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Introduction: Improving adverse drug event (ADE) detection is important for post-
marketing drug safety surveillance. Existing statistical approaches can be further
optimized owing to their high efficiency and low cost.

Objective: The objective of this study was to evaluate the proposed approach for use in
pharmacovigilance, the early detection of potential ADEs, and the improvement of drug
safety.

Methods: We developed a novel integrated approach, the Bayesian signal detection
algorithm, based on the pharmacological network model (ICPNM) using the FDA Adverse
Event Reporting System (FAERS) data published from 2004 to 2009 and from 2014 to
2019Q2, PubChem, and DrugBank database. First, we used a pharmacological network
model to generate the probabilities for drug-ADE associations, which comprised the
proper prior information component (IC). We then defined the probability of the propensity
score adjustment based on a logistic regression model to control for the confounding bias.
Finally, we chose the Side Effect Resource (SIDER) and the Observational Medical
Outcomes Partnership (OMOP) data to evaluate the detection performance and
robustness of the ICPNM compared with the statistical approaches [disproportionality
analysis (DPA)] by using the area under the receiver operator characteristics curve (AUC)
and Youden’s index.

Results: Of the statistical approaches implemented, the ICPNM showed the best
performance (AUC, 0.8291; Youden’s index, 0.5836). Meanwhile, the AUCs of the IC,
EBGM, ROR, and PRR were 0.7343, 0.7231, 0.6828, and 0.6721, respectively.

Conclusion: The proposed ICPNM combined the strengths of the pharmacological
network model and the Bayesian signal detection algorithm and performed better in
detecting true drug-ADE associations. It also detected newer ADE signals than a DPA and
may be complementary to the existing statistical approaches.
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INTRODUCTION

Adverse drug events (ADEs), which are unresolved and major
issues in the medical field, pose a serious threat to public health.
ADEs have resulted in high morbidity, mortality, and medical
costs. In the United States, ADEs are the fourth leading cause of
death after cancer and heart disease (Lazarou, et al., 1998) and
cause more than 100,000 deaths per year (Giacomini, et al., 2007).
Therefore, the early and accurate detection of potential ADEs can
reduce health risks and improve drug safety. However, traditional
toxicity testing and clinical trials are limited by issues such as
sample sizes and the type of data collected in the pre-market
stages, and risk management is continued in the post-market
stages.

Improving the detection mechanism for ADEs is key to
strengthening post-marketing drug safety surveillance (Harpaz,
et al., 2017). Pharmacovigilance has been employed in the early
detection of rare or unknown ADEs that were not found in the
pre-market stages. Various computational methods have been
developed and implemented using different databases that
contain ADE information during the post-market stages.
Among these databases, the US Food and Drug
Administration’s Adverse Event Reporting System (FAERS) is
one of the well-known spontaneous reporting systems (SRSs). A
disproportionality analysis (DPA), also called a signal detection
algorithm, is an important statistical approach used in the SRS
analysis and is also used frequently to detect ADEs during
pharmacovigilance. The proportional reporting ratio (PRR)
and reporting odds ratio (ROR) are notable in frequentist
DPAs (Evans et al., 2001; Van Puijenbroek, et al., 2002). The
empirical Bayesian geometric mean (EBGM) and information
component (IC) belong to the widely used Bayesian DPAs (Bate,
et al., 1998; DuMouchel, 1999). Additionally, the three-
component mixture model (3CMM) has been proposed based
on the use of the EBGM, and the likelihood ratio test (LRT) as the
frequentist method for the assessment of drug-ADE associations
(Huang, et al., 2011; Zhang, et al., 2018). According to a recent
study, among ten methods, IC achieved the best area under the
receiver operator characteristics curve (AUC) (IC:0.6939) when
OMOP is selected as the true ground for testing (Pham, et al.,
2019). Another study showed that PRR and ROR had similar
performances and that the EBGM outperformed the others
(Harpaz, et al., 2013a). These findings were similar to those
reported by Pham et al. Recently, a label propagation frame
based on four popular signal detection algorithms (PRR, ROR,
EBGM, IC) has emerged, which constructs a drug similarity
network using chemical structures and combines pre-clinical
drug chemical structures with the post-market database
FAERS (Liu and Zhang, 2019). The different
pharmacovigilance methods have been evaluated using a
variety of performance metrics (Ding, et al., 2020).

