AUTHOR=Bai Haihong , Cheng Yuanguo , Che Jinjing TITLE=Pharmacokinetics and Disposition of Heparin-Binding Growth Factor Midkine Antisense Oligonucleotide Nanoliposomes in Experimental Animal Species and Prediction of Human Pharmacokinetics Using a Physiologically Based Pharmacokinetic Model JOURNAL=Frontiers in Pharmacology VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2021.769538 DOI=10.3389/fphar.2021.769538 ISSN=1663-9812 ABSTRACT=
Encapsulating the antisense oligonucleotide drug MK-ASODN with nanoliposomes greatly improved its potency and targeting to the heparin-binding growth factor midkine. The disposition and pharmacokinetic (PK) parameters of MK-ASODN nanoliposomes were studied in monkeys and rats, and the human PK parameters were predicted based on preclinical data using a physiologically based pharmacokinetic (PBPK) model. Following intravenous injection, the drug plasma concentration rapidly declined in a multiexponential manner, and the drug was rapidly transferred to tissues from the circulation. The terminal t1/2 in plasma was clearly longer than that of the unmodified antisense nucleic acid drug. According to the AUC,MK-ASODN nanoliposomes were mainly distributed in the kidney, spleen, and liver. . MK-ASODN nanoliposomes were highly plasma protein bound, limiting their urinary excretion. Very little MK-ASODN nanoliposomes were detected in urine or feces. The plasma disposition of MK-ASODN nanoliposomes appeared nonlinear over the studied dose range of 11.5–46 mg kg−1. The monkey PBPK model of MK-ASODN nanoliposomes was well established and successfully extrapolated to predict MK-ASODN nanoliposome PK in humans. These disposition and PK data support further development in phase I clinical studies.