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Psoriasis is a chronic and refractory inflammatory and autoimmune-mediated cutaneous
disease affecting approximately 2%–3% of the global population. Most of the current
therapies could relieve symptoms rapidly, while the side effects cannot be negligible.
Hence, it is urgent to explore much safer and more effective treatments. In the current
work, we evaluated the potential beneficial effect of Punica granatum peel polysaccharides
(PPPs) in an imiquimod-elicited psoriasis-like mouse model and unraveled their mechanism
of action. Firstly, PPPs were isolated from P. granatum peels, and then the molecular weight
was determined and monosaccharide analysis was performed. The results revealed that
PPPs significantly ameliorated psoriasis-like skin lesions and reduced the Psoriasis Area and
Severity Index (PASI) scores and transepidermal water loss (TEWL). PPPs also attenuated
the expressions of CD3 and Ki67 in psoriasis-like mouse skin and suppressed the serum or
skin levels of pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α),
interleukin 6 (IL-6), IL-1β, IL-8, IL-17, and IL-23. Moreover, PPPswere able to upregulate the
mRNA and protein expressions of aquaporin-3 (AQP3) and filaggrin (FLG) in the skin of mice.
In addition, PPPs inhibited the NF-κB and STAT3 signaling pathways. Overall, these results
indicated that PPPs ameliorated the symptoms of psoriasis through inhibition of the
inflammatory cytokines by suppressing the NF-κB and STAT3 signaling pathways and
improved skin barrier protection via enhancing AQP3 and FLG. These observations
potentially contribute to providing theoretical and experimental evidence for the clinical
application of PPPs for psoriasis.
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INTRODUCTION

Psoriasis is a refractory cutaneous ailment that is closely related to
immune-mediated inflammation. The pathological
manifestations of psoriasis include immune cell infiltration
and abnormal keratinocyte proliferation in the epidermis
(Greb et al., 2016). Approximately 2%–3% of the global
population suffers from psoriasis (Zhou et al., 2020). The
prevalence of psoriasis in adults is higher than that in
children. Poor quality of life has been observed in most
patients with psoriasis (Michalek et al., 2017). The primary
treatment options for psoriasis are immunosuppression and
biological agents, although these therapies can only relive
symptoms for a short time. Relapse may occur when the
treatment is ceased. Long-term use of these therapies is likely
to cause side effects, including infection and liver toxicity (Chen
et al., 2018; Mahil and Smith, 2019). Therefore, research and
development of innovative effective and safe anti-psoriatic drugs
is still an urgent need. Recently, the application of Chinese herbal
medicines in psoriasis treatment has been widely reported (Di
et al., 2021; Lu et al., 2021b; Lv et al., 2021; Yao et al., 2021).

Pomegranate peel is the dried peel of Punica granatum L., a
plant in the pomegranate family. In traditional Chinese medicine,
the functions of pomegranate peel include hemostasis, sedation,
and antibacterial. Modern pharmacological studies have
found that pomegranate peel polysaccharide has a significant
immunomodulatory effect and good antioxidant activity in
immunosuppressed mice induced by cyclophosphamide (Wu
et al., 2019). In addition, it showed a significant preventive
effect in a liver injury model induced by CCl4 (Zhai et al.,
2018b). An in vitro experiment has also shown that many
parts of P. granatum peel polysaccharides (PPPs) have strong
reducing activities and good scavenging activities to 2,2-diphenyl-
1-picrylhydrazy (DPPH) free radicals, hydroxyl groups, and
superoxide anions (Zhai et al., 2018a).

However, the protective effect of pomegranate peel
polysaccharides on the skin lesions of an imiquimod (IMQ)-
elicited psoriasis-like animal model has not been reported
previously. In the present work, we explored the protective
effects of PPPs in a psoriatic mice model and probed their
potential biological mechanism.