However, DPA ignores the influence of a confounding bias in
the analysis, which may lead to false positives and an under-
detection of ADEs (DuMouchel, et al., 2013; Candore, et al.,
2015). To overcome these limitations, machine learning
algorithms and other methods have been used to detect ADEs
using SRSs; some network-based methods and machine learning

algorithms have been developed to predict ADEs using different
public databases (Cami, et al., 2011; Liu, et al., 2012; Cheng, et al.,
2013; Lin, et al., 2013; Davazdahemami and Delen, 2018; Jamal,
et al., 2019). For example, a pharmacological network model
(PNM) was developed to predict new and unknown drug-ADE
associations (Cami, et al., 2011). The PNM integrated various
types of data, including information from the Lexicomp,
PubChem, and DrugBank databases. Phenotypic and chemical
features based on the drug-ADE bipartite network were defined.
Liu et al. integrated the phenotypic characteristics of drugs
(i.e., indications and known adverse drug reactions), chemical
structures, and biological properties of protein targets and
pathway information, and used five machine learning methods
to predict ADEs (Liu, et al., 2012). Moreover, Jamal et al.
integrated the biological, chemical, and phenotypic features of
drugs and used machine learning methods (random forest and
sequential minimum optimization) to predict cardiovascular
adverse reactions (Jamal, et al., 2019). Their results showed
that the phenotypic data showed the best prediction effect and
that drugs with similar chemical structures were more likely to
exhibit similar ADEs. Furthermore, incorporating chemical and
database information after marketing, which had the potential to
detect clinically important ADEs.

Due to the rich value of DPAs in SRS analyses, we aimed to
further optimize the use of DPAs and to improve ADE detection
by combining the advantages of the Bayesian method and the
pharmacological network model. In addition, the signal detection
performances and properties of the top-ranked drug-ADE pairs
generated by different DPAs were also investigated.

MATERIALS AND METHODS

Study Scheme
The overall framework of this study is shown in Figure 1. First,
we constructed the drug-ADE network and trained the PNM
using the FAERS, PubChem, and DrugBank databases. Second,
the probabilities of drug-ADE associations (that not in the
training data) were generated using the PNM. Third, IC was
transformed using Bayes’ rule, and then the probability was
predicted using the PNM as the prior probability in the IC
algorithm after the Bayesian transformation. Finally, a
Bayesian signal detection algorithm based on a
pharmacological network model (ICPNM) was developed
through data mining and the control of confounding biases
based on a PS-adjusted logistic regression according to the
data set.

Data Sources
FAERS Database
As the largest SRS, the FAERS database collects ADE reports from
physicians, manufacturers, nurses, and patients, and is updated
quarterly (US Food and Drug Administration, 2020). We adopted
a curated and standardized method to obtain FAERS data
between 2004 and 2019Q2 (Banda, et al., 2016). For
duplicated reports that shared the same primary IDs, the latest
reports were used in our dataset. Drug names were mapped to
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RxNorm concepts, and the ADEs annotated in the Medical
Dictionary for Regulatory Activities (MedDRA) were mapped
to the preferred terms (PTs) (MedDRA, 2020). Herein, we
selected two datasets as our sources to fully evaluate the
performance and robustness, which included the FAERS data
from 2004 to 2009 and the FAERS data from 2014 to 2019Q2.

FAERS 2004 data for the first 120 days were selected for the
training set for the early detection of ADEs in the FAERS data
between 2004 and 2009; the remaining FAERS data until 2009
were included in the testing set. All the drugs were extracted
during this period and standardized according to the Drug Bank
IDs (DrugBank, 2020). A total of 97 ADEs included the most
concerning ADEs in the field of clinical medicine and the four
ADEs from OMOP (these ADEs are listed in Supplementary
Table S1). We then obtained 1,177 distinctive drugs, 107 to 97
ADEs, and 10,307 drug-ADE associations for the training set. The
testing set included 22,358 new drug-ADE pairs (not in the
training set) between 1,177 drugs and 97 ADEs. On the other
hand, the FAERS data from 2014 to 2019Q2 were selected to
further evaluate the performance and robustness of the proposed
novel approach, in which FAERS 2014 data were chosen as the
training set (3,500 drugs, 97 ADEs, and 27,821 drug-ADE
associations) and the FAERS data from 2015 to 2019Q2 were
chosen as the testing set (3,500 drugs and 97 ADEs, 24,300 drug-
ADE associations that were not in the training set).

