
Efficient Synthesis of 2,39-Spirobi
(Indolin)-29-Ones and Preliminary
Evaluation of Their Damage to
Mitochondria in HeLa Cells
Huajie Li 1,2†, Zhenjie Yu1,2†, Haoyi Sun1,2†, Bo Liu1,2, Xin Wang1,2, Zhe Shao1,2,
Meiling Wang1,2, Weilin Xie1,2, Xingang Yao3, Qingqiang Yao1,2* and Ying Zhi1,2*

1School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, China, 2Institute of Materia
Medica, Shandong Academy of Medical Sciences, Jinan, China, 3School of Pharmaceutical Sciences, Southern Medical
University, Guangzhou, China

A novel formal (4 + 1) annulation between N-(o-chloromethyl)aryl amides and 3-
chlorooxindoles through in situ generated aza-ortho-QMs with 3-chlorooxindoles is
reported for the synthesis of a series of 2,3′-spirobi (indolin)-2′-ones in high yields.
Under structured illumination microscopy, compound 3a is found to change the
mitochondrial morphology and induce mitophagy pathway, which might then trigger
mitophagy in cancer cells.
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1 INTRODUCTION

The high prevalence and fatal incidence of cancer in the population worldwide has fueled an
intensified search for new therapeutic treatment options. Chemotherapy is one of the most common
strategies. The major challenging factors in developing cancer chemotherapeutics is to increase
selectivity and to reduce side effects toward normal cells and tissues. (Wheeler et al., 2013) Since the
efficacy and toxicity of a drug is closely associated with its subcellular distribution, interest in
subcellular organelle-targeting theranostics is substantially increasing. (Kang, 2018).

Among organelles, mitochondria which is a regulatory center for cellular energy metabolism,
substance synthesis and death, function as dynamic networks that often come in varied
morphologies and subcellular distribution to fulfill their multiple tasks and thus have received
substantial attention. (Li et al., 2020; Chen H. et al., 2021; Zou et al., 2021) Amount of researches
disclosed that many human diseases have been closely related with functional mitochondria, such as
neurodegenerative disorders, cardiovascular disorders, metabolic disorders, and cancers. (Cho et al.,
2020) Recent studies demonstrated dramatic alterations in mitochondrial form during the early
stages of cell apoptosis that is a fragmentation of the network and the remodeling of the cristae,
indicating mitochondria are closely associated with apoptotic pathways. (Karbowski and Youle,
2003) Moreover, accumulating evidence indicates that the occurrence, development and metastasis
of tumors has been linked to mitochondrial dysfunction and malfunctions, whose morphology is
sensitive to their effects, featuring mitochondria a striking target in the design of anti-cancer drugs.
(Mo et al., 2012; Hao et al., 2019) So far, some interesting and innovative examples have been
reported, such as the increased anti-tumor effect of photodynamic therapy through the regulation of
mitochondrial form by paclitaxel. (Zhao et al., 2017) However, these therapies are not yet in the
preclinical phase. Therefore, the search for new natural or synthetic compounds that can target
mitochondria as anticancer treatment is imperative.
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The 3,3′-pyrrolidinyl-spirooxindole skeleton is a privileged
class of heterocyclic motifs, which form the core of a large family
of bioactive oxindole alkaloids and medicinally important
compounds. (Kumar et al., 2008; Girgis, 2009; Zhao et al.,
2013a; Zhao et al., 2013b; Arumugam et al., 2021; Liu et al.,
2021) For instance, coerulescine, the simplest prototype member,
was isolated from Horsfieldia superba, extracts of which have
found use in indigenous medicine. (Neil et al., 1997)
Spirooxindole derivative DS-3032b exhibits MDM2 inhibitory
activity employed in the treatment of patients with advanced solid
tumors and lymphomas (Figure 1). (Gounder et al., 2016) Their
notable biological activities prompted the development of
numerous strategies toward the syntheses of 3,3′-pyrrolidinyl-
spirooxindole moiety. (Cao and Zhou, 2015; He et al., 2020; Liu X.
et al., 2020; Nakamura et al., 2020; Reddy et al., 2020; Bortolami
et al., 2021; Nasri et al., 2021; Saranya et al., 2021) Nevertheless,
the construction of the structurally similar spirobi (indolin)
frameworks (Skeleton B, Figure 1 bottom left) has been less
studied, and until now, only two synthetic methods have been
reported for the synthesis of 2,3′-spirobi (indolin)-2′-ones. (Gui
et al., 2019; Wang et al., 2019) In 2019, Shi and co-workers
pioneered the (4 + 1) annulation of 3-isothiocyanato oxindoles
and aza-o-quinone methides, affording the corresponding
condensed products in two steps. Meanwhile, Zhong’s group
reported an ioide salts catalyzed functionalization of carbonyl
compounds with sulfonamides.