MATERIALS AND METHODS

Chemical and Reagents
Compound dexamethasone acetate cream (DXA) was obtained
from China Resources Sanjiu Medical and Pharmaceutical Co.,
Ltd. (Shenzhen, China). Imiquimod cream was purchased from
Sichuan Mingxin Pharmaceutical Co., Ltd. (Sichuan, China). P.
granatum peels were obtained from fruit purchased from
Kangmei Pharmaceutical Co., Ltd. (Guangdong, China). The
enhanced chemiluminescence (ECL) reagent was obtained from
Millipore (Billerica, MA, USA). D-Fucose (Fuc), D-xylose (Xyl),
D-galacturonic acid (GalA), D-galactose (Gal), D-glucose (Glc),
D-mannose (Man), L-rhamnose (Rha), D-arabinose (Ara),
D-glucuronic acid (GlcA), and D-fructose (Fru) were obtained

from Sigma (St. Louis, MO, USA). Deionized water was
prepared using a Millipore MilliQ Plus system (Millipore,
Bedford, MA, USA). All the other reagents were of
analytical grade.

Animals
BALB/c mice (20 ± 2 g) were from the Center of Laboratory
Animals of Southern Medical University (Guangzhou, China)
and were offered free access to food and water within a specific
pathogen-free (SPF) environment. Ethics approval of all animal
experiments was obtained from the Animal Experimental Ethics
Committee of Guangdong Provincial Hospital of Chinese
Medicine (no. 2019012).

Isolation of Polysaccharides
P. granatum peels were crushed into powder and the liposoluble
ingredients removed with petroleum ether (1:5, w/v). Then, the
skimmed materials were extracted with water (1:12, w/v) twice
and the aqueous extracts collected, filtered, and evaporated.
Subsequently, the obtained mixtures were precipitated by the
addition of ethanol to 50% concentration for 24 h at 4°C.
Precipitation was gathered by centrifuging at 5,000 rpm for
30 min. Lastly, the sediment was dialyzed (3,500 Da molecular
weight cutoff, MWCO) and finally lyophilized to obtain
crude PPPs.

HPSEC–MALLS/RID Analysis
Based on a previously reported method (Cheong et al., 2015;
Deng et al., 2018), the content and the molecular weight of
PPPs were measured using high-performance size exclusion
chromatography with multi-angle laser light scattering/
refractive index detector (HPSEC–MALLS/RID), which was
composed of an Agilent 1200 series LC-DAD system (Agilent
Technologies, Palo Alto, CA, USA), a RID (Optilab T-rEX; Wyatt
Technology Co., Santa Barbara, CA, USA), and a multi-angle
laser light scattering detector (DAWN HELEOS; Wyatt
Technology Co.) equipped with a He–Ne laser (λ � 658 nm),
based on dn/dc (0.15 ml/g). An appropriate amount of PPPs
was dissolved in the mobile phase (0.9% NaCl water solution) to
prepare the concentration of 2.0 mg/ml. The solution was filtered
through a 0.45-μmmembrane prior to analysis and 100 μl sample
solution was injected. The separation was carried out on two
columns in series, TSK-GEL G5000PWXL (300 mm × 7.8 mm,
i.d.) and TSK-GEL G3000PWXL (300 mm × 7.8 mm, i.d.), with a
flow rate of 0.5 ml min−1 at 35°C. Data collection and analysis
were carried out using Astra software (version 6.0.2, Wyatt
Technology Corp.).

Monosaccharide Analysis
Sample Preparation
The sample of polysaccharides in P. granatum peel (2.0 mg) was
subjected to hydrolysis with 1.0 ml trifluoroacetic acid (TFA,
2.0 M) at 105°C for 6 h. Then, the reaction mixtures were washed
with methanol and dried with a nitrogen evaporator 3 times to
remove the TFA residue. Subsequently, 1.0 ml pure water was
added for reconstitution and diluted 10 times, and then filtered
using a 0.45-μm filter before analysis.