SIDER Database
The Side Effect Resource (SIDER) database contains marketed
drugs and their recorded adverse drug reactions (ADRs), which
are extracted from package inserts and public documents (Side
Effect Resource, 2020). The current version 4.1 uses the MedDRA
dictionary preferred terms; this dictionary contains 1,430 drugs,
5,868 ADRs, and 139,756 drug-ADE associations. We used the
drug-ADE associations extracted from the SIDER 4.1 database as

the true data for the analyses and evaluations. Among
22,358 drug-ADE pairs in the testing set, the intersection with
the SIDER database revealed 1,148 pairs. Furthermore, among the
24,300 drug-ADE pairs in the testing set, the intersection with the
SIDER database revealed 655 pairs.

OMOP Benchmark
The Observational Medical Outcomes Partnership (OMOP)
established the gold standard for pharmacovigilance research
(Ryan, et al., 2013). It contains 398 drug-ADE pairs composed
of 181 drugs and four ADEs (acute myocardial infarction, acute
renal failure, liver injury, and gastrointestinal bleeding), which
were divided into 164 positive controls and 234 negative controls.
We also used the OMOP gold standard to further evaluate the
performance of the signal detection algorithms. Among the
22,358 drug-ADE pairs in the testing set, the intersection with
the OMOP benchmark contained 158 pairs (80 positive controls
and 78 negative controls). Moreover, among the 24,300 drug-
ADE pairs in the testing set, the intersection with the OMOP
benchmark contained 63 pairs (27 positive controls and 36
negative controls).

Pharmacological Network Model
A pharmacological network model, also called a predictive
pharmaco-safety network, was developed to predict new and
unknown drug-ADE associations based on the drug-ADE
bipartite network using FAERS, PubChem, and DrugBank
database. The overview of PNM is shown in Supplementary
Figure S1. The PNM generated three types of features, namely,
network, taxonomic, and intrinsic features (14 of these features
are listed in Supplementary Table S2). Based on these features,
we trained a logistic regression (LR) model using the training
data. In the LR model, the probabilities for drug-ADE
associations being true were defined as follows:

FIGURE 1 | Overall framework, performance evaluation, and thus generating enhanced drug-ADE signals using a Bayesian signal detection algorithm based on
pharmacological network model (ICPNM).
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pij �
exp (∑s qsxs(i, j))

[1 + exp (∑s qsxs(i, j))]
(1)

Here, i denoted the number of drugs, j the number of ADEs, qs
the regression parameter, xs the PNM features. We used the
training data to fit the model through a 10-fold cross validation,
and the optimal parameters were obtained using the optimal
model that had the lowest Akaike Information Criterion (AIC).

Once we obtained a fully trained LR model, we could predict
the probability of each drug-ADE association in the testing data
using Eq. 2 as follows:

proij � 1

[1 + exp(− ∑s qsxs(i, j))]
(2)

Signal Detection Algorithms
Our research covered four classic signal detection algorithms:
PRR, ROR, IC, and EBGM. Under the assumption that there
was no association between the drug and the ADE, the DPAs
assessed the drug-ADE associations by comparing the
reported frequencies to the expected frequencies. We used
the lower bound of the 95% confidence interval as the
criterion for signal detection, and the main information of
each algorithm is listed in Table 1. We defined cij as the
number of reports containing a drug-ADE pair. Furthermore,
ci+ and c+j were the number of reports containing the drug i and
ADE j respectively, and c++ was the total number of reports in
the database.

Bayesian Signal Detection Algorithm Based
on the Pharmacological Network Model
(ICPNM)
The IC is a measure of disproportionality in the Bayesian
confidence propagation neural network (BCPNN). The IC
assumes that the parameters follow the beta distribution to
estimate the prior probability and assumes that the
hyperparameter values are all 1. However, the PNM can
generate probabilities for the drug-ADE associations, and these
probabilities have different interpretations from the population
the drug-ADE frequencies estimated using the SRS databases.
To further improve ADE detection and optimize the statistical
approach for pharmacovigilance, we developed a novel integrated

method, namely, the Bayesian signal detection algorithm based
on the pharmacological network model (ICPNM).

In our method, the Bayes rule gave the following
transformation, and the IC was expressed as:

IC � log2
P(A,D)

P(A)P(D) � log2
P(A|D)
P(A) (3)

In this equation, (D) denoted the prior probability of a drug,
which represented the probability of a drug appearing in the data
set (A) the prior probability of an ADE, which represented the
probability of an ADE appearing in the data set (A,D) the joint
probability of the appearance of a drug and an ADE in the same
report in the data set; and P(A|D) the conditional probability,
which represented the probability of drug D inducing an ADE A.