Although these were elegant and creative strategies, it is still
highly desirable to develop a concise protocol to construct the
2,3′-spirobi (indolin)-2′-ones framework from readily available
starting materials, especially under mild conditions. Based on our
research expertise in the field of domino-cycloaddition, (Enders
et al., 2015; Zhao et al., 2016a; Zhao et al., 2016b; Zhi et al., 2016;
Zhi et al., 2018) we envisioned that the assembly of 2,3′-spirobi
(indolin)-2′-ones 3 could be realized through a formal (4 + 1)

reaction between in situ generated aza-ortho-QM 2′ from N-
(o-chloromethyl) aryl amide 2 and 3-chloroindolin-2-one 1 in the
presence of an appropriate base (Scheme 1). We hope this
annulation reaction could provide a general and
straightforward method to access 2,3′-spirobi (indolin)-2′-ones
3 that will serve as the basis for evaluation of bioavailabilty
especially their effect on mitochondria which is understudied.

2 RESULTS AND DISCUSSIONS

2.1 Chemistry
To test the feasibility of our hypothesis, we chose 3-
chloroindolin-2-one 1a and N-[2-(chloromethyl) phenyl]-4-
methylbenzenesulfonamide 2a as the model substrates to
optimize the reaction conditions (Table 1). First, an initial
experiment was conducted in ethyl ester at room temperature
in the presence of Cs2CO3. To our delight, the expected
product 3a was obtained in a yield of 15% (Table 1, entry
1). To improve the reaction yield, the commonly used organic
base Et3N was tested while there was no compound 3a
obtained. We found that the use of the suitable base is very
crucial for the success of this reaction and thus an extensive
screening of base was performed (Table 1, entries 3–6).
Fortunately, inorganic bases K2CO3 and NH4HCO3

delivered the desired product 3a in 80 and 82% yield
respectively. Striving for higher efficiency, kinds of solvents
and different temperature were screened and the best result
was obtained by raising the reaction temperature to 40°C and
using MTBE as the solvent, leading to the desired product 3a in
a yield of 88% (Table 1, entry 17).

Having identified the optimal reaction conditions, the
substrate scope of the new protocol was explored and the
results are shown in Table 2. Initially, we examined the

FIGURE 1 | Representative biologically active 3,3′-pyrrolidinyl-spirooxindoles.
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generality of 3-chloro isatin component. A variety of isatins 1
underwent the formal (4 + 1) aunulation reaction to furnish 3b-
3g in 70–90% yield. Notably, substrates bearing electron-
donating (R � Me, OCF3) or electron-withdrawing groups (R

� Cl, Br) at the C5 position of the phenyl ring of 1 underwent this
annulation process to furnish the corresponding products in good
to excellent efficiencies (3b-3e). Moreover, the C7 position
substituted compounds were suitable substrates, and the target

FIGURE 2 | LHJ-090 (3a) damage mitochondria and stimulate the process of mitophagy. (A) The cell viability (%) obtained with cck8 assay. Percentage of viable
HeLa cells after treated with different concentrations of 3a (0 10, 20, 30 and 50 μM) for 24 h (B,C) SIM imaging of mitochondria in HeLa cells were treated with 3a (10 μM)
for 0, 12, and 24 h and then stained with the mitochondrial tracker probe (mito-tracker-green, MTG) (λex � 488 nm) for 0.5 h. (D) Quantitative analyze of mitochondrial
morphology in HeLa cells after treated with 3a for 0, 12, and 24 h. Data was appeared as Mean ± SEM (n � 5). *p < 0.05, all compared with untreated cells. (E) The
cell viability (%) obtained with CCK-8 assay at high concentration 3a stimulation, more than 150 μM shows toxicity to cells. (F,G) SIM colocalization images of MTG-
stained mitochondria and LTR-stained lysosome with (G) or without (F) 3a treatment, the white solid square indicates fluorescence intensity. (H) The PCC values for
MTG and LTR in HeLa cells from (F) and (G). (I) A schematic diagram of the role of 3a in mitochondrial damage.
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products 3f-3g were synthesized with good results under the
optimal condition. However, if fluoro group was introduced at
the C7 position of isatin 1, the yield of the reaction under the
optimal condition was very low. Next, the substrate scope of this
reaction was examined further by varying the reaction partner 2.
We found that all the substrates 2h-2n reacted efficiently with 1a,
furnishing the desired products (Table 2, 3h–3n) in 70–92%
yield. The substitution groups on the tosyl benzene ring were well
tolerated and delivered the desired compounds with high
efficiency (Table 2, 3h–3j). Especially, substrates bearing
electron-with-drawing groups (R1 � Cl, Br) on the phenyl ring
of 2 readily ccould be easily processed to give the products in good
to excellent yields (3j–3n).

In order to test the robustness and general utility of this 1,4-
addition reaction, a gram-scale reaction was carried out under the
optimal conditions and the expected product 3a could be isolated
in 80% yield without erosion of the efficiency of this process

(Scheme 1A). In addition, as shown in Scheme 1B, the relative
configuration of compound 3n was determined unambiguously
by X-ray crystallography.

