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MiRNAs can regulate genes encoding specific proteins which are related to the efficacy of
drugs, and predicting miRNA-drug resistance associations is of great importance. In this
work, we propose an attentive multimodal graph convolution network method (AMMGC)
to predict miRNA-drug resistance associations. AMMGC learns the latent representations
of drugs and miRNAs from four graph convolution sub-networks with distinctive
combinations of features. Then, an attention neural network is employed to obtain
attentive representations of drugs and miRNAs, and miRNA-drug resistance
associations are predicted by the inner product of learned attentive representations.
The computational experiments show that AMMGC outperforms other state-of-the-art
methods and baseline methods, achieving the AUPR score of 0.2399 and the AUC score
of 0.9467. The analysis demonstrates that leveraging multiple features of drugs and
miRNAs can make a contribution to the miRNA-drug resistance association prediction.
The usefulness of AMMGC is further validated by case studies.
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1 INTRODUCTION

Drug development is an expensive and time-consuming process, and wet experiments are needed to
select the drug targets and ensure the safety as well as the effectiveness of drugs. Although there are
more than 25,000 protein-coding genes in the human genome, approved drugs can only target about
600 specific disease-related proteins (Hopkins and Groom, 2002; Overington et al., 2006).
MicroRNAs (miRNAs) as one type of non-coding RNAs are identified as potential targets
(Huang et al., 2019) due to their involvement in regulating the expression of related genes, and
over-expressed/under-expressed expression of miRNAs could down-regulate/up-regulate genes with
protein products necessary for drug efficacy/inhibiting drug function, and thus variations in miRNA
profiling of patients is the cause of different therapeutics for individuals, especially the drug
resistance. A thorough understanding of the impact of miRNA expression on drug resistance is
important for drug discovery.

A few efforts have been made on predicting resistance associations between miRNAs and drugs.
Dai et al. constructed the ncDR database (Dai et al., 2017), which contains comprehensive
information about miRNA-drug resistance associations and laid a solid foundation for further
computational analysis. By formulating known miRNA-drug resistance associations as a bipartite
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graph with miRNA and drug nodes, Huang et al. (Huang et al.,
2019) proposed a graph convolution based miRNA-drug
resistance association prediction model, named GCMDR,
which uses miRNA expression profile and drug fingerprint as
features. GCMDR produces satisfying results, but it still remains
the space for improvement. A high-accuracy prediction model
usually requires diverse information, which reflects different
characteristics of drugs, miRNAs, and miRNA-drug resistance
associations. Although miRNA expression profiles and drug
substructures play important roles in the association
prediction, more features about miRNAs and drugs should be
taken into account to improve the performances. In recent years,
the graph learning methods, especially graph neural networks
(GNN), showed great success in biomedical association
prediction (Mudiyanselage et al., 2020; Yu et al., 2020; Fu
et al., 2021; Lei et al., 2021; Liu et al., 2021; Yang and Lei,
2021; Zhang et al., 2021a). Thus, it is necessary to develop
GNN-based multimodal method to address above mentioned
issues and improve the miRNA-drug resistance association
prediction.

In this work, we propose a novel method, namely attentive
multimodal graph convolutional network (AMMGC), to predict
miRNA-drug resistance associations. We construct four graph
convolution sub-networks that leverage distinctive combinations
of features including drug fingerprints, drug label encoding,
miRNA expression profiles, and miRNA GO-based similarities,
and learn the latent representations of drugs and miRNAs from
sub-networks independently. Then, an attention neural network
is employed to obtain attentive representations of drugs and
miRNAs from their respective latent representations. Finally,
miRNA-drug resistance associations are predicted by the inner
product of the attentive representations. The computational
experiments show that AMMGC outperforms state-of-the-art
and baseline methods. The experimental analyses reveal that
leveraging multiple features of drugs and miRNAs can
enhance the performance of the miRNA-drug resistance
association prediction.

2 MATERIALS

In this paper, we use a miRNA-drug resistance association dataset
from the published work (Huang et al., 2019), which contains
3,338 miRNA-drug resistance associations between 754 miRNAs
and 106 drugs. Moreover, we collect some side information of
drugs and miRNAs to build our prediction model.