As mentioned in Section 2.2, a PNM can generate
probabilities for any drug-ADE association. Furthermore, the
small sample size drug-ADE pairs contain more negative and
positive data than large sample size drug-ADE pairs. In training
of the PNM model, the training model should include both
positive and negative data when selecting the training data (Ji,
et al., 2021). Therefore, the PNM can control the influence of any
confounding bias. The probability generated by the PNM was
expressed as:

logit[P(Aj

∣∣∣∣Di)] � α0 + α1x1 + α2x2 +/α14x14 (4)

Where, in Eq. 4, α0, α1/α14 denoted the regression parameters,
and x1, x2/x14 the 14 the features of the PNM.

Based on Eqs 3, 4, we combined the PNM and Bayesian
methods and proposed an improved signal detection algorithm,
called the Bayesian signal detection algorithm using the
pharmacological network model (ICPNM), which was defined
as follows:

ICPNM(i, j) � log2
P(Aj,Di)

P(Aj)P(Di)
� log2

P(Aj

∣∣∣∣Di)
P(Aj) (5)

Then, we calculated the probabilities of the ADEs in the
dataset. When the data contained sufficient independent and
identically distributed samples, the probability of an ADE Aj was
obtained using the frequency value Pr(A) � c+j/c++ from the
data set according to Bernoulli’s law of large numbers. Pr(A) was
also rewritten according to Eq. 6. However, this probability did
not consider the influence of any confounding bias.

Pr(Aj) � exp(β)
1 + exp(β) (6)

TABLE 1 | Association strength equation and threshold of signal detection algorithms.

Method Equation Threshold

Frequentist statistical methods PRR PRR � cij /ci+
(c+j−cij )/(c++−ci+)

PRR 025>1

ROR ROR � cij /(c+j−cij )
(ci+−cij )/(c++−ci+−c+j+cij )

ROR 025>1

Bayesian statistical methods IC IC ∼ log2
pij

pi+×p+j IC 05>0
EBGM EBGMij � 2E[log(λ)|C�cij ]/log(2) EB 05≥2
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Where, in Equation 6, β � ln C+j/C++
1−C+j/C++.

When using FAERS data to detect ADE signals, the
confounding factors in the data may affect the results and
cause signal masking or result in false positive signals. The
common confounding factors in FAERS include the patient
demographics (such as age, gender, etc., as these data
contribute greatly to missing data), combined medication
information, etc., among which combined medication is a
common phenomenon in the data. To eliminate the influence
of combined medication on the results and correct for the
confounding bias caused due to it, we calculated the
propensity score (PS) to address the confounding bias in the
data set. The confounding bias caused by combined medication is
the propensity score of drugs, which represented the probability
of drug exposure in each report. In other words, the probability of
drug selection (that is, the propensity score of each drug) was
computed using Eq. 7. Subsequently, for each drug-ADE pair, we
estimated the drug effect with an adjustment of PS through the
logistic regression model (8).

Logit[P(Drug � 1)] � γ0 +∑n

i�1 γiPCi (7)

Logit[P(ADE � 1)] � β0 + β1 × Drug + β2 × PS (8)

In Equation 7, n denoted the number of principle components
(PCs). From Eq. 8, we proposed and defined the probability
P(Aj) of ADE according to the PS-adjusted logistic regression.
Assuming the estimated value of the regression coefficient in Eq.
8 as (β̃0, β̃1, β̃2), for K reports, P(Aj) was expressed as follows
with an adjustment for PS value:

P(Aj) � ∑k

k�1

exp(~β + β̃0 + β̃1 + β̃2PSk)
1 + exp(~β + β̃0 + β̃1 + β̃2PSk)

(9)

According to Eqs 4, 5, 9, the lower bound of the 95%
confidence interval (ICPNM_05) for ICPNM was defined as
follows, and the criterion for signal detection was an
ICPNM_05 of ≥ 2. This criterion ensured with a high degree
of confidence that, regardless of the count size, the frequency of
reporting drug-ADE association was at least twice that when
there was no association between the drug and ADE.

