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Predicting protein-ligand binding free energy rapidly and accurately remains a

challenging question inmodern drug discovery. Molecular mechanics/Poisson-

Boltzmann (Generalized Born) surface area (MM/PB(GB)SA) has emerged as an

essential tool for accelerating cost-efficient binding free energy calculation.

This study presents benchmarks with three membrane-bound protein systems

and six soluble protein systems. Different parameters were sampled for different

benchmarks to explore the highest accuracy. These include ligand charges,

protein force fields, extra points, GB models, nonpolar optimization methods,

internal dielectric constants and membrane dielectric constants. Comparisons

of accuracy were made between MM/PB(GB)SA, docking and free energy

perturbation (FEP). The results reveal a competitive performance between

MM/PB(GB)SA and FEP. In summary, MM/PB(GB)SA is a powerful approach

to predict ligand binding free energy rapidly and accurately. Parameters of MM/

PB(GB)SA calculations, such as the GB models and membrane dielectric

constants, need to be optimized for different systems. This method can be

served as a powerful tool for drug design.
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Introduction

Free energy plays essential roles in biological events, such as protein folding, enzyme

catalysis and target-drug binding (Wang et al., 2019). Therefore, predicting binding free

energy accurately is of great importance in related research, especially in drug discovery

(Jorgensen, 2004). Free energy perturbation (FEP) (Jorgensen, 1989), thermodynamic

integration (TI) (Kirkwood, 1935; Genheden et al., 2011) and molecular mechanics

Poisson-Boltzmann (Generalized Born) surface area (MM/PB(GB)SA) (Still et al., 1990;

Srinivasan et al., 1998; Kuhn and Kollman, 2000) are the most commonly used

computational methods for calculating the binding free energy. FEP and TI, which

are pathway-based methods, have been considered more accurate tools than MM/PB(GB)

SA. However, the application in research is often hampered by slow convergence,

complicated system building and huge computational costs (Wang et al., 2019). To
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address the limitation, MM/PB(GB)SA, an end-point method,

has become an attractive approach for calculating binding free

energy (ΔGbind) between protein and ligand.

As implicit continuous solvation models, the GB and PB

models are designed to predict the solvation free energy change

in the binding process. In MM/PB(GB)SA method, the binding

free energy in solvation (ΔGbind, solve) could be decomposed into

the binding free energy in vacuum (ΔGbind, vacuum) and solvation

free energy (ΔGsolve) (Srinivasan et al., 1998):
ΔGbind, solve � ΔGbind, vacuum + ΔGsolve

� ΔEMM + ΔGsolve − TΔS
� ΔEMM + ΔGPB GB( ) + ΔGSA − TΔS (1)

where ΔEMM is the molecular interaction energy, which includes

bond energy contribution (bond, angle and dihedral energies)

and nonbonded energy contribution (electrostatic energies and

van der Waals energies). ΔGPB(GB) and ΔGSA are the polar and

nonpolar energy contributions of ΔGsolve, in which, ΔGSA is

directly proportional to solvent-accessible surface area (SASA).

-TΔS is conformational entropy contribution.

Compared to FEP and TI, MM/PB(GB)SA has many

advantages including high speed, computationally low-cost,

user-friendly and stable. By extracting snapshots from MD

simulations, ΔG MM/PB(GB)SA can be automatically computed

by existing tools such as MMPBSA. py (Miller et al., 2012),

g_mmpbsa (Kumari et al., 2014) and gmx_MMPBSA (Valdés-

Tresanco et al., 2021). Meanwhile, the disadvantages are also

obvious: Because of the large error and high computational cost,

the entropy term is neglected in practice, which may reduce the

accuracy of the MM/PB(GB)SA approach if the system is an

entropy-driven process. As an end-point approach, MM/PB(GB)

SA ignores the kinetic pathway, which also contributes to drug

activity during drug-target interaction (Wang et al., 2019). In

addition, the conformations of protein and ligand extracted from

the complex are approximately regarded as their free

conformations in the single-trajectory approach (Sham et al.,

2000), but the conformations may change during the binding

process. Despite these limitations, MM/PB(GB)SA is still one of

the most popular approaches for predicting binding free energy.

More recently, researchers modified the standard MM/PB(GB)

SA method for improving the performance in predicting the

binding energy in both protein-protein complexes and protein-

ligand complexes, including the screening electrostatic energy

(Sheng et al., 2021; Zhu et al., 2022) and interaction entropy

(Duan et al., 2016), further making MM/PB(GB)SA more

accurate and popular in binding free energy calculation task.

Previous works (Hou et al., 2011b; Su et al., 2015; Sun et al.,

2018) have thoroughly investigated the effects of force field,

simulation length, sampling method and entropy on the

performance of MM/PB(GB)SA. The results imply that the

performance of MM/PB(GB)SA is case-by-case. There are no

universal parameters that can ensure the accuracy of the

prediction in all systems. Moreover, the halogen bond, an

important molecular interaction should be considered in MM/

PB(GB)SA calculations (Nunes et al., 2019; Fortuna and Costa,

2021). Most of the works mainly focus on soluble protein

systems. As the most important category of drug targets,

membrane protein systems have not been discussed

intensively yet.

Here, we have systemically investigated the effect of model

parameters on the performance of MM/PBSA and MM/GBSA

methods in both soluble as well as membrane protein systems. In

this work, we compared the results betweenMM/PB(GB)SA, FEP

and docking. As a result, MM/PB(GB)SA showed comparable

accuracy with FEP, whereas docking showed the worst outcome.

MM/PB(GB)SA is a powerful approach for accelerating the

accurate prediction of protein-ligand binding free energy.

