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Background: Alcoholic liver disease (ALD) caused by chronic ethanol overconsumption is
a common type of liver disease with a severe mortality burden throughout the world. The
pathogenesis of ALD is complex, and no effective clinical treatment for the disease has
advanced so far. Prolonged alcohol abstinence is the most effective therapy to attenuate
the clinical course of ALD and even reverse liver damage. However, the molecular
mechanisms involved in alcohol abstinence-improved recovery from alcoholic fatty liver
remain unclear. This study aims to systematically evaluate the beneficial effect of alcohol
abstinence on pathological changes in ALD.

Methods: Using the Lieber-DeCarli mouse model of ALD, we analysed whether 1-week
alcohol withdrawal reversed alcohol-induced detrimental alterations, including oxidative
stress, liver injury, lipids metabolism, and hepatic inflammation, by detecting biomarkers
and potential targets.

Results: Alcohol withdrawal ameliorated alcohol-induced hepatic steatosis by improving
liver lipid metabolism reprogramming via upregulating phosphorylated 5′-AMP -activated
protein kinase (p-AMPK), peroxisome proliferator-activated receptor-α (PPAR-α), and
carnitine palmitoyltransferase-1 (CPT-1), and downregulating fatty acid synthase (FAS)
and diacylglycerol acyltransferase-2 (DGAT-2). The activities of antioxidant enzymes,
including superoxide dismutase (SOD) and glutathione peroxidase (GSH-px), were
significantly enhanced by alcohol withdrawal. Importantly, the abstinence recovered
alcohol-fed induced liver injury, as evidenced by the improvements in haematoxylin
and eosin (H&E) staining, plasma alanine aminotransferase (ALT) levels, and liver
weight/body weight ratio. Alcohol-stimulated toll-like receptor 4/mitogen-activated
protein kinases (TLR4/MAPKs) were significantly reversed by alcohol withdrawal, which
might mechanistically contribute to the amelioration of liver injury. Accordingly, the hepatic
inflammatory factor represented by tumour necrosis factor-alpha (TNF-α) was improved by
alcohol abstinence.
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Conclusion: In summary, we reported that alcohol withdrawal effectively restored hepatic
lipid metabolism and reversed liver injury and inflammation by improving metabolism
reprogramming. These findings enhanced our understanding of the biological mechanisms
involved in the beneficial role of alcohol abstinence as an effective treatment for ALD.
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INTRODUCTION

Alcoholic liver disease (ALD), one of the main causes of chronic
liver disease, ranges from alcoholic fatty liver (AFL) to alcohol
hepatitis, alcoholic hepatic fibrosis, alcoholic cirrhosis, and even
hepatocellular carcinoma (Seitz et al., 2018). ALD is becoming the
prevalent liver disease in the modern world (Friedman et al.,
2018; Younossi et al., 2016; O’Shea et al., 2010).

Multiple factors are involved in the progression of ALD,
including sex, obesity, and genetics, but how these aspects
influence the clinical outcome remains unclear (Becker et al.,
1996). Long-term excess alcohol consumption is a predominant
etiological factor of ALDprogression (Zakhari and Li, 2007). Alcohol
abuse causes a disorder in liver lipid metabolism by inducing
metabolic reprogramming. The inhibition of β-oxidation and the
increase in the de-novo biosynthesis of free fatty acids (FFAs) caused
by alcohol consumption play an important role in the development
of AFL (Ceni et al., 2014). In addition, excessive oxidative stress,
hepatocyte apoptosis, and innate immune response are also typical
pathological features of ALD (Osna et al., 2017). During the past
several decades, much progress has been made, but our
understanding of the pathogenesis of ALD remains incomplete.