ICPNM 05 � log2
P(Aj

∣∣∣∣Di)
P(Aj) · exp( −2�����

cij + 1
√ ) (10)

In Equation 10, P(Aj|Di) is generated by PNM, and P(Aj) is
obtained from Eq. 9.

RESULTS

Evaluation and Comparison With Other
Signal Detection Algorithms
We compared the proposed ICPNM method with the Bayesian
statistical methods (IC and EBGM) using 1,148 pairs that
intersected with the SIDER database and 158 pairs that

intersected with the OMOP benchmark, respectively, as the
testing set from FAERS between 2004 and 2009. The detection
performance is presented in Figure 2. The ICPNM performed
better than the IC and EBGM in terms of AUC scores when 1,148
SIDER drug-ADE pairs were used as the testing set (AUC scores:
0.7098, 0.6737, and 0.6619 for ICPNM, IC, and EBGM,
respectively). Furthermore, ICPNM still achieved better
performance when 158 OMOP drug-ADE pairs were the
testing set (AUC scores: 0.6271, 0.6154, and 0.6024 for ICPNM,
IC, and EBGM, respectively). EBGM showed a generally worse
performance compared with the other two methods. On the other
hand, from the ROC for three Bayesian statistical methods
plotted in Figure 2A, ICPNM had higher sensitivity at high
specificity points (>0.6 specificity), whereas IC had higher
sensitivity at low specificity points (0.3<specificity<0.6),
followed by ICPNM. In contrast, we performed quantitative
bias analysis when ICPNM did not control the confounding
bias, and the confusion matrices were listed in Supplementary
Tables S3A, S4A. In summary, the above results presented that
the ICPNM can enhance drug safety because it combined the
strengths of both the PNM and the Bayesian methods and it
controlled the confounding bias.

We also evaluated the performance of the ICPNM compared
with the frequentist statistical methods (ROR and PRR) using the
FAERS data between 2004 and 2009. As shown in Figure 3,
ICPNM still performed better than ROR and PRR in terms of AUC
scores when 1,148 drug-ADE pairs and 158 drug-ADE pairs were
the testing set, respectively. In general, the Bayesian statistical
methods were superior to the frequentist methods, and among
them, the ROR performed better than the PRR.

Overall, AUCs, Youden’s sensitivities and Youden’s
specificities and Youden’s indices for our ICPNM and other
four statistical methods are shown in Table 2, which were
calculated using the FAERS data between 2004 and 2009 based
on SIDER and OMOP. The maximum of sensitivity and
specificity values are Youden’s index, and the position of the
Youden index indicates the optimal cut-off point of an
algorithm’s decision threshold. When SIDER data was used as
the testing set, the ICPNM had the highest AUC and Youden’s
index, and the IC had the second highest. When the OMOP data
was used as the testing set, the ICPNM still had the highest AUC
and Youden’s index, and IC the second-highest AUC and third-
highest Youden’s index. Moreover, EBGM had the third-highest
AUC and second-highest Youden’s index. The confusion
matrices for the results of Table 2 are presented in
Supplementary Tables S3, S4.

Evaluating the Performance and
Robustness of ICPNM
To verify the performance and robustness of the proposed
method, we selected the FAERS data from 2014 to 2019Q2
and the SIDER data for additional analyses. The detection
performance is shown in Figure 4, and the experimental
results are summarized in Table 3. Among the five signal
detection algorithms, the ICPNM had the highest performance
(AUC score,0.8291; Youden’s index, 0.5836) for these statistical
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methods. On the other hand, from the ROC for Bayesian
methods and frequentist methods plotted in Figure 4, ICPNM

still had higher sensitivity at high specificity points (>0.6
specificity), whereas ICPNM’s sensitivity was close to the
sensitivity of IC at low specificity points (specificity<0.6),
and higher than that of EBGM. It is further confirmed that
Bayesian DPAs were superior to frequentist DPAs. Our

experiments also showed that the signals generated using our
cut-off have high enough specificity to deserve further
investigation. In contrast, we also performed quantitative
bias analysis when ICPNM did not control the confounding
bias, and the confusion matrices were listed in
Supplementary Table S5A. The result showed that
controlling the confounding bias could improve the

FIGURE 2 | (A) Comparison of performances of ICPNM, IC, and EBGM with SIDER data as the testing set using FAERS 2004–2009 data (B) Comparison of
performances of ICPNM, IC, and EBGM with OMOP data as the testing set using FAERS 2004–2009 data.