Parameters of MM/PB(GB)SA calculations need to be

benchmarked for a specific system. The high accuracy of MM/

PB(GB)SA suggests that this method can be applied to virtual

screening and lead optimization accurately and efficiently.

Materials and methods

Preparation of complexes

The benchmarks were performed on testing systems with

140 ligands bound to six soluble proteins as well as 37 ligands

bound to three membrane proteins. The soluble proteins were

selected from a public benchmark dataset organized by

Schrodinger Inc. for evaluating FEP prediction (Wang et al.,

2015). Although eight systems were provided in this dataset, we

only selected cyclin-dependent kinase 2 (CDK2), Tyrosine kinase

2 (TYK2), p38 mitogen activated protein kinases (P38), Myeloid

Cell Leukemia 1 (Mcl1), c-Jun N-Terminal Kinase 1 (Jnk1) and

thrombin systems. This is mainly because the FEP method

showed the best performance in the TYK2 system, the worst

performance in the CDK2 system and average performances in

P38, Mcl1, Jnk1 and thrombin systems. Three membrane

complex systems were also tested in this study, including

microsomal prostaglandin E synthases (mPGES), G-protein-

coupled bile acid receptor (GPBAR) and orexin 1 (OX1).

GPBAR and OX1 belong to G protein-coupled receptor

(GPCR) superfamily which is the most important drug target.

Different from the soluble proteins’ ligands, the ligands of GPCR

are divided into agonists and antagonists. We selected 13 agonists

as the ligands of GPBAR and 12 antagonists as the ligands

of OX1.

To make sure the ligands are bound to protein with the

suitable conformations, ligands were docked into the pocket with

reference ligands as constraints by Glide SP software (Friesner

et al., 2004). The constraint method restricts the maximum

common substructure position between ligands and reference

molecules. The reference ligands were retrieved from crystal

structures with IDs 1H1Q for CDK2, 3FLY for P38, 2ZFF for
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Thrombin, 4GIH for Tyk2, 2GMX for Jnk1, 6HW3 for Mcl1,

5TL9 for mPGES, 7CFM for GPBAR, 4ZJ8 for OX1. After

docking, the conformations of ligands were manually

confirmed and selected. The protonated states of ligands and

proteins were generated by Schrodinger 2021v1 software at a

pH of 7.0. The activity values of ligands were obtained from prior

publications (Hardcastle et al., 2004; Szczepankiewicz et al., 2006;

Baum et al., 2009; Goldstein et al., 2011; Friberg et al., 2013; Liang

et al., 2013; Piotrowski et al., 2013; Roecker et al., 2014; Partridge

et al., 2017). The experimental binding free energies of the ligands

were calculated by the following approximation (Wang et al.,

2015):

ΔG exp � RTlnK (2)

where T = 297 K, R is the gas constant and K represents the value

of affinity, which can be IC50, Ki or Kd in nM in our case.

Although IC50 cannot be a representation of binding affinity

directly, it can be converted to Ki with the Michaelis-Menten

equation, indicating that IC50 and Ki are linearly correlated with

constant concentrations of protein and ligand. Therefore, IC50

can also be used in Eq. 2.

Six ligand charge methods were adopted in this study,

consisting of CHARMM General Force Field (CGenFF)

charge (Vanommeslaeghe et al., 2010), AM1-BCC charge,

restrained electrostatic potential (Bayly et al., 1993) with

Hartree-Fock theory (RESP-HF) charge, RESP with Density-

functional theory (RESP-DFT) charge, RESP-HF with extra

points (RESP-HF-EP) charge and RESP-DFT with extra

points (RESP-DFT-EP) charge. CGenFF charge was generated

by CGenFF program version 2.5 (Vanommeslaeghe et al., 2010).

Where, the extra point is a dummy atom with positive charges on

the extension line of carbon halogen bond for simulating the

halogen bond interaction in molecular dynamics (Figure 1).

AM1-BCC charge was generated by the antechamber and sqm

program in AmberTools 2020. For RESP-HF charge, geometry

optimization and single-point electrostatic potential calculation

were performed at HF/6-31G(d) level, which is compatible with

the Amber force field. For RESP-DFT charge, geometry

optimization and single-point electrostatic potential

calculation were performed at B3LYP/6-311G (d,p) level.

Unlike the classical RESP charges, RESP-HF-EP and RESP-

DFT-EP charges couldn’t be fitted by Antechamber, because

the coordinates of extra points needed to be determined

manually. Therefore, CGenFF was applied to determine the

coordinates of extra points. The resp program in

AmberTools2020 was used to refit the atomic charges after

single-point electrostatic potential calculation for RESP-HF-EP

and RESP-DFT-EP charges. Other parameters of extra points

were also generated by CGenFF, including bond length, bond

angle and dihedral angle. For main family elements in or after the

fourth cycle of the periodic table of elements, the SDD basis set

was applied in quantum chemical calculation. Density functional

dispersion correction (Grimme et al., 2010) (DFT-D3) was also

applied to simulate dispersion interaction. All quantum chemical

calculations about RESP charges were finished by Gaussian 09.

The Polarizable Continuum Model (PCM) (Tomasi et al., 2005)

implicit water model was used in QM calculation for simulating

the real solvation condition of molecules. More detailed

information about calculating RESP-HF-EP and RESP-DFT-

EP charges can also be found in our repository (https://github.

com/shiyu-wangbyte/MM-PB-GB-SA_Benchmarks). An

example of the extra point is drawn in Figure 1. The graphs

of extra points in CDK2 and Thrombin systems can be found in

Figures 2A,C.