Prolonged alcohol abstinence is the most effective therapy to
attenuate the clinical course of ALD and even reverses liver damage
(Seitz et al., 2018; Singal et al., 2018; Forrest et al., 2019). Although
from a clinical standpoint, abstinence from alcohol reverses ALD,
the molecular mechanisms through which alcohol withdrawal
protecting against hepatic steatosis and liver injury are largely
unclear. The evidence that can be retrieved showing that alcohol
withdrawal restored receptor-mediated endocytosis in rats (Casey
et al., 1989), and normalised aberrant fatty acid transport, FFAs
oxidation, and restored lysosomal function to attenuate the liver
injury (Thomes et al., 2019). In the present study, we systematically
examined whether alcohol withdrawal reverses alcohol-induced
alterations in lipid metabolism, liver injury, oxidative stress, and
inflammation. We observed that alcohol withdrawal ameliorated
alcohol-induced hepatic steatosis by restoring lipid metabolic
enzymes, and mitigated alcohol-induced liver injury and
inflammation probably through TLR4/MAPKs involved signalling
pathway. Our results enriched our understanding in themechanisms
of the beneficial roles of alcohol abstinence on ALD.

MATERIALS AND METHODS

Ethics Statement
This study was carried out in strict accordance with
recommendations from the Guide for the Care and Use of
Laboratory Animals of the Chinese Association for Laboratory

Animal Science. All animal care and protocols were approved by
the Animal Care and Use Committee of Zhejiang Chinese
Medical University (ZSLL-2017-150). All killings were
performed under avertin anaesthesia, and efforts were made to
minimise animal suffering.

Animal Treatment
Male C57BL/6J mice (Beijing Vital River Laboratory Animal
Technology Co., Ltd.) weighing 18.51 ± 1.21 g were group-
housed in cages in a temperature-controlled vivarium (22 ±
2°C) and maintained on a 12-h light/dark cycle. After 2 weeks
of adaption, the 8-weeks-old mice were randomly divided into
four groups (n � 8 per group): pair-fed (PF) group, alcohol-fed
(AF) group, abstinence control (PF-PF) group, and alcohol
abstinence (AF-PF) group. Mice in the PF or AF group were
fed with isocaloric control liquid diet or ethanol-containing
Lieber-DeCarli diet for 4 weeks, respectively (Bioserv,
Frenchtown, NJ, United States) (Dou et al., 2020). PF-PF and
AF-PF mice were first fed with isocaloric control liquid diet or
ethanol-containing Lieber-DeCarli diet for 4 weeks, respectively,
and then fed with isocaloric control liquid diet for another 1 week.
Food intake and body weight were recorded weekly. Plasma and
liver tissues were harvested for further assays at the indicated
time point.

Plasma Analysis
Plasma alanine aminotransferase (ALT), triglyceride (TG),
glycerol, and FFAs levels were determined by using
commercial kits from Nanjing Jiancheng Bioengineering
Institute (Nanjing, China) according to the manufacturer’s
instructions.

Oxidative Stress Markers
Liver malondialdehyde (MDA), superoxide dismutase (SOD),
and glutathione peroxidase (GSH-Px) were measured with
commercial kits based on enzymatic methods (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China).

Histological Examination
Histological examination was performed as previously described
(Li et al., 2020). In brief, small pieces of fresh liver were fixed
immediately in 10% buffered formalin. After paraffin embedding,
5 μm sections were deparaffinised in xylene and rehydrated
through a series of decreasing concentrations of ethanol.
Sections were stained with hematoxylin and eosin (H & E)
using a commercial kit (Nanjing Jiancheng Bioengineering
Institute, Nanjing, China). Fat accumulation was examined by
staining the liver sections with oil red O. Frozen liver sections
were washed twice in phosphate buffered saline for 5 min. Oil
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redO and 85% propylene glycol were added with agitation for
15 min, and then the sections were washed with tap water. Stained
sections were examined by light microscopy (Nikon, Ti-S, Japan).