SCHEME 1 | Strategy for the synthesis of 2,3′-spirobi (indolin)-2′-ones.

SCHEME 2 | Gram-Scale synthesis (A) of N-tosylated spirobi (indolin) 3a and X-ray Structure (B) of 3n.

TABLE 1 | Reaction condition optimization studies.a

Entry Base Solvent Yieldb (%)

1 Cs2CO3 EA 15
2 Et3N EA —

3 NaHCO3 EA 38
4 Na2CO3 EA 66
5 NaOH EA 11
6 K2CO3 EA 80
7 NH4HCO3 EA 82
8 NH4HCO3 DCM 65
9 NH4HCO3 CHCl3 52
10 NH4HCO3 Et2O 61
11 NH4HCO3 Toluene 73
12 NH4HCO3 DCE 70
13 NH4HCO3 MTBE 85
14 NH4HCO3 CCl4 54
15c NH4HCO3 MTBE 88
16d NH4HCO3 MTBE 80

aAll reactions were conducted with 0.4 mmol of 1a (1.0 equiv.), 0.44 mmol of 2a (1.1
equiv.), and 1.2 mmol of base in 4.0 ml of solvent at rt.
bYield of isolated compound 3a after chromatography.
cThe reaction was conducted at 40°C.
dThe reaction was conducted at 50°C.
All the reactions were conducted with 0.4 mmol of 1 (1.0 equiv.), 0.44 mmol of 2 (1.1
equiv.) and 1.2 mmol of base in MTBE (4.0 mL) at 40°C. Yields are those of the isolated
products 3a–3n after column chromatography.
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TABLE 2 | Substrate scope.

All the reactionswere conductedwith 0.4mmol of 1 (1.0 equiv.), 0.44mmol of 2 (1.1 equiv.) and 1.2mmol of base inMTBE (4.0mL) at 40°C. Yields are those of the isolated products 3a–3n
after column chromatography.
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2.2 Super-resolution Imaging Reveals 3a
(LHJ-090) Changes Mitochondrial
Morphology and Distribution
After the series of 2,3′-spirobi (indolin)-2′-ones were synthesized,
3a was selected to evaluate its damage effect on mitochondria. To
verify the cytotoxicity of 3a, we chose a colorimetric
measurement tool commonly used in laboratories, CCK-8,
(Lou et al., 2010) which relies on WST-8 that can be reduced
by mitochondrial dehydrogenase (such as succinate
dehydrogenase, SDH) to produce a highly water-soluble
orange-yellow formazan product for counting the number of
live cells (Figure 2A). (Liu L. Y. et al., 2020) We found that the
cells did not respond to the detection threshold for the CCK-8
assay after treatment with 3a at the concentration ranging from
10 to 50 μM. As it is generally accepted that the activity of SDH
was applied as an indicator to evaluate the tricarboxylic acid cycle
for reflecting cell activity rather than mitochondria behavior,
(Farshbaf and Kiani-Esfahani, 2018) colorimetric tools based on a
large number of cells are inaccurately for clarifying the regulation
of drugs on a single mitochondria.

To more accurately reflect the damage of 3a to the
mitochondria, we applied recently developed structured
illumination microscopy (SIM), a new tool for investing the
effect of drugs at the single mitochondria level in living cells.
(Wei et al., 2022) SIM based on a known spatially structured
pattern of light to excite a sample whose fringe position and
direction can be changed multiple times and to record the
emission fluorescence signal at each position, thereby
providing up to 100 nm spatial resolution. (Chen et al., 2018)
Therefore, this tool can help us accurately and quantitatively
study the behavior of 3a at the nanoscale in living cells system.

Next, we checked the 3a at the concentration of 10 μM in
HeLa cells, and then observed it under SIM. We used a
commercial mitochondrial probe (Mito-Tracker Green,
MTG) to label mitochondria in HeLa cells after 3a
stimulation. (Chen et al., 2020a; Zhang et al., 2021)
Compared to the SIM images captured at 0 h (Figure 2B),
we observed that mitochondrial morphology has changed from
fibrous-like to round-like after the 3a treatment for 12 and 24 h
(Figure 2C), showing the mitochondria were destroyed. To
evaluate the mitochondrial morphology, the length-to-width
ratio (L/W), was introduced as previously reported. (Shao
et al., 2020) This system propose four standards to measure
the morphology of mitochondria, namely round or nearly
round (1.0 ≤ L/W < 1.5), intermediate (1.5 ≤ L/W < 2.0),
tubular (2.0 ≤ L/W < 5.0), and hyperfused (L/W ≥ 5.0). We
then quantify the distribution of individual mitochondria in
HeLa cells, and found that the distribution of mitochondrial
morphology was changed with the 3a treatment for 12 and 24 h
(Figure 2D), indicating that 3a at 10 μM could damage
mitochondrial morphology’s distribution.