The setting up of the soluble protein complexes was

performed by GROMACS(Bekker et al., 1992) 2020. Two

different protein force fields amber FF99SB and charmm36m

(Huang et al., 2017) were applied for proteins. For better

performance in MM/PBSA calculations, we used Amber

FF99SB force field (Xu et al., 2013). For ligands with AM1-

BCC charge, RESP-HF charge and RESP-DFT charge, a general

AMBER force field (Wang et al., 2004) (GAFF) was applied. For

ligands with CGenFF charge, RESP-HF-EP charge and RESP-

DFT-EP charge, CHARMM General Force Field was applied.

TIP3P water model was used to wrap complexes extending

1.2 nm away from the edges of the complexes. 0.15 M NaCl

was also added to neutralize the whole system The setting up of

the membrane-bound protein complexes was performed by

CHARMM-GUI (Jo et al., 2008) and GROMACS 2020. The

1,2-palmitoyl-oleoyl-sn-glycero-3-phosphocholine (POPC)

model was added for membrane simulation by CHARMM-

GUI. The charmm36 m lipid force field (Huang et al., 2017)

and the amber lipid14 force field (Dickson et al., 2014) were used

to parameterize membrane molecules when the charmm36 m

force field and FF99SB were applied to proteins, respectively. Like

soluble protein complexes, the TIP3P water model and 0.15 M

NaCl were added to membrane-bound protein systems.

Molecular dynamics simulation

MD simulation consisted of energy minimization, pre-

equilibration and production. For soluble protein systems, all

molecules were energy-minimized within 5,000 steps of steepest

descent while keeping the solute atoms restrained at a force

constant of 1000 KJ/(mol*nm2). The system was then heated to

297 K during a 300 ps simulation in constant volume and

temperature (NVT) condition subsequently followed by a

400 ps simulation in constant pressure and temperature

(NPT) condition where solute atoms were subjected to

1000 KJ/(mol*nm2). Finally, 5ns production simulation was

performed under NPT conditions where backbone atoms were

subjected to 300 KJ/(mol*nm2). The nonbonded interaction

cutoff was set to 1.2 nm during the whole simulation. MD

simulation of membrane-bound protein complexes was more

complex. Systems were also energy minimized within 5,000 steps
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of steepest descent while keeping 4000 KJ/(mol*nm2) force

constant on backbone atoms and ligand atoms, keeping

2000 KJ/(mol*nm2) force constant on side-chain atoms and

keeping 1000 KJ/(mol*nm2) force restraint on lipid atoms.

Then, six steps NPT simulations (300, 300, 500, 250, 250, and

250 ps) were carried out, where restraint was reduced slowly

(4,000, 2000, 1,000, 500, 300, and 300 KJ/(mol*nm2) on the

backbone and ligand atoms, 2000, 1,000, 500, 200, 50, and

50 KJ/(mol*nm2) on side-chain atoms, 1,000, 400, 400, 200,

40, and 0 KJ/(mol*nm2) on lipid atoms, respectively) to relax

the system. Finally, a 5 ns NPT production simulation was

carried out with a force constant of 300 KJ/(mol*nm2) on

backbone atoms. The position restraints were applied during

the equilibration phase to avoid drastic rearrangements of critical

parts. As the binding conformations of protein and ligand are

known, position restraints were applied during the production

phase for reducing the amplification of force field errors in long-

term molecule dynamics, which is the reason why longer

molecule dynamics does not contribute to the accuracy of the

MM/PBSA calculation (Hou et al., 2011b; Su et al., 2015). All MD

simulations were performed by GROMACS 2020 software.

MM/PB(GB)SA calculations

Gmx_MMPBSA (Valdés-Tresanco et al., 2021)

Version1.4.3 and MMPBSA. py (Miller et al., 2012) were used

to compute MM/PB(GB)SA. 100 frames were taken evenly from

the MD trajectory from 3 to 5 ns for calculating MM/PB(GB)SA.

In this study, we discussed the performance of five different GB

models in membrane-bound protein systems, including the

pairwise model GBHCT (igb = 1) (Hawkins et al., 1996), the

modified GB model GBOBC (igb = 2) (Onufriev et al., 2000), the

optimized version GBOBC2 (igb = 5) (Onufriev et al., 2004), the

GBneck model to solve the “bottleneck” issue (igb = 7) (Mongan

et al., 2007) and the optimized version GBneck2 (igb = 8)

(Nguyen et al., 2013). A fast LCPO algorithm (Weiser et al.,

1999) was used to estimate solvent accessible area in MM/GBSA

calculation. In the MM/PBSA calculation of solvation protein

systems, the ionic strength was set to 0.15 M. Other parameters

were default values in MMPBSA. py. For example, the exterior

dielectric constant of 80 and solute dielectric constant of 1 were

used. As the application of the implicit membrane model, the

MM/PBSA calculation in membrane-bound protein systems was

different from that in solvation protein systems. As a partially

polar solvent, the membrane could also affect the ligand-binding

process. The parameters set of MM/PB(GB)SA calculation in

membrane-bound protein systems followed the instruction of the

Amber reference manual. As an example, the ratio between the

longest dimension of the rectangular finite-difference grid and

that of the solute of 1.25 and the internal dielectric constant of

20 were set. More parameters set in MM/PB(GB)SA calculation

can be found in the Supplementary Material S1. After that, the

effect of the internal dielectric constant, membrane dielectric

constant and nonpolar optimization method were also discussed.

In addition, we deleted the extra points and added the charge on

extra points back to halogen atoms in trajectory and topology

files, because MMPBSA. py cannot process molecules with extra

points.

Pearson correlation coefficient (R) and mean absolute error

(MAE) were used to evaluate the performance of MM/PB(GB)SA

in our testing systems. R and MAE were used to characterize the

degree of linear correlation and the real error between MM/

PB(GB)SA and ΔGexp, respectively. Because MM/PB(GB)SA

cannot be compared with ΔGexp directly, MM/PB(GB)SA

needs to be linear fitted and transformed before MAE

calculation (see Supplementary Material S1).