Western-Blot Analysis
Protein isolation from liver tissue and Western blot analysis were
performed as previously described (Dou et al., 2018). The
following antibodies were used: anti-phosphorylated-AMPKα
(Thr172), anti-AMPKα, anti-PPARα, anti-CPT-1, anti-acetyl-
CoA-carboxylase (ACC), anti-phosphorylated-ACC, anti-
SREBP-1c, anti-fatty acid synthase (FAS), anti-DGAT-2, anti-
P53, anti-Bcl2, anti-Bax, anti-TLR4, anti-JNK, anti-
phosphorylated-JNK, anti-phosphorylated-P38, anti-P38, anti-
phosphorylated-ERK, anti-ERK, anti-cleaved-caspase-3, and
anti-GAPDH (Cell Signalling Technology, Danvers, MA,
United States).

Quantitative Real-Time Reverse
Transcription Polymerase Chain Reaction
Total RNA extraction, reverse transcription, and real-time
polymerase chain reaction were performed as previously
described (Ma et al., 2019). Briefly, total RNA was extracted
from liver samples using the TRIzol reagent. The primers are
listed in Table 1 qRT-PCR was performed on an ABI 7300 PCR
instrument using SYBR Green (Bimake, Houston, TX). Relative
gene expression was calculated after normalisation by 18S.

Statistical Analysis
Statistical analysis was performed using one-way analysis of
variance (ANOVA) and followed by post-hoc test with
Fisher’s least significant difference (LSD). Data were presented
as means ± SD. Differences between each group were considered
to be statistically significant at p < 0.05.

RESULTS

Alcohol Withdrawal Ameliorates
Alcohol-Induced Hepatic Steatosis and
Liver Injury
A schematic diagram of the research design was shown in
Figure 1A. The ALD mouse model was successfully
established after 4 weeks of alcohol feeding, as evidenced by

histological examinations (H & E and Oil Red O staining),
plasma ALT, liver weight, liver weight/body weight ratio, and
hepatic TG content (Figure 1). Strikingly, the alcohol-induced
detrimental alterations mentioned above were strongly rescued
after 1-week alcohol abstinence treatment (Figures 1B–E).
Moreover, alcohol withdrawal also markedly reversed the
hepatic TG accumulation-induced by alcohol-fed (Figure 1F).
The body weight and food intake showed no significant difference
among four groups (Supplementary Figures S1A,B).

Alcohol Withdrawal Alleviates
Alcohol-Induced Dyslipidaemia
We subsequently detected lipids levels in animal blood. Our data
showed that chronic alcohol exposure significantly elevated
plasma TG and FFAs levels (Figures 2A,B). The glycerol
content was also increased in the plasma of AF mice
(Figure 2C). Alcohol withdrawal apparently reversed alcohol-
induced hyperlipidaemia, as evidenced by the recovery of plasma
TG, FFAs, and glycerol levels (Figure 2).

Alcohol Withdrawal Improves the Activity of
Antioxidant Enzymes in the Liver
Oxidative stress caused by alcohol metabolism is an important
pathological mechanism of ALD. Therefore, we measured the
levels of oxidative stress products and the activities of antioxidant
enzymes in the liver. The results showed that 1 week alcohol
withdrawal was not sufficient to reverse alcohol-induced
excessive formation of MDA in the liver (Table 2). However,
the activities of antioxidant enzymes, including SOD and GSH-px
was rescued by alcohol withdrawal (Table 2).

Abstinence Improves the Expressions of
Lipid Metabolism Related Enzymes in the
Liver
Long-term alcohol intake leads to hepatic lipid accumulation by
regulating the metabolic reprogramming of lipid metabolism
related genes and regulatory factors in the liver. Correcting the
abnormal expression of these genes is helpful to improve hepatic
steatosis. Accordingly, we assessed the effects of alcohol
withdrawal on the protein expressions of various signalling
molecules involved in lipid metabolism in liver tissues. As
shown in Figure 3, key proteins in the regulating of lipid
catabolism, including phosphorylated-AMPKα, PPARα, and
CPT-1 were significantly down-regulated by alcohol-fed.
Meanwhile, the proteins, which control the de novo synthesis
of fatty acids, such as mature-SREBP-1c and phosphorylated-
ACC were activated by chronic alcohol intake (Figure 3). Alcohol
feeding also promoted the expression of DGAT2, which is a rate-
limiting enzyme in the regulation of triglycerides synthesis
(Figure 3). Notably, alcohol abstinence markedly reversed the
expression of above proteins induced by alcohol (Figure 3),
implying that alcohol withdraw is an effective way to recover
the lipid metabolism reprogramming in the liver.