FIGURE 3 | (A) Comparison of performances of ICPNM, ROR, and PRR with SIDER data as the testing set using FAERS 2004–2009 data (B) Comparison of
performances of ICPNM, ROR, and PRR with OMOP data as the testing set using FAERS 2004–2009 data.

TABLE 2 | Results of performance of different signal detection algorithms using FAERS 2004–2009 data.

Testing set Method AUC Youden’s sensitivity Youden’s specificity Youden’s index

SIDER ICPNM 0.7098 0.5264 0.8547 0.3811
IC 0.6737 0.8169 0.5625 0.3794
EBGM 0.6619 0.6297 0.6667 0.2964
ROR 0.6518 0.5352 0.7414 0.2766
PRR 0.6422 0.5963 0.6818 0.2781

OMOP ICPNM 0.6271 0.5284 0.7251 0.2535
IC 0.6154 0.8077 0.4118 0.2195
EBGM 0.6024 0.5012 0.7353 0.2365
ROR 0.5741 0.5385 0.6324 0.1709
PRR 0.5730 0.5385 0.6324 0.1709

The bold values are to highlight the performance of the method, and have no specific meaning.
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FIGURE 4 | (A) Comparison of performances of ICPNM, IC, and EBGM with SIDER data as the testing set using FAERS 2014-2019Q2 data (B) Comparison of
performances of ICPNM, ROR, and PRR with SIDER data as the testing set using FAERS 2014-2019Q2 data.

TABLE 3 | Results of performance of different signal detection algorithms using FAERS 2014–2019Q2 data.

Testing set Method AUC Youden’s sensitivity Youden’s specificity Youden’s index

SIDER ICPNM 0.8291 0.7236 0.8600 0.5836
IC 0.7343 0.8537 0.5826 0.4363
EBGM 0.7231 0.6407 0.7652 0.4059
ROR 0.6828 0.6561 0.6667 0.3228
PRR 0.6721 0.6381 0.6667 0.3048

The bold values are to highlight the performance of the method, and have no specific meaning.

TABLE 4 | Results of performance of different signal detection algorithms using cross validation and FAERS 2014–2019Q2 data.

Testing set Method AUC Youden’s sensitivity Youden’s specificity Youden’s index

SIDER ICPNM 0.7486 0.5909 0.8083 0.3992
IC 0.7227 0.7983 0.3233 0.1216
EBGM 0.6939 0.6222 0.7233 0.3455
ROR 0.5352 0.7999 0.3010 0.1009
PRR 0.5217 0.7171 0.3733 0.0904

The bold values are to highlight the performance of the method, and have no specific meaning.

FIGURE 5 | (A) Comparison of performances of ICPNM, IC, and EBGM using cross validation based on the FAERS 2014-2019Q2 data and SIDER (B)Comparison
of performances of ICPNM, ROR, and PRR using cross validation based on the FAERS 2014-2019Q2 data and SIDER.
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performance of the algorithm. Moreover, the confusion
matrices for the results of Table 3 are presented in
Supplementary Table S5.

We further evaluated the performance using cross validation
and the training set composed of 10% of the data from each year
(2014-2019Q2). The detection performance is shown in Table 4
and Figure 5. Among the five signal detection algorithms, ICPNM

had the highest performance (AUC score, 0.7486; Youden’s
index, 0.3993) for these methods. Furthermore, from the ROC
for Bayesian methods and frequentist methods plotted in
Figure 5, ICPNM still had higher sensitivity at high specificity
points (>0.6 specificity), whereas ICPNM’s sensitivity was higher
than the sensitivity of IC at low specificity points (specificity<0.6),
and higher than that of EBGM.

For the ICPNM, we further performed analysis using different
thresholds and compared the results. Table 5 provided
performance metrics for sensitivity, specificity, and different
threshold values. When the threshold decreased, sensitivity
increased, specificity decreased and PPV also decreased. For
example, when the threshold was decreased to 1, the
sensitivity increased to 0.9642 at the expense of dropping
specificity to 0.1333. In contrast, when the threshold increased
to 3, sensitivity decreased to 0.6325, specificity increased to 0.91,
and the PPV was 0.9773.

We analyzed the correlation between the proposed ICPNM

algorithm and the other statistical methods (IC, EBGM, ROR,
and PRR). The correlation coefficients of the ICPNM with the
EBGM and IC were 0.6619 and 0.5039, respectively, and the
correlation coefficients with the ROR and the PRR were 0.1606
and 0.1602, respectively (Detailed information is presented in
Supplementary Table S6). According to these results, ICPNM not
only had a superior performance but also complemented the
existing statistical approaches.