Results

To monitor the system stability during MD simulation, the

conformational Root Mean Squared Distance (RMSDs) of

receptors and ligands are shown in Supplementary Figure S1.

All RSMDs were less than 2 Angstrom during the whole

production simulation, implying that the conformations of

ligands and receptors do not change sharply. RMSDs of

receptors’ backbone atoms were less than that of ligands in all

nine systems, which was because 300 KJ/(mol*nm2) restrain was

applied to the backbone atoms of proteins. In CDK2, TYK2,

Mcl1, mPGES, GPBAR and OX1 systems, receptors and ligands

were in a state of equilibrium during the whole production

simulation. In P38, Jnk1 and thrombin systems, ligands

become stable from 2 ns, 3ns and 3ns on, respectively.

Therefore, 3–5ns trajectories were extracted for MM/PB(GB)

SA calculations.

Ligand charge method, protein force field
and MM/PB(GB)SA

Combinations of four different ligand charge methods and

two protein force fields were compared in this section. The

Pearson correlation coefficient (R) and mean absolute error

(MAE) of experimental and predicted binding free energies of

those combinations on single systems were shown in Table 1. The

total performance of these combinations on soluble protein

systems, membrane protein systems and all protein systems

was also shown in Supplementary Table S1. The R of

combination of the CGenFF charge method and charmm

protein force field were -0.17 for MM/GBSA and -0.09 for

MM/PBSA, which were the lowest among all combinations.

The R of the AM1-BCC charge and FF99SB combination

achieved the highest R (0.40) in MM/GBSA calculation, while

the combination of RESP_DFT charge method achieved the

highest R (0.17) in MM/PBSA calculation. What’s is more, the
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FF99SB protein force field performed better than the charmm

force field with the RESP charge method, although the difference

is slight. For example, the R of RESP_HF charge method with

FF99SB in MM/PBSA computation was 0.13, which was higher

than that of charm force field (0.09). For each single system in

Table 1, MM/GBSA showed the highest R in CDK2 (0.78), p38

(0.70) Jnk1 (0.55) and OX1 (0.85) systems with the charge

method of RESP_DFT. MM/PBSA showed the highest R in

CDK2 (0.52) and OX1 (0.73) systems with the charge method

of RESP_DFT. MM/GBSA only showed the highest R in the

FIGURE 1
(A) The sigma-hole effect in bromobenzene molecule. (B) The RESP charge on the bromine atomwithout an extra point in bromobenzene. (C)
The RESP charges on the bromine atom and the extra point in bromobenzene. The calculation was processed at B3LYP/6-311G (d,p) level.

FIGURE 2
(A) The binding mode of Thrombin protein and its ligand. (B) Distance between the oxygen atom and extra point in the halogen bond in the
Thrombin system. (C) The binding mode of CDK2 protein and its ligand. (D) Distance between the oxygen atom and extra point in the halogen bond
in the CDK2 system.
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GPBAR (0.69) and mPGES (0.85) systems with the charge

method of RESP_HF. MM/PBSA showed the highest R in the

Tyk2 (0.87), Jnk1 (0.56) and GPBAR(0.69) systems with the

chargemethod of RESP_HF.MM/GBSA only showed the highest

R in the Mcl1 (0.78) system with the charge method of

AM1_BCC. MM/PBSA only showed the highest R in the

mPGES (0.87) system with the charge method of AM1_BCC.

MM/GBSA only showed the highest R in the Thrombin (0.96)

system with the charge method of CGenFF. MM/PBSA showed

the highest R in the p38 (0.18), Mcl1 (0.70) and GPBAR (0.76)

system with the charge method of CGenFF. In most cases, MM/

PB(GB)SA performed better with the FF99SB force field than the

CHARMM force field. For example, the R of the combination of

FF99SB and RESP_DFT is 0.78 with MM/GBSA method in

CDK2 system, which is higher than the counterpart with

MM/PBSA calculation. Especially, the most negative

correlations were calculated by MM/PBSA in Table 1.

The effect of extra points

In Table 1, the combination of the CGenFF charge and

the CHARMM force field showed the highest R in both MM/

PBSA and MM/GBSA models for the thrombin system,

which was not in accordance with other systems. To figure

out the reason why this combination performs best in the

thrombin system, we analyzed the trajectories of the

thrombin protein and its ligands. As a result, ligands

formed halogen bonds with the main chain oxygen atom

of GLY219 in thrombin protein. The halogen bond between

thrombin protein and one of its ligands was shown in

Figure 2A. The distance of this halogen bond was also

counted and shown in Figure 2B. Similarly, the halogen

bonds between ligands and side-chain oxygen atoms of

ASP 86 in the CDK2 system were observed. The halogen

bond in the CDK2 system and its distance were also indicated

in Figures 2C,D. Therefore, describing halogen bonds

properly during molecular dynamics simulation

contributed to the accuracy of MM/PB(GB)SA calculation.

To further investigate the role of halogen bonds in MM/

PB(GB)SA calculation, extra points of halogen atoms were

manually added in RESP-HF-EP and RESP-DFT-EP charge

methods (see method section). The MM/PB(GB)SA

performance with RESP-HF, RESP-DFT, RESP-HF-EP and

RESP-DFT-EP charge methods was shown in Table 2. It can

be seen that the R of MM/PB(GB)SA with extra points was

higher in CDK2 and thrombin systems. As an example, the R

of MM/GBSA with CHARMM protein force field and

RESP_HF ligand charge method was increased from

0.41 to 0.77 in the CDK2 system. Meanwhile, in other

systems with no halogen bond, no obvious difference in

MM/PB(GB)SA performance was found with/without extra

points.