TABLE 1 | Primer sequence for quantitative real-time PCR.

Gene Sequence

18S F: 5′-AGGTCTGTGATGCCCTT-3′
R: 5′-GAATGGGGTTCAACGGGTTA-3′

TNF-α F: 5′-CCCTCACACTCACAAACCAC-3′
R: 5′-ACAAGGTACAACCCATCGGC-3′

IL-6 F: 5′-TGGAAATGAGAAAAGAGTTGTGC-3′
R: 5′-CCAGTTTGGTAGCATCCATCA-3′

IL-1β F: 5′-TTCATCTTTGAAGAAGAGCCCAT-3′
R: 5′-TCGGAGCCTGTAGTGCAGTT-3′
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Alcohol Withdrawal Rescues
Alcohol-Stimulated TLR4/MAPKs and
Mitochondrial Apoptotic Pathways
Hepatic lipid accumulation induced by chronic alcohol intake,
which in turn leads to lipotoxicity and further hepatocyte death, is
a critical pathological mechanism in ALD. Previous studies
including ours have indicated that TLR4/MAPKs pathway was

mechanistically involved in alcohol- and lipotoxicity-induced
hepatotoxicity [(Shen et al., 2018; Li et al., 2020; Yang et al.,
2021)]. Here, we evaluated the beneficial effect of abstinence on
TLR4/MAPKs pathway. Our data clearly revealed that alcohol
exposure significantly stimulated the expression of TLR4 in the
liver, accompanied with MAPKs activation, evidenced by the
increases in phosphorylation of JNK, p38, and ERK1/2 (Figures

FIGURE 1 | Alcohol withdrawal ameliorates alcohol-induced hepatic steatosis and liver injury. (A) Schematic diagram of the research design. (B)H & E staining and
oil red O staining photomicrographs of the liver section (magnification, 100x). (C) Plasma alanine aminotransferase (ALT) level. (D) Live weight. (E) Liver weight/body
weight ratio. (F) Triglyceride (TG) content in the liver. *p < 0.05 indicates statistically significant differences (n � 8).

FIGURE 2 | Alcohol withdrawal alleviates alcohol-induced dyslipidaemia. (A) Plasma triglyceride (TG) level. (B) Plasma FFA level. (C) Plasma glycerol level. Data are
described as means ± SD from 8 mice in each group. *p < 0.05 indicates statistically significant differences (n � 8).
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TABLE 2 | Oxidative stress markers level in liver tissue sample after alcohol withdrawal (n � 8).

PF AF PF-PF AF-PF

MDA (nmol/mg protein) 8.265 ± 1.16a 10.295 ± 2.03b 7.25 ± 1.59a 11.31 ± 2.46b

SOD (U/mg protein) 276.27 ± 31.65a 202.52 ± 24.19b 279.48 ± 42.64a 275.78 ± 45.09a

GSH-PX (U/mg protein) 1107.89 ± 122.63a 785.16 ± 63.85b 1109.30 ± 109.53a 1359.38 ± 185.30c

PF. pair-fed group; AF, alcohol-fed group; PF-PF, abstinence control group, and AF-PF, alcohol abstinence group. Different letters represent statistical differences (p < 0.05).

FIGURE 3 | Alcohol withdrawal improves proteins related to liver lipid metabolism. Total cellular lysates were extracted from the liver samples. Western blot was
performed to detect the expressions of p-AMPK, PPAR-α, CPT-1, p-ACC, mature-SREBP-1c, FAS, and DGAT-2. *p < 0.05 indicates statistically significant differences
(n � 8).
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4A,B). Alcohol withdrawal robustly rescued alcohol-induced
activation of TLR4/MAPKs pathway (Figures 4A,B).
Moreover, alcohol-increased expression of pro-apoptotic
protein p53, which is a well-known target of MAPKs, was also
reduced by abstinence (Figure 4C). We subsequently detected the
expressions of marker proteins for mitochondrial apoptotic
pathway, and observed that alcohol-elevated Bax/Bcl-2 ratio
and cleaved-caspase-3 were reversed by alcohol withdrawal
(Figure 4D).