We consider two features of the drugs to give more insights
into their characteristics. One is the PubChem substructure
fingerprint (Wang et al., 2009), which represents drugs as 920-
dimensional binary vectors. The other is the label/integer
encoding of SMILES of drugs (Öztürk et al., 2018), in which
each label of SMILES is represented by a integer (e.g., “C”:1, “O”:2,
“N”:3, “ � ”:4, etc.). Considering the varied lengths of drug
canonical SMILES, we set the dimensions of representations as
85, and then a drug is represented by an 85-dimensional vector.
For the miRNAs, we consider two features to describe their
biological information. One is the miRNA expression profile

(Gillis et al., 2007), and the miRNA expression profile has 172
dimensions representing the expression levels of a single type of
miRNAs in 172 different human tissues and cell lines. The other is
the miRNA Gene Ontology (GO) functional similarity described
in (Yang et al., 2018). The GO functional similarity has 2,587
dimensions, and each dimension denotes the similarity scores
between the miRNA and other miRNAs concerning their gene
regulation functions. Since the above features are not available for
all miRNAs, we use the average of those miRNAs whose values
are known to estimate the missing values of other miRNAs.

3 METHODS

3.1 Problem Definition
Given p drugs, q miRNAs, and their resistance associations, our
task is to predict novel miRNA-drug resistance associations by
leveraging features of drugs and miRNAs as well as known
associations. Formally, the associations between p drugs and q
miRNAs can be formulated as an undirected graph, in which
drugs and miRNAs are taken as nodes and their associations are
taken as edges. The graph can be represented by a (p + q) × (p + q)

adjacency matrix A, defined as A � 0 B
BT 0

[ ], where B is the

association matrix in which each row represents a drug and each
column represents a miRNA. If the i-th drug is associated with the
j-th miRNA, Bij � 1; otherwise, Bij � 0.

3.2 Graph Convolutional Networks
Graph convolutional network (Kipf and Welling, 2017) employs
convolution operation over graphs to learn node embeddings by
using local graph structure and node features. Formally, given an
undirected graph G with the node feature matrix X and the
adjacency matrix A, a graph convolutional network updates
embeddings of graph nodes with the following rule:

Hl+1 � f ~D
−1
2 ~A ~D

−1
2HlWl( ) (1)

where ~A � A + In is the adjacency matrix with added self
connections of graph G, ~D is the diagonal matrix such that
~Dii � ∑n

j�1 ~Aij. For the l-th graph convolutional layer, Wl is a
layer-specific trainable weight matrix, Hl is the matrix of node
representations, and specifically H0 � X. f is an activation
function, such as ReLU and Sigmoid.

3.3 Attentive Multimodal Graph
Convolutional Network-Based Method
As shown in Figure 1, AMMGC constructs four graph
convolution sub-networks with distinctive combinations of
drug and miRNA features to obtain node embeddings from
different views. After that, AMMGC applies an attention
neural network to combine these node embeddings in
different views for the miRNA-drug resistance association
prediction.

As discussed in section 2, we have two drug features and two
miRNA features, which are drug Pubchem fingerprint
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(Xd1 ∈ Rp×920), drug label encoding (Xd2 ∈ Rp×85), miRNA
expression profile (Xm1 ∈ Rq×172), and miRNA GO-based
functional similarity (Xm2 ∈ Rq×2587). AMMGC uses different
combinations of drug features and miRNA features to build
individual modals. Specifically, we consider four types of modals
by using distinctive feature matrices as follows: X1 � [Xd1; Xm1], X

2

� [Xd1; Xm2], X
3 � [Xd2; Xm1] and X4 � [Xd2; Xm2]. Because the

features of miRNAs and drugs have different dimensions, we add
values of “0” to meet the same dimensions. For example, the
dimension of drug fingerprint is 920 and the dimension of miRNA
expression profile is 172, thenwe fill 748 values of “0” in front of the
miRNA expression profile. For each individual modal u, we build a
two-layer graph convolution sub-network. The input of each graph
convolution sub-network are the feature matrix Xu ∈ {X1, X2, X3,
X4} and the known miRNA-drug resistance graph with adjacent
matrix A, and the aggregation operation is formulated as:

Eu � ReLU ~D
−1
2 ~A ~D

−1
2 ReLU ~D

−1
2 ~A ~D

−1
2XuW0( )( )W1( ) (2)

where W0 and W1 are weight matrices of two GCN layers,
Eu ∈ R(p+q)×d is the embeddings of drugs and miRNAs in
modal u, and d is the dimension of the embeddings. The
prediction score between i-th drug and j-th miRNA in modal
u is calculated by the inner product as follows:

ŷu � Sigmoid Eu
i E

u
p+jT( ) (3)

where Eu
i and Eu

p+j denote the i-th drug embedding and the j-th
miRNA embedding in modal u, respectively.