Different GB models in membrane-bound
protein systems

In this section, we computed MM/GBSA with five different

GB models, including GBHCT, GBOBC, GBOBC2, GBneck and

GBneck2 models. The R and MAE of MM/GBSA calculations

between the experimental and predicted binding free energies

with different GB models in three membrane-bound protein

systems were shown in Supplementary Table S2. In most cases,

the GBneck model performed best in three test membrane-

bound protein systems. GBHCT and GBneck models performed

best in the mPGES system and the GBneckmodel performed best

in GPBAR and OX1 systems. As an example, the GBneck model

got the highest average R (0.81) and lowest MAE (0.68) in the

OX1 system. Meanwhile, GBHCT and GBOBC models also recorded

the lowest MAE in the GPBAR system.

Different nonpolar optimization methods
in membrane-bound protein systems

In this section, two methods computing nonpolar solvation

energy are compared in MM/PBSA calculations. The results were

shown in Supplementary Table S3. The first method (inp = 1)

showed higher R and lower MAE in the mPGES system. The

average R with this method was 0.81, which was bigger than that

with the second method (0.64). The second method (Tan et al.,

2007) (inp = 2) showed higher R and lower MAE in OX1 system,

while it showed similar R and MAE in GPBAR system.

Different dielectric constant in
membrane-bound protein systems

The dielectric regions in Membrane-Bound Protein

Systems are shown in Figure 3A. The accuracy of MM/

PBSA with different membrane dielectric constants (emem)

was shown in Supplementary Table S4. As the membrane

dielectric constant was recommended at 7.0 by the Amber

reference manual, the gradient of membrane dielectric

constants was set as 1.0, 3.0, 5.0, 7.0, and 9.0. In the

mPGES system, the MM/PBSA with membrane dielectric

constant set to 1.0 showed slightly lower R (0.80) and

higher MAE (0.39) than MM/PBSA with other membrane

dielectric constants. In GPBAR and OX1 systems, the MM/

PBSA with different membrane dielectric constants showed

the same correlation coefficient and mean absolute error. The

performance of MM/PBSA with different internal dielectric

constants (indi) was shown in Supplementary Table S5. The

appropriate internal dielectric constant recommended by the

Amber reference manual was 20.0. Thus, the gradient of the

internal dielectric constant was set as 1.0, 5.0, 10.0, 20.0, and

30.0 in this study. As expected, the performance of MM/PBSA
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TABLE 1 The Pearson correlation coefficient (R) and mean absolute error (MAE) between MM/PB(GB)SA-predicted binding free energies and experimental data based on different ligand charge methods
and protein force fields.

obs. R (higher is better) MAE (lower is better)

RESP_DFT RESP_HF AM1_BCC CGenFF RESP_DFT RESP_HF AM1_BCC CGenFF

FF99SB CHARMM FF99SB CHARMM FF99SB CHARMM FF99SB CHARMM FF99SB CHARMM FF99SB CHARMM

CDK2 MM/GBSA 0.78 0.51 0.60 0.41 −0.47 0.30 0.83 1.71 1.40 2.28 1.84 2.88

MM/PBSA 0.52 0.31 0.27 0.25 −0.12 −0.22 1.64 3.07 3.64 3.53 8.63 4.48

P38 MM/GBSA 0.65 0.70 0.57 0.61 0.65 0.35 0.93 0.83 1.18 1.00 0.96 2.05

MM/PBSA −0.14 −0.01 0.01 −0.02 −0.05 0.18 5.86 82.96 101.3 35.62 15.27 4.63

Thrombin MM/GBSA 0.84 0.73 0.69 0.46 0.63 0.96 0.26 0.42 0.42 0.75 0.56 0.12

MM/PBSA 0.26 0.21 0.71 0.23 0.59 0.81 1.30 1.91 0.35 1.84 0.61 0.31

Tyk2 MM/GBSA 0.57 0.62 0.56 0.59 0.52 0.22 2.31 1.41 1.75 1.46 1.66 4.61

MM/PBSA 0.68 0.86 0.79 0.87 0.76 0.37 1.13 0.62 0.85 0.54 0.78 2.51

Mcl1 MM/GBSA 0.68 0.72 0.6 0.71 0.78 0.71 0.87 0.75 1.1 0.88 0.69 0.83

MM/PBSA 0.62 0.54 0.42 0.48 0.68 0.70 1.00 1.33 1.78 1.51 0.88 0.85

JNK1 MM/GBSA 0.55 0.43 0.35 0.25 0.44 0.24 1.04 1.55 1.82 2.64 1.45 2.79

MM/PBSA 0.18 0.33 0.05 0.56 0.08 0.13 3.77 1.95 12.19 1.03 9.17 4.66

mPGES MM/GBSA 0.83 0.84 0.85 0.82 0.85 0.08 0.33 0.29 0.30 0.34 0.29 6.85

MM/PBSA 0.80 0.80 0.77 0.67 0.87 −0.15 0.35 0.41 0.35 0.59 0.27 3.58

GPBAR MM/GBSA 0.66 0.68 0.67 0.69 0.67 0.62 0.95 0.85 0.90 0.89 0.90 0.96

MM/PBSA 0.69 0.71 0.67 0.69 0.63 0.76 0.86 0.89 0.94 0.91 0.95 0.62

OX1 MM/GBSA 0.85 0.64 0.58 0.70 0.69 0.75 0.49 1.18 1.30 0.92 0.97 0.85

MM/PBSA 0.73 0.71 0.70 0.66 0.57 0.66 0.75 0.78 0.95 1.14 1.36 1.19

The bold value is the values mentioned in the main text.
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TABLE 2 The Pearson correlation coefficient (R) and mean absolute error (MAE) with/without adding extra points.