Finally, we increased the concentration of 3a to check the
detection threshold of CCK-8, and found that it could not be
responded until 150 μM (Figure 2E), which shows that SIM is
more accurate in exploring the sensitivity of drugs to subcellular
behavior.

2.3 3a Damages Mitochondria Which Then
Involved in the Process of Mitophagy
Mitophagy is a process by which cells remove and degrade
damaged mitochondria, and its typical feature is the overlap of
lysosomes and mitochondria. (Chen et al., 2020b; Chen Q. et al.,
2021) After clarifying that 3a can damage mitochondria, we
further studied whether drug-induced mitochondrial damage is
involved in the mitophagy pathway.

We then use MTG and commercial lysosomal probe (Lyso-
Tracker Red, LTR) to simultaneously label drug-treated HeLa
cells. (Wang et al., 2020; Zhang C. et al., 2021) Results revealed
that the mitochondria was damaged to be granular after 24 h of
the drug treatment as the green mitochondria stained by MTG
and the red lysosome stained by LTR overlapped into yellow
(Figure 2F). Compared with that in untreated cells, the overlap of
mitochondria and lysosome in cells treated with 3a for 24 h was
increased significantly (Figure 2G). Together, these results
suggested that 3a induced the change of mitochondrial
morphology, and then triggered the mitophagy pathway.

3 CONCLUSION

Taken together, we reported a novel (4 + 1) annulation reaction
between 3-chlorooxindoles and N-(o-chloromethyl) aryl amides
through in situ generated aza-ortho-QM with 3-chlorooxindoles
for the efficient synthesis of various 2,3′-spirobi (indolin)-2′-ones
in good to excellent yield under mild conditions. By using the
highly accurate tool structured illumination microscopy, we
found that compound 3a could damage the distribution of
mitochondrial form and induce mitophagy pathway, which
finally might promote the mitophagy in cancer cells. Further
efforts are in progress to evaluate the antiproliferative activity of
these spiropyrrolidine analogs against tumor cell lines.

4 EXPERIMENTAL SECTIONS

4.1 Chemistry
4.1.1 General Information
The chemical reagents are commercially available and were used
without further purification. Reactions were monitored by Thin
Layer Chromatography (TLC) (Silica gel HF254 or GF254 from
Qingdao Haiyang Chemical Co., Ltd., Qingdao, China), and the
spots were visualized with ultraviolet irradiation (254 nm).
Compounds were purified by solvent beating or silica gel
column chromatography (200–300 mesh). 1H NMR and 13C
NMR spectra were recorded on a Bruker AVANCE AV III
600 spectrometer using CDCl3 or d-DMSO as solvent. Data
for 1H NMR are reported as follows: chemical shift (ppm),
multiplicity (s � singlet, d � doublet, t � triplet, q � quartet,
dd � doublet of doublet, td � triplet of doublet, m �multiplet, br �
broad), integration, and coupling constant (Hz). Data for 13C
NMR are reported in terms of chemical shift and multiplicity
where appropriate. High resolution mass spectra (HRMS) were
obtained from Thermo Scientific Q Exactive Plus. The melting
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points were determined by Büchi 510 apparatus without
corrected.

4.1.2 General Procedure for the Synthesis of Products
3a-3n
To an oven-dried flask were added 1 (0.4 mmol, 66.8 mg, 1.0
equiv), 2 (0.44 mmol, 130 mg, 1.1 equiv) and NH4HCO3

(1.2 mmol, 94.9 mg, 3.0 equiv) followed by the addition of
MTBE (4.0 ml). The reaction mixture was allowed to stir at
40°C for 17 h and then directly poured into water. The solution
was extracted with dichloromethane (3 × 15 ml). The organic
phases were combined, washed with brine and dried over
Na2SO4. Then the solvent was evaporated to give a crude
product which was purified by silica gel chromatography
(hexane/ethyl acetate � 10/1 to 4/1) to provide the desired
products 3a-3n. The scale-up synthesis of 3a was the same as
the above steps.

(S)-1-Tosyl-2,3′-spirobi (indolin)-2′-one (3a)
According to general procedure, the crude product was

purified by silica gel chromatography (hexane/ethyl acetate �
10/1 to 4/1) to provide 3a as a white solid (132.6 mg, 88% yield).
mp: 267–269°C.1H NMR (400 MHz, DMSO-d6) δ 10.76 (s, 1H),
7.70 (d, J � 8.4 Hz, 2H), 7.33 (d, J � 8.4 Hz, 2H), 7.28–7.17 (m,
4H), 7.04–7.00 (m, 1H), 6.94 (d, J � 8.4 Hz, 1H), 6.83 (d, J �
7.6 Hz, 1H), 6.76 (d, J � 7.6 Hz, 1H), 3.54 (d, J � 16.0 Hz, 1H), 3.23
(d, J � 16.4 Hz, 1H), 2.36 (s, 3H) ppm; 13C NMR (150 MHz,
CDCl3) δ 177.5, 144.1, 141.6, 139.5, 136.4, 130.9, 129.8, 129.5
(2C), 128.1, 128.0 (2C), 127.2, 125.2, 123.0, 123.0, 122.9, 112.5,
110.6, 71.7, 42.2, 21.6 ppm. HRMS (ESI): m/z (M + H)+ calcd for
C22H19N2O3S