Graph convolution sub-networks contain different types of
information, and the node embeddings in a specific modal can
only reflect information from one aspect. It is necessary to fuse
multiple node embeddings in different views. It is assumed that
embeddings in different modals are not equally contributed to the
associations, and we employ an attention neural network to learn
the weight of multiple node embeddings. For each modal u, we
first project the original embedding matrix to an unnormalized
matrix gu �WuE

u + bu. To reduce the computational complexity,

we let gu to be a vector, and form the weighted embedding matrix
by Eu*diag(gu). In this way, the size of parameter Wu is reduced
from (p + q) × (p + q) to 1 × (p + q), and bu is reduced from (p + q)
× d to 1 × d. The learned attentive embedding matrix Z is
calculated by:

Z � ‖4u�1 Eu*diag gu( )( ) (4)

The prediction score ŷ between i-th drug and j-th miRNA is
calculated by:

ŷ � Sigmoid ZiZp+jT( ) (5)

where Zi and Zp+j denote the i-th attentive drug embedding the j-
th attentive miRNA embedding.

3.4 Model Training
In the model training with two steps, the node embeddings are
learned from sub-networks and then are served as the input of the
attention neural network to make predictions.

The graph convolution sub-network for each modal u is
trained independently, and we use the binary cross-entropy
loss function formulated as:

L1 � −∑N
s�1

ys log ŷu
s( ) + 1 − ys( )log 1 − ŷu

s( )( ) (6)

where N denotes the number of samples (miRNA-drug pairs), ys
is the true label of s-th sample and ŷu

s is the prediction score of s-
th sample of modal u.

For the attention neural network, we adopt the weighted
binary cross-entropy classification loss function as:

L2 � −∑N
s�1

ys log ŷs( ) × pos_weight + 1 − ys( )log 1 − ŷs( )( ) (7)

where ŷs is the prediction score of s-th sample, pos_weight is a
fixed scalar, and we set pos_weight equal to (p × q − N)/N. The
pos_weight is used to balance the ratio between positive samples
and negative samples.

FIGURE 1 | Framework of proposed method AMMGC (A). Known miRNA-drug resistance association network. (B). Learning node embeddings independently
from four graph convolution sub-networks based on different feature combinations. (C). Applying an attention neural network to learn attentive node embeddings. ⊕
denotes the concatenation operation. (D). Using embeddings of drugs and miRNAs to produce the scores of miRNA-drug pairs. ⊙ denotes the inner product of drug
embeddings and miRNA embeddings.
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Weminimize the loss L1 and L2 using Adam optimizer (Abadi
et al., 2016), and set the learning rate equal to 0.01. In sub-
networks, we set the hidden units of two GCN layers to 128 and
256. More details of parameter settings can be seen in section 4.4.

4 EXPERIMENTS

4.1 Experimental Setting
We adopt 5-fold cross-validation (5-CV) to evaluate the
performance of AMMGC. The known miRNA-drug resistance
associations are randomly equally divided into five subsets. In each
fold, one subset of known associations is used for testing, and the
remaining four subsets of associations are used for training.
Specifically, we use four subsets of association pairs as positive
instances and randomly select an equal number of samples from
other pairs as negative instances to train the prediction model. We
adopt the following evaluation metrics: the area under the precise-
recall curve (AUPR), the area under the receiver-operating
characteristic curve (AUC), F1-measure (F1), accuracy (ACC),
and recall (REC). To avoid the bias of data split, we implement
10 runs of 5-fold cross-validation for each model, and the average
metric scores and standard deviations are calculated.

4.2 Performance Comparison
We compare our method with four baselines and one state-of-
the-art miRNA-drug resistance association prediction method:

• Collaborative filtering(CF): Collaborative filtering (Su and
Khoshgoftaar, 2009) is a classical recommendation algorithm.