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 12 | Article 8068442

Chen et al. PPPs Ameliorate Psoriasis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


HPAEC–PAD Analysis
According to the method reported in a previous study (Alyassin
et al., 2020), compositional monosaccharide analysis of PPPs was
carried out with a Dionex ICS-3000 Ion Chromatography System
(Dionex Corporation, Sunnyvale, CA, USA) containing an AS50
autosampler, an ICS-3000 dual pump, and an ICS-3000 DC.
Chromeleon® (6.8) software was utilized to analyze the data. The
samples and mix standard solutions were separated by a
CarboPac PA200 (3 mm × 250 mm) with a CarboPac PA20
guard (3 mm × 30 mm) column at 25°C, and the flow rate was
set at 0.5 ml/min. The injection volume was set at 5 μl and
subjected to elution by a gradient prepared with deionized
water (eluent A), 10 mM sodium hydroxide (eluent B), and
0.5 M sodium acetate (eluent C). Eluent B was constant (12%)
and eluent A varied from 88% at 30 min to 43% at 22 min. This
proportion was maintained constant until 25 min, when the
initial conditions were recovered. An external standard
method with a mixture consisting of 10 monosaccharide
reference substances (Glc, Rha, Xyl, Ara, Fuc, GalA, GlcA,
Gal, Fru, and Man) in 20 μg/ml was utilized to investigate the
compositional monosaccharides of PPPs. All analyses were
performed in duplicate.

Administration of Test Articles
BALB/c mice were randomly allocated into 5 groups (n � 6):
control, vehicle, DXA (1 mg kg−1 day−1), low-dose PPP group
(0.25 g/ml, PPPs-L), and high-dose PPP group (0.5 g/ml, PPPs-
H). The control group consisted of normal mice devoid of
treatment. Mice in the PPP and DXA groups were topically
treated with PPPs and DXA, respectively, and distilled water
was topically administered to the control and vehicle groups.
Topical use of IMQ cream was applied to mice in the vehicle and
treatment groups in order to induce psoriasis for 7
consecutive days.

Imiquimod-Induced Psoriasis-Like Mouse
Model
On the basis of our previous study (Chen et al., 2020), BALB/c
mice were subjected to topical treatment with 5% IMQ cream
(62.5 mg), which was applied on a shaved area (3 cm × 2.5 cm) on
the back for 7 consecutive days. The PASI, measured on the 7th
day, is an assessment tool combining (Lu et al., 2021a) skin
erythema, scaling, and thickness, which was employed to evaluate
the severity grade of psoriasis-like lesions. Transepidermal water
loss (TEWL) was measured on the back skin of the psoriasis-like
mouse model with VAPOSCANAS-VT100 (Tokyo, Japan).

Histological Evaluation and
Immunohistochemistry
The mouse skin samples were removed and subjected to 24-h
fixation in 4% paraformaldehyde and embedded in paraffin.
Then, the skin samples in paraffin were cut into sections
(5 μm) and hematoxylin and eosin (H&E) staining was applied
for histological evaluation. For immunohistochemical staining,
the slides were subjected to incubation overnight at 4°C with

specific primary antibodies against Ki67 (1:1,000; Servicebio,
Wuhan, China) and CD3 (1:1,000; Abcam, Waltham, MA,
USA). Subsequently, the sections were incubated with
biotinylated secondary antibodies (1:1,000; Abcam) for 1 h at
25°C, followed by diaminobenzidine staining and hematoxylin
counter staining.

Measurements of TNF-α, IL-6, IL-1β, AQP3,
and FLG mRNA Expression via RT-PCR
Furthermore, the mRNA levels of tumor necrosis factor alpha
(TNF-α), interleukin 6 (IL-6), IL-1β, aquaporin-3 (AQP3),
and filaggrin (FLG) in the skin samples were assessed via
RT-PCR. Total mRNA was extracted from the skin samples
via the TRIzol reagent, and mRNA was reversely transcribed
to cDNA. The primer sequences are tabulated in Table 1.
The relative mRNA expression of inflammatory cytokines
versus β-actin was evaluated using an ABI 7500 Fast Real-
Time PCR System (Thermo Fisher Scientific, Waltham,
MA, USA).