+ 391.1116; found 391.1112.
(S)-5′-Chloro-1-Tosyl-2,3′-Spirobi (indolin)-2′-One (3b)
According to general procedure, the crude product was

purified by silica gel chromatography (hexane/ethyl acetate �
10/1 to 4/1) to provide 3b as a white solid (140 mg, 82% yield).
mp: 253–255°C. 1H NMR (400 MHz, DMSO-d6) δ 10.91 (s, 1H),
7.59 (d, J � 8.0 Hz, 2H), 7.36–7.23 (m, 6H), 7.05 (t, J � 7.2 Hz,
1H), 6.95 (d, J � 8.4 Hz, 1H), 6.50 (s, 1H), 3.51 (d, J � 16.4 Hz,
1H), 3.30 (d, J � 16.4 Hz, 1H), 2.36 (s, 3H) ppm; 13C NMR
(100 MHz, DMSO-d6) δ 176.8, 145.0, 141.5, 140.6, 136.3, 131.7,
130.1 (2C), 130.0, 128.6, 127.8, 127.6, 126.3, 126.0, 123.6 (2C),
123.3, 112.5, 112.4, 71.4, 41.7, 21.5 ppm; HRMS (ESI): m/z (M +
H)+ calcd for C22H18ClN2O3S

+ 425.0727; found 425.0718.
(S)-1-Tosyl-5’-(trifluoromethoxy)-2,3′-spirobi (indolin)-2′-

one (3c)
According to general procedure, the crude product was

purified by silica gel chromatography (hexane/ethyl acetate �
10/1 to 4/1) to provide 3c as a white solid (142 mg, 75% yield).
mp: 98–102°C. 1H NMR (600 MHz, DMSO-d6) δ 10.96 (s, 1H),
7.69 (d, J � 8.4 Hz, 2H), 7.34 (d, J � 8.4 Hz, 2H), 7.30 (d, J �
8.4 Hz, 1H), 7.27 (d, J � 7.8 Hz, 1H), 7.24–7.20 (m, 2H), 7.05–7.02
(m, 2H), 6.74 (s, 1H), 3.54 (d, J � 16.2 Hz, 1H), 3.33 (d, J �
15.6 Hz, 1H), 2.36 (s, 3H) ppm; 13C NMR (150 MHz, DMSO-d6)
δ 177.1, 145.0, 143.6, 143.5 141.5, 140.9, 136.4, 132.1, 130.2
(2C),128.5, 127.7 (2C), 125.9, 123.6, 116.8, 112.4, 111.8, 71.7,
41.8, 21.4 ppm; HRMS (ESI): m/z (M + H)+ calcd for
C23H18F3N2O4S

+ 475.0939; found 475.0935.
(S)-5′-Methyl-1-Tosyl-2,3′-Spirobi (indolin)-2′-One (3d)

According to general procedure, the crude product was
purified by silica gel chromatography (hexane/ethyl acetate �
10/1 to 4/1) to provide 3d as a white solid (132 mg, 82% yield).
mp: 282–284°C. 1H NMR (400 MHz, DMSO-d6) δ 10.64 (s,
1H), 7.55 (d, J � 8.0 Hz, 2H), 7.34–7.25 (m, 5H), 7.07–7.02 (m,
2H), 6.83 (d, J � 8.0 Hz, 1H), 6.34 (s, 1H), 3.51 (d, J � 16.4 Hz,
1H), 3.20 (d, J � 18.8 Hz, 1H), 2.36 (s, 3H), 2.01 (s, 3H) ppm;
13C NMR (150 MHz, CDCl3) δ 177.5, 143.9, 141.8, 137.1,
136.6, 132.5,130.4, 130.1, 129.3 (2C), 128.1, 127.9 (2C),
127.3, 125.2, 123.7, 123.0, 112.6, 110.3, 71.6, 42.2, 21.5,
20.8 ppm; HRMS (ESI): m/z (M + H)+ calcd for
C23H21N2O3S

+ 405.1273; found 405.1261.
(S)-5′-Bromo-1-Tosyl-2,3′-Spirobi (indolin)-2′-One (3e)
According to general procedure, the crude product was

purified by silica gel chromatography (hexane/ethyl acetate �
10/1 to 4/1) to provide 3e as a white solid (169 mg, 90% yield).
mp: 269–273°C.1H NMR (400 MHz, DMSO-d6) δ 10.91 (s, 1H),
7.56 (d, J � 8.0 Hz, 2H), 7.44 (d, J � 8.0 Hz, 1H), 7.37 (d, J �
8.0 Hz, 1H), 7.31–7.25 (m, 4H), 7.06 (t, J � 7.6 Hz, 1H), 6.91 (d,
J � 8.0 Hz, 1H), 6.57 (s, 1H), 3.51 (d, J � 16.0 Hz, 1H), 3.30 (d, J �
16.4 Hz, 1H), 2.37 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6)
δ 176.6, 145.0, 141.5, 141.0, 136.3, 132.9, 132.0, 130.2 (2C), 128.6,
127.8, 127.5 (2C), 126.0, 125.9, 123.7, 114.0, 112.9, 112.5, 71.3,
41.7, 21.6 ppm; HRMS (ESI): m/z (M + H)+ calcd for
C22H18BrN2O3S