• Label propagation(LP): We consider the LP model
mentioned in (Zhang et al., 2021b) as a baseline. The LP
method propagates the existing miRNA-drug association
information in the network to predict new associations.

• Graph factorization(GF): Graph factorization (Ahmed
et al., 2013) is a factorization-based network embedding
method.

• Structural Deep Network Embedding (SDNE): SDNE
(Wang et al., 2016) is a deep learning-based network
embedding method.

• GCMDR: GCMDR (Huang et al., 2019) makes use of graph
convolution to build a latent factor model, which utilizes
miRNA expression profile and drug fingerprint.

The 5-CV performances of all prediction models are shown in
Table 1. In general, the proposed method AMMGC significantly
outperforms four baselines in terms of most metrics. Specifically,

AMMGC achieves an AUC of 0.946 7, which is almost 7.7%
higher than that of the four baselines. This result shows that
combining multiple features of drugs and miRNAs benefits the
prediction of miRNA-drug pairs more than only using known
miRNA-drug associations. Moreover, AMMGC also performs
almost 4.89% higher than GCMDR on REC metric which is
important for the study, verifying the efficacy and superiority of
AMMGC. The substantial improvement of AMMGC over these
compared methods is mainly attributed to two aspects: 1)
AMMGC leverages the advantages of multiple features and
applies them to build multimodal graph convolution sub-
networks, while GCMDR only considers drug fingerprint and
miRNA expression profile to build the prediction model; 2)
AMMGC considers different contributions of embeddings
learned from multimodal graph convolution, and assigns them
different weights by applying the attention mechanism.

The attention neural network is one critical component of
AMMGC, and it can measure and quantify the importance of
each modal. Further, we visualize the attention coefficients for
four modals in Figure 2. In general, four modals have different
attention weights, andmodal 1 andmodal 3 have relatively higher
weights than modal 2 and modal 4. This result shows AMMGC
can well leverage different features to make predictions.

4.3 Ablation Analysis
In this section, we consider several variants of AMMGC to
demonstrate the importance of the attention mechanism,
multimodal and biological features. We provide a detailed
analysis as follows.

• AMMGC without attention network (w/o AN):We assign
the equal weights to all dimensions of multiple node
embeddings from four graph convolution sub-networks.

• AMMGC without biochemical feature (w/o BF): Instead
of using biological features of drugs and miRNAs, we simply
employ one-hot encoding to build the graph convolution
network.

• AMMGC without multimodal (w/o MM): Instead of using
mutlimodal graph convolutional network, we directly
concatenate two drug features and two miRNA features
to build the prediction model.

• AMMGCwithmodal 1 (w U1):We train the AMMGC only
with the modal 1.

• AMMGCwithmodal 2 (w U2):We train the AMMGC only
with the modal 2.

• AMMGCwithmodal 3 (w U3):We train the AMMGC only
with the modal 3.

TABLE 1 | 5-CV performances of different prediction methods.

Methods AUPR AUC F1 ACC REC

AMMGC 0.239 9 ± 0.001 8 0.946 7 ± 0.000 7 0.318 4 ± 0.002 2 0.986 7 ± 0.000 8 0.358 7 ± 0.010 6
CF 0.204 6 ± 0.005 8 0.861 8 ± 0.005 8 0.287 3 ± 0.004 2 0.985 6 ± 0.000 7 0.331 4 ± 0.015 7
LP 0.226 2 ± 0.006 0 0.861 0 ± 0.003 9 0.307 5 ± 0.005 9 0.988 6 ± 0.001 0 0.317 6 ± 0.022 0
GF 0.161 9 ± 0.004 5 0.853 0 ± 0.002 7 0.231 8 ± 0.004 2 0.984 2 ± 0.001 0 0.274 5 ± 0.0170
SDNE 0.187 2 ± 0.007 4 0.869 3 ± 0.002 9 0.262 9 ± 0.007 4 0.985 3 ± 0.001 0 0.301 2 ± 0.017 7
GCMDR 0.224 2 ± 0.000 8 0.921 7 ± 0.000 2 0.304 9 ± 0.002 0 0.987 8 ± 0.000 6 0.309 8 ± 0.015 5
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• AMMGCwithmodal 4 (w U4):We train the AMMGC only
with the modal 4.