Measurements of TNF-α, IL-6, IL-17, IL-23,
and IL-8 Levels with ELISA
Meanwhile, the levels of TNF-α, IL-6, IL-17, IL-23, and IL-8 were
assessed in the mouse serum with commercially available ELISA
kits (Meimian, Jiangsu, China). The absorbance was read at
450 nm using a microplate spectrophotometer (Multiskan GO;
Thermo Fisher Scientific).

Western Blotting Analysis
In addition, the protein expressions of p-NF-κB, NF-κB,
p-STAT3, STAT3, AQP3, and FLG were evaluated via
Western blotting. Firstly, RIPA lysis buffer was used to extract
total protein from mouse skin samples, and a BCA assay kit
(Thermo Fisher Scientific) was employed to measure the protein
concentrations. An equal amount of protein from each sample
was loaded to SDS-PAGE and transferred to PVDF membranes.
The membranes were then blocked with 5% (w/v) skimmed milk
in TBS-T containing 0.1% Tween-20 at room temperature for 2 h
and subsequently incubated with specific primary antibody
against p-NF-κB (p65) [1:1,000; Cell Signaling Technology

TABLE 1 | Primer sequences of target genes

Target gene Primer sequence (59→39)

TNF-α Forward ACTGATGAGAGGGAGGCCAT
Reverse CCGTGGGTTGGACAGATGAA

IL-6 Forward TTCTTGGGACTGATGCTGGT
Reverse CCTCCGACTTGTGAAGTGGT

IL-1β Forward TGCCACCTTTTGACAGTGATG
Reverse AAGGTCCACGGGAAAGACAC

AQP3 Forward GCTTTTGGCTTCGCTGTCAC
Reverse TAGATGGGCAGCTTGATCCAG

FLG Forward ATGTCCGCTCTCCTGGAAAG
Reverse TGGATTCTTCAAGACTGCCTGTA

β-actin Forward GTGACGTTGACATCCGTAAAGA
Reverse GCCGGACTCATCGTACTCC
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(CST), Danvers, MA, USA], NF-κB (p65) (1:1,000; CST),
p-STAT3 (1:1,000; CST), STAT3 (1:1,000; CST), AQP3 (1:
1,000; Cohesion Biosciences, London, UK), FLG (1:1,000;
Cohesion Biosciences), and β-actin (1:1,000; CST) at 4°C
overnight. Subsequently, the membranes were washed with
TBS-T and blotted with the corresponding secondary antibody
(1:1,000; CST) for 1 h. Finally, the immunoreactive band was
monitored using an enhanced chemiluminescence (ECL)
method. ImageJ software (NIH, Bethesda, MD, USA) was
adopted to quantitate the band intensity, and β-actin was used
as the loading control.

Statistical Analysis
Data were analyzed with one-way analysis of variance (ANOVA)
followed by Dunnett’s test and expressed as the mean ± standard
deviation (SD). Statistically significant differences were identified
when p < 0.05. Statistical analysis was performed using GraphPad
Prism 5.0 (GraphPad Software, La Jolla, CA, USA).

RESULTS

Molecular Parameter Analysis of
Polysaccharides in P. granatum Peel
The biological activities of polysaccharides from a natural
resource are likely influenced by their molecular weight. The
performance of HPSEC–MALLS/RID on the determination of
the molecular weights and the molecular weight distribution of
polysaccharides was excellent. Therefore, the molecular weights
(Mw), radius of gyrations (Rg), polydispersity (Mw/Mn), and
molecular weight distributions of PPPs were investigated using
HPSEC–MALLS/RID. The chromatograms were found to be
divided into two peaks (Figure 1). UV detection (green lines)
indicated that PPPs contained proteins. TheMw of peaks 1 and 2
of PPPs were 2.272 × 107 and 4.110 × 105, respectively. The Mw/
Mn values were 2.391 and 1.479 and the Rg values were 33.9 and
35.9, respectively.