obs. R (higher is better) MAE (lower is better)

RESP_DFT RESP_HF RESP_DFT_EP RESP_HF_EP RESP_DFT RESP_HF RESP_DFT_EP RESP_HF_EP

FF99SB CHARMM FF99SB CHARMM FF99SB CHARMM FF99SB CHARMM FF99SB CHARMM FF99SB CHARMM FF99SB CHARMM FF99SB CHARMM

CDK2 MM/
GBSA

0.78 0.51 0.60 0.41 0.82 0.80 0.65 0.77 0.83 1.71 1.40 2.28 0.73 0.73 1.23 0.78

MM/
PBSA

0.52 0.31 0.27 0.25 0.49 0.40 0.47 0.58 1.64 3.07 3.64 3.53 1.78 2.31 1.91 1.42

P38 MM/
GBSA

0.65 0.70 0.57 0.61 0.65 0.68 0.57 0.60 0.93 0.83 1.18 1.00 0.95 0.85 1.17 1.01

MM/
PBSA

−0.14 −0.01 0.01 −0.02 −0.13 0.02 0.03 0.01 5.86 82.96 101.30 35.62 6.13 37.68 29.06 76.19

Thrombin MM/
GBSA

0.84 0.73 0.69 0.46 0.87 0.76 0.65 0.45 0.26 0.42 0.42 0.75 0.24 0.35 0.51 0.90

MM/
PBSA

0.26 0.21 0.71 0.23 0.71 −0.10 −0.02 0.51 1.30 1.91 0.35 1.84 0.45 4.20 15.47 0.70

Tyk2 MM/
GBSA

0.57 0.62 0.56 0.59 0.66 0.42 0.66 0.30 2.31 1.41 1.75 1.46 1.15 2.19 1.15 3.29

MM/
PBSA

0.68 0.86 0.79 0.87 0.84 0.72 0.84 0.67 1.13 0.62 0.85 0.54 0.70 1.02 0.70 1.11

Mcl1 MM/
GBSA

0.68 0.72 0.6 0.71 0.6 0.71 0.55 0.67 0.87 0.75 1.1 0.88 1.06 0.83 1.2 0.98

MM/
PBSA

0.62 0.54 0.42 0.48 0.39 0.06 0.27 0.09 1.00 1.33 1.78 1.51 1.82 14.08 2.94 9.02

Jnk1 MM/
GBSA

0.55 0.43 0.35 0.25 0.59 0.40 0.28 0.22 1.04 1.55 1.82 2.64 0.92 1.52 2.33 2.89

MM/
PBSA

0.18 0.33 0.05 0.56 0.23 0.34 0.03 0.42 3.77 1.95 12.19 1.03 2.84 1.83 23.95 1.53

mPGES MM/
GBSA

0.83 0.84 0.85 0.82 0.84 0.70 0.86 0.70 0.33 0.29 0.30 0.34 0.31 0.41 0.30 0.49

MM/
PBSA

0.80 0.80 0.77 0.67 0.83 0.59 0.82 0.52 0.35 0.41 0.35 0.59 0.31 0.75 0.33 0.89

The bold value is the values mentioned in the main text.
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became better with the increase of the internal dielectric constant in

three membrane-bound protein systems. For example, the average

R with indi = 1 (0.60) was noticeably lower than that with indi = 20

(0.81) in the mPGES system. The growth trend became less obvious

when the internal dielectric constant was greater than 5.

Comparisons among docking, MM/GBSA,
MM/PBSA and free energy perturbation

After optimizing the parameters of MM/PB(GB)SA

calculation, the highest R(s) in all nine systems with different

parameters were shown in Table 3 and Figure 4. For six soluble

protein systems, only three of 140 FEP(OPLS2.1)-predicted

binding free energies (Figure 4A) and five of 140 MM/GBSA-

predicted binding free energies (Figure 4B) of studied ligands

deviated from their experimental free energies by more than

2 kcal/mol. For all three membrane protein systems, no studied

ligands deviated from their experimental free energies by more

than 2 kcal/mol (Figure 4C).

The Pearson correlation coefficients of docking, MMPBSA

and FEP from other publications were also compared in Table 3.

In general, the accuracy of MM/GBSA and FEP(s) was similar,

both surpassing docking with Glide software in terms of ΔG
prediction. Moreover, the performance of MM/GBSA after

optimizing the parameters in our study was better that the

counterparts of MM/PBSA/WSAS and MM/PBSA/ELIE,

which was reported in ref (Hao et al., 2020). MM/GBSA had

superiority over the three FEP methods in CDK2, Mcl1 and

thrombin systems. The Pearson correlation coefficients with

MM/GBSA methods in the CDK2, Mcl1 and thrombin

systems were 0.82 0.78 and 0.96, which was higher than that

with any other methods in Table 3. The Pearson correlation

coefficients with FEP(OPLS2.1) in the Jnk1 system was 0.85,

which was also higher than that with other methods. The Pearson

correlation coefficients with XFEP were 0.86 and 0.91 in P38 and

TYK2 systems respectively. Moreover, the prediction binding

energies and experimental binding energies were also recorded in

Supplementary Table S6.