Properties of the Top-Ranked Signals
We observed the top 50 signals generated using different
statistical approaches. The Top-50 drug-ADE signals were
further investigated using the SIDER data. First, the FAERS
data between 2004 and 2009 were selected as the testing data.
For the frequentist statistical methods, none of the top 50-
ranked signals identified by ROR and PRR were validated using
the SIDER data. For the Bayesian statistical methods, 13 of the
top 50-ranked signals identified by the EBGM were validated
using the SIDER data, and the ICPNM and the IC had 10 and

9 drug-ADE pairs, respectively. Among the 13 signals of the
EBGM and the nine signals of the IC, the four signals were the
same. Ten ICPNM signals were completely different from those
of the EBGM and the IC. Next, the FAERS data between 2014
and 2019Q2 were selected as the testing data. For the frequentist
statistical methods, one of the top 50-ranked signals identified
by the ROR were validated using the SIDER data, and one using
the PRR, with the overlapping signal being the same. For the
Bayesian statistical methods, the ICPNM, IC, and EBGM had 12,
9, and 12 overlapping drug-ADE signals using the SIDER data,
respectively. Among the 12 signals of the EBGM and the nine
signals of the IC, seven signals were the same. Among the 12
signals of the EBGM and the 12 signals of the ICPNM, four
signals were the same. There were two overlapping signals
between the ICPNM and the IC (Signals identified by each
approach using the SIDER data are shown in Supplementary
Tables S7, S8).

DISCUSSION

This study was designed to evaluate the performance of statistical
methods in detecting unknown and new drug safety signals early
and accurately. The performance of our proposed approach
ICPNM was superior to that of a DPA using AUC and
Youden’s index. Furthermore, ICPNM performed well on the
high and low ends of specificity and had the highest sensitivity
among the DPAs when specificity was >0.6, here using 1,177
drugs and 97 ADEs in FAERS 2004-2009 as the experimental
data. This also meant that ICPNM had good performance in
detecting true-positive signals and false-positive signals. Then
ICPNM had a higher sensitivity and specificity using 3,500 drugs
and 97 ADEs in FAERS 2014-2019Q2 data. We believe that the
increase in the number of drugs in the training data can improve
the performance of the algorithm. In some cases, the traditional
DPA performed well and was simple to calculate. However, the
lack of accuracy in the signal detection, which may have been
influenced by noise, may have caused important signals to be
missed and the inclusion of some false-positive signals. These
limitations may be attributed to the characteristics of these
methods. At the same time, although SRSs also suffered from
some limitations due to their own attributes, such as the
overreporting and misattribution of causality, SRSs still have
the advantage of being irreplaceable in drug safety surveillance
(Harpaz, et al., 2012).

To improve ADE detection and overcome the limitations with
the use of traditional DPAs, the signal detection algorithm ICPNM

was developed based on different types of databases. Meanwhile,
several other related studies confirmed that the utilization and
combination of multiple databases could improve the detection of
ADEs (Harpaz, et al., 2012; Xu and Wang, 2014; Li, et al., 2015;
Harpaz, et al., 2017; Li, et al., 2020). However, the publicly
available FAERS database required data curation before it
could be used correctly, and different data cleaning and
standardization strategies may have had a significant impact
on the analysis results. Therefore, the first step was to process
the FARES data. We used a curated and standardized method to

TABLE 5 | Performance metrics of ICPNM based on the different threshold values,
sensitivity, specificity and PPV using FAERS 2014–2019Q2 data.

Threshold ICPNM

Sensitivity Specificity PPV

1 0.9642 0.1333 0.8202
1.5 0.9138 0.36 0.8541
2 0.8617 0.54 0.8848
2.5 0.756 0.8 0.9394
3 0.6325 0.91 0.9773

PPV, positive predictive value.
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obtain the data (Banda, et al., 2016). Then, using the FAERS,
PubChem, and DrugBank databases, we extracted various types
of information. The ICPNM calculated the probabilities for the
drug-ADE associations using the network, taxonomic, and
intrinsic features based on the PNM. Among the algorithms
tested, the ICPNM achieved the best performance in detecting
true signals while controlling for any confounding bias. The
ICPNM performed well in ADE detection, and the AUCs of
previous similar studies using the OMOP Benchmark
398 drug-ADE pairs was less than 0.75 (Zhang, et al., 2018;
Pham, et al., 2019; Harpaz, et al., 2013b).