Monosaccharide Composition of
Polysaccharides in P. granatum Peel
High-performance anion exchange chromatography/pulse
amperometric detection (HPAEC–PAD) analysis has been
commonly used for the identification and quantitative
determination of monosaccharides due to the advantages of
speed, high specificity, and high sensitivity, as well as sample
derivatization generally not being required (Templeton et al.,
2012; Wang et al., 2014). The monosaccharide composition of
PPPs was determined with HPAEC-PAD. By comparing to
standard chromatograms, the monosaccharide peaks were
confirmed. The results showed that the monosaccharide
composition of PPPs consisted of Fuc, Ara, Rha, Gal, Glc, Xyl,
Man, and GalA (Figure 2), and their molar ratio was 1.00:13.38:
7.21:7.58:22.39:1.62:1.86:131.63, respectively. The main neutral
monosaccharides were Ara, Rha, and Glc, as well as minor Fuc.

FIGURE 1 | Typical high-performance size exclusion chromatography (HPSEC) of Punica granatum peel polysaccharides (PPPs).

FIGURE 2 | Typical high-performance anion exchange chromatography
(HPAEC) of Punica granatum peel polysaccharides (PPPs).
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The content of GalA was high (17.69%) in the monosaccharide
composition of PPPs. The results of the monosaccharide
composition analysis were congruent with a preceding report
(Shakhmatov et al., 2019).

P. granatum Peel Polysaccharides
Attenuate Imiquimod-Elicited
Psoriasis-Like Skin Lesion in Mice
In this study, the beneficial effects of PPPs were evaluated using
an IMQ-elicited psoriasis mouse model. Marked epidermal
scaling, erythema, and inflammatory infiltrates were observed
on the dorsal skin after topical use of IMQ in comparison to the
control group (Figure 3). The overall skin lesions of mice and
the average PASI scores were notably decreased post-treatment
with PPPs or DXA in comparison to the vehicle group
(Figure 3A). TEWL is a known indicator that can serve to
assess the function of the skin barrier (Agren et al., 2010). In our
study, the TEWL was dramatically increased after exposure to
IMQ (Figure 3B). However, PPPs could reverse the TEWL
compared with the vehicle group, which indicated that PPPs
were able to repair the skin barrier in the IMQ-elicited psoriasis
mouse model.

Histological Analysis
H&E staining was carried out for histological examination of the
lesion skins post-treatment with PPPs. As depicted in
Figures 4A,D, the tissue slide of mouse skin in the control
group showed a normal smooth epidermis devoid of any

inflammation or lesion. However, noteworthy pathological
variations characteristic of accentuated acanthosis,
hyperkeratosis of the epidermis, and abnormal inflammatory
infiltrates were shown in the mouse skin of the vehicle group.
In contrast, the administration of PPPs led to a much smoother
epidermis with attenuated parakeratosis and ameliorated
epidermal thickening in comparison to the vehicle counterpart.

Effect of P. granatum Peel Polysaccharides
on the Expressions of Ki67 and CD3 by
Immunohistochemistry
The translational expressions of Ki67 and CD3 were detected in
mouse skin since hyperproliferation and inflammation
infiltration are crucial to psoriasis (Li et al., 2020). It was
observed from the results (Figures 4B, C) that the expressions
of Ki67 and CD3 in vehicle mice were markedly higher than those
in the control counterpart. However, the expression levels of Ki67
and CD3 were noticeably suppressed by treatment with PPPs.