+ 469.0222; found 469.0196.
(S)-7′-Chloro-1-Tosyl-2,3′-Spirobi (indolin)-2′-One (3f)
According to general procedure, the crude product was

purified by silica gel chromatography (hexane/ethyl acetate �
10/1 to 4/1) to provide 3f as a yellow solid (119 mg, 70% yield).
mp: 250–255°C.1H NMR (600 MHz, DMSO-d6) δ 11.24 (s, 1H),
7.74 (d, J � 8.4 Hz, 2H), 7.37 (d, J � 7.8 Hz, 3H), 7.26 (d, J �
7.2 Hz, 1H), 7.22 (t, J � 7.8 Hz, 1H), 7.16 (d, J � 8.4 Hz, 1H), 7.03
(t, J � 7.2 Hz, 1H), 6.88 (t, J � 7.8 Hz, 1H), 6.78 (d, J � 7.8 Hz, 1H),
3.55 (d, J � 16.2 Hz, 1H), 3.30 (d, J � 16.2 Hz, 1H), 2.37 (s, 3H)
ppm; 13C NMR (150 MHz, DMSO-d6) δ 176.7, 144.5, 140.9,
138.8, 135.8, 132.3, 129.8 (2C),128.0, 127.5 (2C),127.3, 125.5,
123.5, 123.1, 121.1, 114.5, 111.8, 71.8, 41.6, 21.0 ppm; HRMS
(ESI): m/z (M + H)+ calcd for C22H18ClN2O3S

+ 425.0727; found
425.0725.

(S)-7′-bromo-1-tosyl-2,3′-spirobi (indolin)-2′-one (3g).
According to general procedure, the crude product was

purified by silica gel chromatography (hexane/ethyl acetate �
10/1 to 4/1) to provide 3g as a yellow solid (135 mg, 72% yield).
mp: 270–274°C.1H NMR (400 MHz, CDCl3) δ 7.88 (d, J � 8.4 Hz,
2H), 7.74 (s, 1H), 7.40 (d, J � 8.0 Hz, 1H), 7.25 (d, J � 9.6 Hz, 2H),
7.21–7.15 (m, 3H), 7.01–6.93 (m, 2H), 6.80 (t, J � 7.6 Hz, 1H),
3.73 (d, J � 15.6 Hz, 1H), 3.21 (d, J � 15.6 Hz, 1H), 2.39 (s, 3H)
ppm; 13C NMR (150 MHz, CDCl3) δ 176.2, 144.4, 141.4, 138.7,
136. 2, 132.5, 132.4, 129.6 (2C), 128.2, 128.1 (2C), 126.8, 125.2,
124.4, 123.1, 121.5, 112.4, 103.6, 72.9, 42.3, 21.6 ppm; HRMS
(ESI): m/z (M + H)+ calcd for C22H18BrN2O3S

+ 469.0222; found
469.0222.

(S)-1-[(4-methoxyphenyl)sulfonyl]-2,3′-spirobi (indolin)-2′-
one (3h)

According to general procedure, the crude product was
purified by silica gel chromatography (hexane/ethyl acetate �
10/1 to 4/1) to provide 3h as a white solid (113.7 mg, 70% yield).
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mp: 245–248°C.1H NMR (600 MHz, CDCl3) δ 7.87 (d, J � 9.0 Hz,
2H), 7.71 (s, 1H), 7.25–7.23 (m, 2H), 7.19–7.15 (m, 2H), 6.99 (t, J
� 7.2 Hz, 1H), 6.95 (d, J � 7.2 Hz, 1H), 6.92 (d, J � 7.8 Hz, 1H),
6.89- 6.86 (m, 3H), 3.83 (s, 3H), 3.74 (d, J � 15.6 Hz, 1H), 3.22 (d, J
� 16.2 Hz, 1H) ppm; 13C NMR (150 MHz, CDCl3) δ 177.4, 163.3,
141.7, 139.4, 131.0, 130.9, 130.3 (2C), 129.7, 128.1, 127.2, 125.2,
123.1, 122.9, 122.9, 114.1 (2C), 112.4, 110.5, 71.7, 55.6, 42.2 ppm;
HRMS (ESI): m/z (M + H)+ calcd for C22H19N2O4S

+ 407.1065;
found 407.1062.

