AUTHOR=Liu Wangrui , Zhao Shuai , Xu Wenhao , Xiang Jianfeng , Li Chuanyu , Li Jun , Ding Han , Zhang Hailiang , Zhang Yichi , Huang Haineng , Wang Jian , Wang Tao , Zhai Bo , Pan Lei TITLE=Integrating machine learning to construct aberrant alternative splicing event related classifiers to predict prognosis and immunotherapy response in patients with hepatocellular carcinoma JOURNAL=Frontiers in Pharmacology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2022.1019988 DOI=10.3389/fphar.2022.1019988 ISSN=1663-9812 ABSTRACT=

Introduction: In hepatocellular carcinoma (HCC), alternative splicing (AS) is related to tumor invasion and progression.

Methods: We used HCC data from a public database to identify AS subtypes by unsupervised clustering. Through feature analysis of different splicing subtypes and acquisition of the differential alternative splicing events (DASEs) combined with enrichment analysis, the differences in several subtypes were explored, cell function studies have also demonstrated that it plays an important role in HCC.

Results: Finally, in keeping with the differences between these subtypes, DASEs identified survival-related AS times, and were used to construct risk proportional regression models. AS was found to be useful for the classification of HCC subtypes, which changed the activity of tumor-related pathways through differential splicing effects, affected the tumor microenvironment, and participated in immune reprogramming.

Conclusion: In this study, we described the clinical and molecular characteristics providing a new approach for the personalized treatment of HCC patients.