P. granatum Peel Polysaccharides Reduce
Pro-Inflammatory Cytokines in the Skin and
Serum of Imiquimod-Treated Psoriatic Mice
Multiple inflammatory cytokines could be generated by
macrophages and dendritic cells in psoriasis (Shao et al.,
2016). Therefore, we analyzed the expressions of pro-
inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-8, IL-17,
and IL-23) in the skin tissue using RT-PCR and in serum

FIGURE 3 | Punica granatum peel polysaccharides (PPPs) ameliorated imiquimod (IMQ)-induced psoriasis in BALB/c mice. Representative photographs of the
dorsal skin in the IMQ-elicited psoriasis mouse model post-IMQ treatment without or with PPPs. (A) Psoriasis Area and Severity Index (PASI) scores of the skin lesions in
mice with IMQ-elicited psoriasis post-treatment. (B) Transepidermal water loss (TEWL) of the skin lesions in IMQ-induced psoriasis-like mice. Data are presented as the
mean ± SD (n � 6). #p < 0.05, ##p < 0.01 vs. the control group; *p < 0.05, **p < 0.01 vs. the vehicle group. PPPs-L, low-dose PPPs; PPPs-H, high-dose PPPs.
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using ELISA. As shown in Figures 5, 6, the expressions of
these inflammatory cytokines in vehicle mice were markedly
improved compared to those in control mice, whereas there
were remarkable reductions in the expressions of these
inflammatory cytokine in the group treated with PPPs.
These results indicated that PPPs could effectively reduce
psoriasis-related inflammatory factors.

P. granatum Peel Polysaccharides
Suppress the Expressions of Aquaporin-3
and Filaggrin in Imiquimod-Treated
Psoriatic Mice
Decreased levels of AQP3 and FLG are commonly seen in skin
barrier disruption, which appears to be a key player in
epidermal biology in psoriasis (Proksch et al., 2008; Varma
et al., 2019). Hence, we determined the expressions of AQP3
and FLG via RT-PCR. As shown in Figures 5D, E, the mRNA
expressions of AQP3 and FLG were greatly decreased in the
vehicle group. However, these two parameters were obviously
increased by treatment with PPPs. These results indicated that

PPPs could repair the skin barrier induced by topical
intervention of IMQ.

P. granatum Peel Polysaccharides
Suppress the NF-κB and STAT3 Signaling
Pathways in Skin With Psoriasis-Like
Lesions
Since the expressions of the pro-inflammatory cytokines (AQP3
and FLG) were suppressed by PPPs in IMQ-induced psoriasis, the
underlying mechanism of their anti-psoriatic effects was further
explored. Previous evidence has shown that both the NF-κB and
STAT3 signaling pathways were overexpressed and activated in
skin tissues with psoriasis (Wang et al., 2019). Therefore, Western
blotting assay was carried out to explore the potential effect of
PPPs on the protein expressions of p-NF-κB, NF-κB, p-STAT3,
STAT3, AQP3, and FLG. As shown in Figure 7, the expressions
of p-NF-κB and p-STAT3 were upregulated in the skin of
psoriatic mice, in contrast to those in the control group.
Treatment with PPPs effectively declined the phosphorylation
of NF-κB and STAT3. On the other hand, PPPs also enhanced the

FIGURE 4 | Histological analysis and immunohistochemistry assay. Different treatments were administrated to mice. H&E staining (A) of the dorsal skin lesion in
different groups. Immunohistochemical photographs of CD3 (B) and Ki67 (C) staining (magnification, ×100) of the dorsal skin in control or psoriatic mice post-treatment.
The black arrows indicate the CD3 and Ki67 positive location. ##p < 0.01 compared with the control group; **p < 0.01 compared with the vehicle group. PPPs-L, low-
dose PPPs; PPPs-H, high-dose PPPs.
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FIGURE 5 | Effect of Punica granatum peel polysaccharides (PPPs) on themRNA expressions of inflammatory cytokines, aquaporin-3 (AQP3), and filaggrin (FLG) in
imiquimod (IMQ)-elicited psoriasis. Mice were treated with dexamethasone (DXA) and PPPs and topically administered with IMQ. The mRNA expressions of TNF-α (A),
IL-6 (B), IL-1β (C), AQP3 (D), and FLG (E) in the skin were measured by RT-PCR. Data are shown as the mean ± SD (n � 3). #p < 0.05, ##p < 0.01 compared with the
control group; *p < 0.05, **p < 0.01 compared with the vehicle group. PPPs-L, low-dose PPPs; PPPs -H, high-dose PPPs.