The performance of the proposed algorithm can be explained
by several important strengths. First, the ICPNM used the
chemical and phenotypic characteristics and logistical
regression models to calculate the probability of drug-ADE
pairs. The ICPNM combined pre-clinical drug information
with post-marketing safety reports. Furthermore, while the
drug-ADE pairs with small sample sizes had more negative
data than the drug-ADE pairs with large sample sizes, they also
contained positive data. As stated in our previous research, in
training a PNM model, the training model should include both
large and small sample size drug-ADE pairs when selecting the
training data (Ji, et al., 2021). Therefore, the probabilities
calculated by PNM were not influenced by any confounders.
Second, the ICPNM calculated the defined feature effects based
on a drug-ADE bipartite network, which effectively reflected the
properties of the drugs and made use of a powerful network
function compared to the DPA. Finally, we proposed and
defined a PS-adjusted logistic regression based on the control
of the confounding bias from the FAERS data. In contrast, the
influence of the confounding bias was ignored in the DPA
analysis, which may have led to a signal bias and hence,
inaccuracy. The ICPNM generated enhanced safety signals
through the probability generated by PNM as the prior
probability and PS-adjusted logistic regression.

Our proposed ICPNM detected potential ADE signals that
were not detected by the traditional DPAs. It was challenging to
identify the different ADEs using limited data. Hence, it is
important to be able to detect potential ADEs using a post-
market database. The traditional DPAs (IC, EBGM, ROR and
PRR) showed insufficient sensitivities or specificities, resulting
in false-negative or false-positive results, and their advantages
and disadvantages were discussed in the recent scientific
literature (Ding, et al., 2020). An important finding of our
study was that the top signals of the different signal
detection algorithms had different patterns. For instance, the
top-50 signals generated by the ICPNM and the DPAs, the IC and
the EBGM had the most overlapped signals while the ICPNM had
fewer signals due to its powerfully different patterns. These
results demonstrated that the signals generated by ICPNM were
complementary to the existing statistical methods. This study
also showed that the use of a combination of different signal
detection algorithms in quantitative detection research achieved
higher accuracy compared with the use of a signal detection
algorithm alone.

Our study had some limitations. First, the performance of the
proposed ICPNM relied heavily on the features of the PNM and

the training data. Among them, the network features of the PNM
had obvious advantages; the taxonomic and intrinsic features
improved the prediction performance; however, they also
increased the complexity of the data. To improve the
practicability of the ICPNM to SRS alone, the use of network
features only can also generate probabilities for the drug-ADE
associations. Second, while the variety of the confounding
variables can be controlled using multiple regression or
propensity score analyses (Caster, et al., 2010; Tatonetti, et al.,
2012; Tatonetti, et al., 2011), it was not easy to integrate the
confounding variables into Bayesian DPA methods (especially,
patient demographic information such as age, gender, etc., which
have a large number of missing data in FAERS database), and the
development of an appropriate methodology was required
(Goldstein, et al., 2017). Currently, there is no signal detection
algorithm that can overcome all such data quality problems.
Third, as discussed in the literature by Ding et al., other
limitations of these DPAs include relying on subjective
thresholds. Youden index can be used as a comprehensive
index to evaluate the ability of methods. In the future, further
research is needed on how to select the optimal threshold without
affecting the sensitivity. Lastly, we used the SIDER database and
OMOP benchmarks as the gold standards against which to
evaluate the performance of the ICPNM and DPAs. Using
different databases and reference sets might lead to different
performance characteristics.

In conclusion, our novel Bayesian signal detection algorithm,
the ICPNM, which combined a pharmacological network model
with the Bayesian method, achieved superior performance and
detected newer ADE signals compared with that achieved with
the use of traditional DPAs. The use of the ICPNM generated drug
safety signals using data from the post-market database FAERS
and pre-clinical drug information, and it controlled the
confounding bias using a PS-adjusted logistic regression.
Additionally, an increase in the number of drugs in the
training set can improve the performance of the algorithm,
that is, ICPNM can obtain superior AUC, specificity, and
sensitivity. Moreover, the signals generated using different
methods had different patterns, and they complemented each
other. Thus, the ICPNM not only had a better performance but also
complemented the existing statistical approaches.
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