(S)-1-(phenylsulfonyl)-2,3′-spirobi (indolin)-2′-one (3i)
According to general procedure, the crude product was

purified by silica gel chromatography (hexane/ethyl acetate �
10/1 to 4/1) to provide 3i as a red solid (132.5 mg, 88% yield). mp:
138–140°C.1H NMR (400 MHz, DMSO-d6) δ 10.77 (s, 1H), 7.81
(d, J � 7.6 Hz, 2H), 7.67 (t, J � 7.2 Hz, 1H), 7.53 (t, J � 7.6 Hz, 2H),
7.29–7.23 (m, 4H), 7.06–7.02 (m, 1H), 6.95 (d, J � 8.0 Hz, 1H),
6.80 (t, J � 7.2 Hz, 1H), 6.73 (t, J � 7.2 Hz, 1H), 3.55 (d, J �
16.2.4 Hz, 1H), 3.25 (d, J � 16.4 Hz, 1H) ppm; 13C NMR
(100 MHz, DMSO-d6) δ 177.1, 141.6, 141.5, 139.34, 134.2,
130.8, 130.2, 129.7 (2C), 128.4, 128.0, 127.8 (2C), 125.9, 123.5,
123.0, 122.5, 112.3, 110.8, 71.8, 42.1 ppm; HRMS (ESI): m/z (M +
H)+ calcd for C21H17N2O3S

+ 377.0960; found 377.0955.
(S) -1-[(4-fluorophenyl)sulfonyl]-2,3′-spirobi (indolin)-2′-

one (3j)
According to general procedure, the crude product was

purified by silica gel chromatography (hexane/ethyl acetate �
10/1 to 4/1) to provide 3j as a red solid (141 mg, 90% yield). mp:
207–210°C. 1H NMR (400 MHz, DMSO-d6) δ 10.80 (s, 1H),
7.88–7.85 (m, 2H), 7.38 (t, J � 13.2 Hz, 2H) 7.29–7.25 (m,
4H), 7.07–7.03 (m, 1H), 6.95 (d, J � 7.6 Hz, 1H), 6.81 (t, J �
7.6 Hz, 1H), 6.73 (d, J � 7.2 Hz, 1H) 3.55 (d, J � 16.4 Hz, 1H), 3.25
(d, J � 16.4 Hz, 1H) ppm; 13C NMR (125 MHz, CDCl3) δ 177.7,
141.4, 139.7, 136.4, 130.8, 130.8, 130.5, 130.0, 128.2, 127.3, 125.4,
123.3, 123.0, 122.8, 116.2, 116.1, 112.5, 110.9, 71.8, 42.2,
29.7 ppm; HRMS (ESI): m/z (M + H)+ calcd for
C21H16FN2O3S

+ 395.0866; found 395.0863.
(S)-4-Chloro-1-tosyl-2,3′-spirobi (indolin)-2′-one (3k)
According to general procedure, the crude product was

purified by silica gel chromatography (hexane/ethyl acetate �
10/1 to 4/1) to provide 3k as a red solid (132.6 mg, 78% yield).
mp: 222–226°C.1H NMR (600 MHz, CDCl3) δ 8.07 (s, 1H), 7.76
(d, J � 7.6 Hz, 2H), 7.26 (t, J � 9.6 Hz, 1H), 7.22–7.18 (m, 3H),
7.14 (t, J � 8.4 Hz, 1H), 6.98 (d, J � 7.8 Hz, 1H), 6.94 (t, J � 7.8 Hz,
2H),6.88 (t, J � 7.8 Hz, 1H) 3.72 (d, J � 16.8 Hz, 1H), 3.30 (d, J �
16.2 Hz, 1H), 2.38 (s, 3H) ppm; 13C NMR (150 MHz, CDCl3) δ
177.1, 144.5, 142.9, 139.6, 136.2, 131.0, 130.6, 123.0, 129.7, 129.6
(2C),128.0 (2C),125.7, 123.1, 123.2, 123.0, 110.7, 110.6, 71.4, 41.5,
21.6 ppm; HRMS (ESI): m/z (M + H)+ calcd for C22H18ClN2O3S

+

425.0727; found 425.0718.
(S)-6-Bromo-1-tosyl-2,3′-spirobi (indolin)-2′-one (3l)
According to general procedure, the crude product was

purified by silica gel chromatography (hexane/ethyl acetate �
10/1 to 4/1) to provide 3l as a white solid (137 mg, 73% yield). mp:
89–93°C.1H NMR (600 MHz, CDCl3) δ 7.76 (d, J � 8.4 Hz, 2H),
7.72 (s, 1H), 7.44 (s, 1H), 7.28-7.27 (m, 1H), 7.23 (d, J � 8.4 Hz,