The ablation results are shown in Table 2. The performance of
AMMGC is much better than that of AMMGC without attention
network in terms of all evaluation metrics, revealing that the
attention neural network can exploit different contributions of
embeddings for the prediction task and further improve the
prediction performance. To verify the effectiveness of the
graph convolution sub-networks, we compare AMMGC with
AMMGC without Biofeature. Since biological features of drugs
and miRNAs play vital roles in miRNA-drug resistance
associations, the AUPR value drops by 4.17% and the REC
value drops by 4.1% without them. More importantly,
AMMGC performs better than AMMGC without Multimodal
and the single-modal graph convolutionmodels (AMMGCwU1/
U2/U3/U4), indicating that the multimodal model can leverage
diverse information to achieve better performances.

4.4 Parameter Sensitivity Analysis
In this section, we investigate the sensitivity of parameters in
AMMGC, including the number of graph convolution layers in
sub-networks, the dimension of embeddings, and the negative
sampling size.

For graph convolution sub-networks, we consider the number
of layers from 1 to 6, and the results are shown in Figure 3A. The
2-layer GCN model achieves the best performance among all
models, because 1-layer GCN may not learn sufficient

information and more layers could lead to over-smoothing. In
fact, related works have also shown that the two-layer GCN
model can bring enough information and performs well (Li et al.,
2019).

Embedding dimension is an important factor for our proposed
method, which could directly influence the model performance.
We fix the hidden units of the first GCN layer to 128 for all four
graph convolution sub-networks and change the hidden units of
the second GCN layer in {16, 32, 64, 128, 256, 512}. Thus, the final
embedding dimension is in a range of {64, 128, 256, 512, 1024,
2048} according to Equation 4. From Figure 3B, we can see that
different embedding dimensions lead to different performances.
In general, the AUPR value varies around 0.235 and the AUC
value varies around 0.946, which proves that our model performs
stably if the embedding dimension is selected in an appropriate
range. We finally choose the embedding dimension is 256 since
the model with this setting has superior AUC and AUPR
performance.

Since there are only positive samples in the dataset, negative
samples are needed to conduct semi-supervised training on the
prediction model. Thus, we randomly sample unlabeled miRNA-
drug pairs to generate negative samples, and the size of negative
sampling is fixed in each iteration. We conduct the experiments
to evaluate the influence of the ratio p of the negative sampling
size to that of the positive sampling size on the prediction
performance. As shown in Table 3, AMMGC produces the
greater scores on AUC, F1, and ACC with the increase of p,
while producing the best AUPR and REC scores when p is set to 5.

FIGURE 2 | The heatmap of attention coefficients for four modals.

TABLE 2 | Results of ablation study.

Models AUPR AUC F1 ACC REC

AMMGC 0.239 9 ± 0.001 8 0.946 7 ± 0.000 7 0.318 4 ± 0.002 2 0.986 7 ± 0.000 8 0.358 7 ± 0.010 6
AMMGC (w/o AN) 0.216 7 ± 0.002 3 0.944 6 ± 0.000 4 0.304 9 ± 0.004 4 0.986 3 ± 0.000 9 0.346 9 ± 0.018 4
AMMGC (w/o BF) 0.198 2 ± 0.000 5 0.941 4 ± 0.001 6 0.274 8 ± 0.002 0 0.985 4 ± 0.000 7 0.317 7 ± 0.015 7
AMMGC (w/o MM) 0.226 3 ± 0.012 9 0.944 5 ± 0.000 9 0.310 4 ± 0.008 8 0.985 5 ± 0.000 9 0.352 0 ± 0.007 0
AMMGC (w U1) 0.223 6 ± 0.002 8 0.944 2 ± 0.000 5 0.304 8 ± 0.002 8 0.986 2 ± 0.000 4 0.347 8 ± 0.010 1
AMMGC (w U2) 0.234 2 ± 0.001 4 0.942 4 ± 0.000 4 0.318 2 ± 0.003 1 0.986 4 ± 0.000 5 0.360 4 ± 0.013 2
AMMGC (w U3) 0.227 8 ± 0.002 4 0.944 3 ± 0.000 5 0.310 8 ± 0.002 9 0.986 6 ± 0.000 6 0.350 5 ± 0.017 9
AMMGC (w U4) 0.219 3 ± 0.002 0 0.940 9 ± 0.000 6 0.309 3 ± 0.003 5 0.986 0 ± 0.000 9 0.358 1 ± 0.015 7
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This result demonstrates the negative samples have an influence
on the training of the AMMGC. Although the increase in the
proportion of negative samples can bring slight performance
improvements, the model takes more time to be convergent, so
we choose to set p � 1 as the result of AMMGC.

