. Further

studies on the direct interaction between puerarin and estrogen

receptors are needed in the future to better explain this issue. This

is a key question that needs to be addressed for many natural

drugs. Further mechanistic studies might help in understanding

the significance at the molecular level. Furthermore, although

most studies suggest that puerarin exerts its biological activity by

activating the PI3K/Akt pathway, in diseases such as cancer,

hepatic fibrosis (Guo et al., 2013), and cardiac hypertrophy (Yuan

et al., 2014), the therapeutic effects of puerarin are mediated by

blocking the PI3K/Akt pathway. These results suggest that

puerarin may be a bidirectional regulator of the PI3K/Akt

pathway. This also requires more research to demonstrate and

analyze. Notwithstanding the continued progress made in the

treatment of neurological diseases of this natural agent, the

development and application of puerarin as a novel drug still

require more experimental. According to the available

Pharmacokinetics studies on Puerarin, there is still room

for improvement in its solubility, permeability, and

bioavailability of Puerarin. To improve the bioavailability

of puerarin, a number of approaches have been developed

in recent years to improve the brain targeting of the drug,

including the use of drug delivery systems and structural

biotransformation. However, puerarin is still mainly

administered by intraperitoneal injection in the current in

vivo studies. Further research on puerarin in combination

with new techniques of drug delivery is necessary. Although

puerarin has been used clinically in the treatment of ischemic

stroke in China, the quality of clinical studies needs to

continue to improve. Also, the efficacy and mechanisms of

puerarin in the treatment of other neurological disorders need

to be supported by clinical studies. Finally, although the

toxicity of puerarin to experimental animals is low, the

existing toxicology studies are far from adequate. More and

higher quality studies are needed, especially in human

populations.
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