2H), 7.13–7.12 (m, 1H), 7.01 (d, J � 7.8 Hz, 1H), 6.93–6.90 (M,
2H), 6.87 (d, J � 8.4 Hz, 1H), 3.65 (d, J � 16.2 Hz, 1H), 3.15 (d, J �
15.6 Hz, 1H), 2.39 (s, 3H) ppm; 13C NMR (150 MHz, CDCl3) δ
176.8, 144.5, 143.0, 139.4, 136.0, 130.4, 130.0, 129.7 (2C), 128.0
(2C),126.3, 126.2, 125.9, 123.2, 123.0, 121.7, 115.7, 110.6, 72.1,
41.7, 21.6 ppm; HRMS (ESI): m/z (M + H)+ calcd for
C22H18BrN2O3S

+ 469.0222; found 469.0108.
(S)-6-Chloro-1-tosyl-2,3′-spirobi (indolin)-2′-one (3m)
According to general procedure A, the crude product was

purified by silica gel chromatography (hexane/ethyl acetate � 10/
1 to 4/1) to provide 3m as a white solid (144.5 mg, 85% yield). mp:
174–177°C. 1H NMR (400 MHz, DMSO-d6) δ 10.79 (s, 1H), 7.69
(d, J � 8.0 Hz, 2H), 7.37 (d, J � 8.0 Hz, 2H), 7.28 (d, J � 7.6 Hz,
2H), 7.10 (d, J � 10.4 Hz, 2H), 6.94 (d, J � 8.0 Hz, 1H), 6.86–6.82
(m, 2H), 3.51 (d, J � 16.4 Hz, 1H), 3.25 (d, J � 16.4 Hz, 1H), 2.38
(s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 176.7, 145.2,
143.0, 141.6, 136.1, 132.6, 130.4, 130.3 (2C), 127.9 (2C), 127.3,
127.2 123.2, 122.6, 112.0, 110.9, 72.6, 67.5, 41.4, 25.6, 21.5 ppm;
HRMS (ESI): m/z (M + H)+ calcd for C22H18ClN2O3S

+ 425.0727;
found 425.0725.

(S)-5-Fluoro-1-tosyl-2,3′-spirobi (indolin)-2′-one (3n)
According to general procedure, the crude product was

purified by silica gel chromatography (hexane/ethyl acetate �
10/1 to 4/1) to provide 3n as a white solid (150 mg, 92% yield).
mp: 195–198°C.1H NMR (400 MHz, DMSO-d6) δ 10.77 (s,
1H), 7.67 (d, J � 8.0 Hz, 2H), 7.33 (d, J � 8.4 Hz, 2H), 7.28 (t, J �
7.6 Hz, 1H), 7.19–7.16 (m, 2H), 7.05 (d, J � 9.2 Hz, 1H), 6.94
(d, J � 8.0 Hz, 1H), 6.85-6.77 (m, 2H), 3.53 (d, J � 15.2 Hz, 1H),
3.24 (d, J � 16.4 Hz, 1H), 2.37 (s, 3H) ppm; 13C NMR
(100 MHz, DMSO-d6) δ 176.8, 144.9, 141.5, 138.0, 136.3,
130.6, 130.1 (2C), 127.9 (2C), 123.1, 122.5, 114.8, 114.5,
113.6, 113.3, 113.0, 112.9, 110.8, 41.8, 25.6, 21.5 ppm;
HRMS (ESI): m/z (M + H)+ calcd for C22H18FN2O3S

+

409.1022; found 409.1010.

4.2 Biological Part
4.2.1 Cell Culture
HeLa cells were cultured in Dulbecco’s modified Eagle’s
medium (#11965118, DMEM, Thermo Fisher Scientific)
supplemented with 10% Certified fetal bovine serum
(#C04001-500, FBS, VivaCell, Shanghai, China) penicillin
(100 units/ml), and streptomycin (100 μg/ml; #15140163,
10,000 units/ml, Thermo Fisher Scientific) in a 5% CO2

humidified incubator at 37°C.

4.2.2 OMX-SIM Super Resolution Imaging
HeLa cells were incubated with MTG and LTR at 37°C for
30 min in fresh DMEM and then washed three times with fresh
DMEM. Super-resolution images were acquired on a
commercial OMX-3D-SIM Microscope. Images were
obtained at 512 × 512 using Z-stacks with a step size of
0.125 μm. The laser model was set to fast 272 MHz, the gain
was set to 1, the output powers at the fiber end: 65 mW. All
fluorescence images were analyzed, and their backgrounds
were subtracted with Image J software.
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4.2.3 Data Analysis
Statistical analysis was performed with Prism 8 (GraphPad).
Normality and lognormality test to check the normal
distribution. In the case of normal distribution, the statistical
comparison of results was test with a Student’s t test. In the case of
non-normal distribution, the statistical comparison of results was
test with a Mann-Whitney test, with levels of significance set at n.
s. (no significant difference), *p < 0.05, **p < 0.01, ***p < 0.001,
and ****p < 0.0001. Data are presented as mean ± SEM. Analyzed
cells were obtained from three replicates. Statistical significances
and sample sizes in all graphs are indicated in the corresponding
figure legends.
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