FIGURE 6 | Punica granatum peel polysaccharides (PPPs) decreased the levels of inflammatory mediators in mice with imiquimod (IMQ)-elicited psoriasis. The
levels of the inflammatory mediators TNF-α (A), IL-6 (B), IL-23 (C), IL-17 (D), and IL-8 (E)were measured by ELISA in the serum of IMQ-induced psoriasis-like mice. Data
are shown as the mean ± SD (n � 6). #p < 0.05, ##p < 0.01 compared with the control group; *p < 0.05, **p < 0.01 compared with the vehicle group. PPPs-L, low-dose
PPPs; PPPs-H, high-dose PPPs.
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expressions of AQP3 and FLG. Based on these results, it was
indicated that the beneficial effects of PPPs on mice with IMQ-
elicited psoriasis were related to their anti-inflammatory effect
and skin barrier protection.

DISCUSSION

Psoriasis is a chronic and relapsing inflammatory and
autoimmune-mediated cutaneous ailment that is highly related
to excessive inflammatory cytokine production and destruction of
the skin barrier function. Therefore, regulating the skin barrier
and reducing skin inflammation represent effective treatment
strategies for psoriasis. The treatment for psoriasis has achieved
clinical improvement. However, the side effects and economic
burden due to the long-term application of synthetic or biological
agents still pose a frustrating challenge (Whartenby et al., 2008;
Boehncke and Schön, 2015; Sikma et al., 2015). Therefore, more
effective and safer agents for psoriasis have been in great demand
in the drug discovery field over the decades (Greb et al., 2016; Li
et al., 2016).

IMQ, which serves as a ligand for TLR7 and TLR8 and as an
effective immune activator, can be topically used to induce
psoriasis-like skin lesions in a mouse model. It is the most
widely used inducer of psoriasis skin inflammation due to its
easy modeling and the same phenotypic and histological
characteristics as observed in human psoriasis (van der Fits
et al., 2009; Di et al., 2021; Zhou et al., 2021).

In this research, the skin barrier protective effects and anti-
inflammatory activity of PPPs were investigated. The results
showed that PPPs effectively suppressed the PASI scores and
TEWL and inhibited the expressions of CD3 and Ki67 in mice

with IMQ-elicited psoriasis compared with those in the vehicle
group. Moreover, PPPs were observed to remarkably inhibit the
levels of psoriasis-related pro-inflammatory mediators in the
serum, namely, IL-17, IL-6, TNF-α, IL-8, and IL-23. PPPs
altered the mRNA expressions of the inflammatory cytokines
(TNF-α, IL-6, and IL-1β) and improved the expressions of AQP3
and FLG in psoriasis-like mouse skin. In addition, PPPs
significantly suppressed the NF-κB and STAT3 pathways and
accentuated the expressions of AQP3 and FLGwhen compared to
mice with IMQ-elicited psoriasis without treatment.

The H&E staining results indicated that PPPs
efficiently ameliorated the IMQ-elicited epidermal
thickening, hyperkeratosis, and dermal inflammatory cell
infiltration. Ki67 is deemed as a proliferating marker that is
indispensable in cell proliferation, and CD3 is considered as
an inflammatory marker that can evaluate the effect on
inflammatory cell recruitment in the skin (Herman and
Herman, 2016; Song et al., 2021). In our study,
immunohistochemistry was carried out to probe the
expressions of Ki67 and CD3 in skin tissues. The protein
expressions of CD3 and Ki67 were depressed in the skin lesions
of PPP-treated mice in comparison to those of the vehicle
counterpart, which suggested that PPPs could alleviate IMQ-
elicited inflammation and proliferation of keratinocytes.