Discussion

The positive performance of MM/PB(GB)SA

demonstrates that MM/PB(GB)SA is a powerful tool to

predict the binding free energies between protein and

ligands, which depends on the parameters, including system

properties, ligand charge methods, protein force fields and

others. The charge method is an important parameter affecting

the performance of MM/PB(GB)SA. From the aspect of

average obvious R (the Pearson correlation coefficient in

Supplementary Table S1), RESP charges yield the optimal

predictive power in both MM/PBSA and MM/GBSA

calculations than the semi-empirical method (AM1-BCC)

and empirical method (CGenFF). Besides, the different

performance of RESP_DFT and RESP_HF suggests that a

higher-level basis set contributes to the accuracy of MM/

PB(GB)SA. Although the CGenFF charge method is not

brilliant in average R, it shows the highest R in p38,

thrombin and GPBAR systems with MM/PBSA model. That

is because the accuracy of the CGenFF charge method depends

on the similarity of the ligand substructure and reference

substructure in the CGenFF database. The different

performance of the FF99SB force field and CHARMM force

field is in line with our expectations because MM/PB(GB)SA

models are developed based on AMBER force fields.

TABLE 3 The R-value of docking, MM/GBSA, MM/PBSA and FEP.

Methods System

CDK2 P38 Thrombin Mcl1 Jnk1 Tyk2 mPGES GPBAR OX1

Dockinga −0.56 0.14 0.53 0.59 0.65 0.79 0.72 0.71 0.4

MM/GBSAb 0.82 0.70 0.96 0.78 0.55 0.66 0.86 0.7 0.91

MM/PBSAb 0.58 0.18 0.81 0.70 0.56 0.87 0.89 0.79 0.82

MM/PBSA/WSASc 0.52 0.22 0.62 0.33 0.04 0.54

MM/PBSA/ELIEc 0.75 0.67 0.63 0.41 0.60 0.62

FEP(OPLS2.1)a 0.48 0.65 0.71 0.77 0.85 0.89

FEP(OPLS3e)d 0.57 0.75 0.53 0.52 0.60 0.84

FEP (XFEP)e 0.75 0.86 0.22 0.55 0.62 0.91

aReported by ref (Wang et al., 2015).
bOur results.
cReported by ref (Hao et al., 2020), ELIE: extended linear interaction energy method.
dReported by ref (Roos et al., 2019).
eReported by ref (Lin et al., 2021).

The bold value means the highest R-value with different methods in specific systems.
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Interestingly, the difference in predictive power between the

FF99SB force field and the CHARMM force field shows little

significance in most cases. In p38, thrombin and GPBAR

systems, the MM/PBSA even shows the highest obvious R

with the combination of the CGenFF charge method and the

CHARMM force field. This suggests that no specific force field

is suitable for MM/PB(GB)SA calculation in all systems.

The accuracies of MM/PB(GB)SA in soluble protein systems

and membrane protein systems were compared here. As the

implicit water model and implicit membrane model were used in

soluble protein systems and membrane protein systems

respectively, the performance of MM/PB(GB)SA with two

kind of models was different. Moreover, the performance of

MM/PB(GB)SA in the whole system (soluble protein systems

andmembrane protein systems) was worse than the counterparts

in soluble protein systems or in membrane protein systems,

indicating that the soluble protein systems and membrane

protein systems should be processed separately in MM/

PB(GB)SA calculations.

The accuracies of MM/GBSA and MM/PBSA were also

compared in this paper. Originally, MM/GBSA is considered

to be the approximated form of MM/PBSA to some extent.

However, MM/PBSA does not perform significantly better

than MM/GBSA in our work as well as other publications

(Hou et al., 2011a; Chen et al., 2016). This might be because

MM/PBSA model is more sensitive to the parameter set,

including the dielectric constant. Hou et al. (2011a) pointed

out that the Parse parameter set performs badly in solvation

free energy calculation for complex functional groups, such as

residue side chain analogs. Therefore, MM/GBSA model is

recommended in this paper because of its high accuracy,

robustness and low computing resource cost.

The RESP chargemethod significantly improves the performance

of MM/PB(GB)SA in our study, which is quite unexpected but

consistent with the previous study (Xu et al., 2013). Previously, it

was considered to be a weak factor in the accuracy ofMM/PB(GB)SA

due to the limitation of computing resources. In fact, the correctness

of RESP charge itself sharply depends on the choice of density

functions and basis sets (Schauperl et al., 2020). Nowadays, the

growing computing resources makes computing RESP charge with

a more expensive combination of density functions and basis sets

possible, further improving the accuracy of MM/PB(GB)SA

calculation. That should also be the reason why RESP_DFT

performs better than RESP_HF in some systems.

The simulation of halogen bonds is also evaluated in this study.

The role of halogen atoms in halogen bonds is divided into halogen

bond acceptor and donor. Different from the halogen bonds with

halogen atoms as acceptors, the halogen bonds with halogen atoms

as donors cannot be simulated directly. As halogen bond acceptors

are electron enriched atoms (such as oxygen and nitrogen), they

tend to repel halogen atoms in molecular dynamics simulation.

However, an electrophilic region (σ-hole) can be generated outside

the halogen atoms in ligands with halogen atoms, which can attract

negative charge atoms. To address the problem, extra points with

positive charges are added to simulate halogen bonds. That is

because the extra points supply positive charges between halogen

bond acceptors and halogen atoms in halogen bonds where halogen

atoms act as halogen bond donors. And the halogen atoms can be

close to halogen bond acceptors by attracting the extra points

between them. In our study, ligands can form halogen bonds

FIGURE 3
(A) The dielectric regions in GPBAR systems. (B) The complex structure of mPGES protein and its ligand. (C) The complex structure of
OX1 protein and its ligand. (D) The complex structure of GPBAR protein and its ligand. (E) The side view of the mPGES complex structure. (F) The side
view of the OX1 complex structure. (G) The side view of the GPBAR complex structure.
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with the carboxylic acid group of ASP86 in CDK2 protein and the

main chain oxygen atom of GLY219 in thrombin protein. As a

result, the MM/PB(GB)SA performs better by adding extra points.

The study of halogen bonds suggests that extra points benefit the

performance of MM/PB(GB)SA in the systems which can form

halogen bonds.