4.5 Case Studies
In this section, we conduct case studies to test the capability of
AMMGC in predicting novel miRNA-drug resistance
associations. We train the AMMGC model with all known
miRNA-drug resistance associations, then use the trained
model to predict novel associations, which are further
validated by public literature.

The results of case studies are shown in Table 4. According
to Liao et al.’s research (Liao et al., 2015), hsa-mir-146a is
found to influence the biologic features and prognosis of
gastric cancer patients, and is associated with clinical
characteristics in gastric cancer patients treated with
adjuvant oxaliplatin and fluoropyrimidines. The association

between gemcitabine and hsa-mir-145 is reported in
Papadopoulos et al.’s work (Papadopoulos et al., 2015). In
their study, hsa-mir-145 was significantly affected by
gemcitabine treatment in T24 cells. Specifically, miR-145
levels were found to be dramatically upregulated (40.5-fold)
during the first 36 h of treatment. In Hummel et al.’s research,
they found Cisplatin can alter miRNA expression in
esophageal cancer cells including hsa-mir-425 (Hummel
et al., 2011). These studies show that AMMGC has the
great potential of identifying novel miRNA-drug resistance
associations.

5 CONCLUSION

In this work, we propose a deep learning-based method
AMMGC to predict miRNA-drug resistance associations.
AMMGC integrates multiple features of miRNAs and drugs
to build graph convolution sub-networks, and learns node
embeddings in different views. To obtain more
comprehensive node embeddings, AMMGC employs an
attention neural network to learn the contributions of
different embeddings and assign them different weights for
the final prediction. Experiment results demonstrate that
integrating multiple features to build multimodal sub-
networks is of vital importance for miRNA-drug resistance
association prediction, and attention mechanism is also the
key point to improve the performance.

There are several directions for our future study. On the
one hand, AMMGC integrates side information about drugs
and miRNAs under the graph convolutional network
framework. More side information, such as interaction
between drugs, miRNA-gene and gene-ontology

FIGURE 3 | (A) AUPR and AUC of AMMGC with different GCN layers. (B) AUPR and AUC of AMMGC with different embedding dimensions.

TABLE 3 | 5-CV Performances of AMMGC using different settings of negative sampling.

Value of p AUPR AUC F1 ACC REC

1 0.239 9 ± 0.001 8 0.946 7 ± 0.000 7 0.318 4 ± 0.002 2 0.986 7 ± 0.000 8 0.358 7 ± 0.010 6
5 0.241 5 ± 0.002 9 0.947 6 ± 0.000 9 0.319 6 ± 0.002 4 0.987 5 ± 0.000 6 0.357 3 ± 0.008 7
10 0.240 4 ± 0.003 6 0.948 1 ± 0.001 5 0.320 3 ± 0.002 7 0.988 1 ± 0.000 9 0.356 8 ± 0.008 1

TABLE 4 | Top 10 miRNA-drug resistance associations predicted by AMMGC.

Drug miRNA Rank Evidence

Gemcitabine hsa-mir-30b 1 N.A.
Oxaliplatin hsa-mir-146a 2 PMID: 26 396 533
Gemcitabine hsa-mir-145 3 PMID: 25 833 690
Gemcitabine hsa-mir-197 4 N.A.
doxorubicin hsa-mir-363 5 N.A.
Gemcitabine hsa-mir-320a 6 PMID: 23 799 850
5-Fluorouracil hsa-mir-100 7 N.A.
Cisplatin hsa-mir-425 8 PMID: 21 743 970
Gemcitabine hsa-mir-23b 9 N.A.
Gemcitabine hsa-let-7e 10 N.A.
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relationship might be useful for predicting miRNA-drug
resistance associations, and we hope to further investigate
their usefulness. On the other hand, AMMGC is a general link
prediction method, and it is promising to solve other
related tasks.
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