The skin, which is the outer tissue and the largest organ of the
human body, not only has the important function of forming an
outside barrier that provides chemical, physical, and biological
protection against the external environment but also serves as an
effective barrier between the inside and outside barriers to
prevent excessive water loss (Proksch et al., 2008; Kasemsarn
et al., 2016). Many chronic skin disorders, such as psoriasis, are
associated with impaired skin barrier function (Segre, 2006;

FIGURE 7 | Punica granatum peel polysaccharides (PPPs) suppressed aquaporin-3 (AQP3), filaggrin (FLG), and the NF-κB and STAT3 signaling pathways in skin
with psoriatic lesions. Effect of PPPs on the translational expressions of p-NF-κB, NF-κB, p-STAT3, STAT3, AQP3, and FLG in the skin samples of mice with imiquimod
(IMQ)-elicited psoriasis as determined by Western blotting post-treatment with PPPs. Densitometry analyses of the immunoblotting are shown as p-NF-κB/NF-κB (A),
p-STAT3/STAT3 (B), AQP3/β-actin (C), and p-STAT3/β-actin (D). Data are shown as the mean ± SD (n � 3). #p < 0.05, ##p < 0.01 vs. the control group;
*p < 0.05, **p < 0.01 vs. the vehicle group. PPPs-L, low-dose PPPs; PPPs-H, high-dose PPPs.
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Proksch, 2018). There is a strong connection between FLG and
inflammatory dermatosis like psoriasis due to the key role of FLG
in skin barrier function (McAleer and Irvine, 2013; Yosipovitch
et al., 2019).

Accumulating pieces of evidence have shown that the water
channel AQP3, which plays an important role in various skin
diseases, is the most abundant aquaporin in the outer epithelial
layer of the skin (Patel et al., 2017). Several reports have shown
that the levels of FLG and AQP3 were decreased in psoriatic
lesions (Voss et al., 2011; Lee et al., 2012; Seleit et al., 2015). Our
results revealed that the levels of FLG and AQP3 in psoriatic-like
skin were markedly decreased compared to those in the control
skin. In contrast, the FLG and AQP3 contents increased
simultaneously after PPP treatment compared to those in the
vehicle group. These results indicated that PPPs displayed
potentially beneficial effect on the skin barrier in IMQ-elicited
psoriasis-like mice.

The increased production of pro-inflammatory mediators
and chemokines such as IL-1, IL-6, IL-23, IL-17, and TNF-α
plays a crucial role in the pathogenesis of psoriasis (Croxford
et al., 2014; Grine et al., 2015; Harden et al., 2015; Kim and
Krueger, 2015). Previous reports have already revealed that
topical administration of IMQ cream on the back of mice
stimulated the generation of pro-inflammatory cytokines and
chemokines (Di et al., 2021; Song et al., 2021). It has been
found that the phosphorylation of STAT3 was activated in
psoriatic lesions. The IL-23/Th17 pathway was critical for
inflammation in the pathogenesis of psoriasis, which
has been demonstrated to have a close relationship with
STAT3 activation (Andrés et al., 2013). The NF-κB pathway
performed a crucial role in the development of psoriasis, which
activated molecular patterns and promoted histological
hallmarks (Andrés et al., 2013). Growing evidence has
shown that both STAT3 and NF-κB were activated and
overexpressed in both psoriasis patients and psoriasis-like
mice (Sano et al., 2005; Andres-Ejarque et al., 2021; Yang
et al., 2021). In this work, PPPs were found to inhibit the
phosphorylation of STAT3 and NF-κB and to downregulate
the expressions of pro-inflammatory mediators both in serum
and skin lesions of psoriatic mice.

CONCLUSION

Overall, this study indicated that PPPs ameliorated the IMQ-
elicited inflammation in psoriatic mice via restoring the impaired
skin barrier function by elevating the expressions of FLG and
AQP3 and suppressing the pro-inflammatory cytokines by
modulating the STAT3 and NF-κB pathways. PPPs might

have the potential to be further developed into a promising
therapeutic option for the treatment of psoriasis.
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