The MM/GBSA models supply fast and low-costing methods to

predict the ligand binding free energy. The performance of different

GBmodels is compared in our testing cases. As a result, the difference

among GBHCT, GBOBC, GBOBC2, and GBneck models is slight.

GBneck2 shows the worst performance in all threemembrane-bound

protein systems, which is out of our expectations. That may be

because the GBneck2 model is more sensitive to radii setts. In the

Amber reference manual, mbondi3 radii are recommended with

GBneck2, which is not adapted in our simulation.

As membrane-bound proteins are embedded in lipid

bilayers, nonpolar solvation-free energy is also important in

the ligand binding process. Two different methods computing

nonpolar solvation energy are implemented in the MMPBSA. py

program. In the first method (inp = 1), nonpolar solvation free

energy linearly depends on the solvent-accessible surface area.

In the second method (inp = 2), nonpolar solvation free energy

consists of the cavity term and the dispersion term, which are

also related to the solvent accessible surface area. As a result, the

first method (inp = 1) performs better in the mPGES system, but

worse in GPBAR and OX1 systems. It suggests that no nonpolar

solvation free energy computing method is generally better in

MM/PBSA calculations. The reason why those methods

perform differently in the three systems might be the

different positions of the binding pocket. The binding modes

of those three systems are shown in Figure 3. In mPGES systems

(Figures 3B,E), the ligands bind at the interface of protein and

lipids. Therefore, the ligands show strong interaction with both

protein and lipids. In GPBAR and OX1 systems (Figures

3C,D,F,G), the ligands bind at the center of protein and are

surrounded by amino acid residues. Therefore, the ligands show

weak interaction with lipids.

In membrane-bound protein systems, binding pockets are

surrounded by lipids and residues. Therefore, the membrane

dielectric constant and internal dielectric constant both play

important roles in MM/PBSA calculations. In our study, a higher

membrane dielectric constant (higher than 3) contributes to the

performance of MM/PBSA calculation for most membrane-bound

protein systems. Notably, a higher membrane dielectric constant

makes MM/PBSA model performs markedly better in mPGES

systems. However, the membrane dielectric constant slightly

affects the prediction accuracy of MM/PBSA in GPBAR and

OX1 systems. The reason for the different performance of the

membrane dielectric constant in different systems is the position

of binding pocket. The binding pocket of mPGES protein is next to

the membrane (Figures 3B,E), while the binding pockets in GPBAR

and OX1 systems are only surrounded by protein (Figures

3C,D,F,G). Our findings are consistent with previous study

(Greene et al., 2016). In contrast, proteins show stronger

interaction with ligands. Thus, the performance of MM/PBSA is

affected by the internal dielectric constant. Similar to the membrane

dielectric constant, a higher internal dielectric constant also

contributes to the performance of MM/PBSA calculation. This

result is also supported by the previous study (Sun et al., 2014).

In conclusion, the recommended values of membrane dielectric

constant (7.0) and internal dielectric constant (20.0) are appropriate

in those three membrane-bound protein systems. It might be

feasible for other membrane-bound protein systems as well.

Finally, we also compare the performance of MM/PB(GB)SA

with docking and FEP. Compared to docking, MM/PB(GB)SA is

more accurate but computing resources consuming. Compared

to the FEPmethod, MM/PB(GB)SA shows similar ΔG prediction

ability and costs much less computational resources (Wang et al.,

2019). Therefore, considering the balance between accuracy and

computing resources, docking is suggested for massive drug

FIGURE 4
(A) Correlation between FEP-predicted binding free energies and experimental data for six soluble protein systems. Data is reported by Wang
et al., 2015. (B)Correlation betweenMM/GBSA-predicted binding free energies and experimental data for six soluble protein systems. (C)Correlation
between MM/GBSA-predicted binding free energies and experimental data for three membrane protein systems.
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virtual screening, whereasMM/GBSA is suggested for small-scale

virtual screening and lead compound optimization. In addition,

the great performance ofMM/PB(GB)SA in CDK2 and thrombin

systems shows that the addition of extra points in MD simulation

results in a higher accuracy of protein-ligand binding energy

predictions by modeling halogen bonds.

In summary, we have systemically investigated the effect of the

ligand charge method, protein force field, extra point, GB model,

nonpolar optimization method, internal dielectric constant and

membrane dielectric constant on the performance of MM/

PB(GB)SA using 177 ligands and nine proteins. In terms of

the ligand charge method, quantum chemistry supplies a more

accurate method than the semi-empirical and empirical

methods. A higher-level basis set in QM calculation

contributes to the accuracy of MM/PB(GB)SA. In addition,

adding extra points improves the performance of MM/

PB(GB)SA in the systems that can form halogen bonds. No

obvious transformation of the accuracy of MM/PB(GB)SA is

found with different protein force fields. No GBmodel shows the

best performance in all systems and a modified GBneck2 model

(igb = 8) shows the worst performance in all three systems

because the GBneck2 model is more sensitive with radii setts.

Finally, a higher interior dielectric constant and membrane

dielectric constant are necessary to improve the rescoring

accuracy of MM/PBSA calculations. The recommended values

of membrane dielectric constant (7.0) and internal dielectric

constant (20.0) are appropriate in those three membrane-bound

protein systems and may be suitable for other membrane-bound

protein systems. After optimizing appropriate parameters, the

performance of MM/PB(GB)SA with docking and free energy

perturbation (FEP) are compared in Table 3. MM/PB(GB)SA

shows quite remarkable performance with FEP and better

performance with docking in accuracy. All in all, MM/

PB(GB)SA shows powerful ranking capability in all nine

systems. Meanwhile, the stability and robustness of MM/

PB(GB)SA are determined by the parameters mentioned above.
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