Alcohol Withdrawal Mitigates
Alcohol-Induced Hepatic Inflammation
Previous studies have identified several proinflammatory
factorsplayed important roles in the pathogenesis of ALD (Gao
and Tsukamoto, 2016; Xu et al., 2017). In the present study, we

observed that chronic alcohol feeding markedly stimulated the
expressions of TNF-α and IL-6 at the transcriptional level,
whereas alcohol withdrawal effectively reversed such detrimental
alteration (Figure 5). We did not observe any statistically significant
differences in themRNA expression of IL-1β among the four groups
(Figure 5C), probably due to the large variations and small changes.

DISCUSSION

Alcohol-induced liver metabolic reprogramming is an important
pathological basis of ALD. Cessation of alcohol consumption is
the most crucial prerequisite of therapy for ALD (Leggio and Lee,
2017). Alcohol abstinence reduces the risk of ALD progression
and even has a statistically significant impact on survival
(Addolorato et al., 2016). However, the potential mechanisms

FIGURE 4 | Alcohol withdrawal rescues alcohol-stimulated TLR4/MAPKs and mitochondrial apoptotic pathways. Total cellular lysates were extracted from mice
liver tissues. (A, B) Immunoblotting assay was performed for TLR-4, p-JNK, p-P38, and p-ERK1/2. (C,D) Immunoblotting assay was performed for P53 and Bax/Bcl-2.
*p < 0.05 indicates statistically significant differences (n � 8).
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through which alcohol withdrawal improves reprogramming and
further hepatic steatosis, and even liver injury are not fully
understood. In this study, we provided strong evidence that
1 week of alcohol withdrawal reversed alcohol-induced
alterations in lipid metabolism, oxidative stress, inflammation,
and liver injury in mice. Further mechanistic study revealed that
liver lipid metabolism reprogramming was corrected by alcohol
abstinence. Alcohol withdrawal restored the enzymes and
regulatory factors in promoting FFAs oxidation and inhibiting
FFAs and TG synthesis. Furthermore, the inhibition of TLR4/
MAPKs pathway might also contribute to the beneficial role of
alcohol withdrawal. Our study demonstrated that alcohol
abstinence improved alcohol-mediated metabolic
reprogramming by regulating the expression of multiple
metabolic related proteins, however, the detection of the
activities of these key proteins will be more helpful to reveal
the biological mechanism in this process, which should be
investigated in further studies.

Feeding rodents with the Lieber-DeCarli ethanol liquid diet
caused fat accumulation and mild liver injury (Arteel, 2010).
Consistent with previous reports, an AFL mouse model was
successfully established by feeding mice with a Lieber-DeCarli
ethanol liquid diet for 4 weeks. Previous studies have reported
that 1 week of abstinence was adequate and appropriate for mice
to recover fromAFL after a 4-weeks drinking history (Casey et al.,
1989; Thomes et al., 2019). Therefore, 1 week abstinence was
selected in the design of this study. Consistent with previous
studies, we observed that 1 week of alcohol withdrawal
significantly reversed hepatic steatosis and liver injury caused
by alcohol feeding.

Malnutrition caused by chronic alcohol consumption was
initially believed to contribute to the development of ALD.
However, the discovery of ROS generation with ethanol
catabolism changes this dogma (Lu and Cederbaum, 2018).

Excessive ROS-stimulated oxidative stress has been considered
playing a vital role in the pathological process of ALD. In the state
of oxidative stress, MDA is generated from lipid peroxidation,
and binds to DNA bases and causes liver injury (Linhart et al.,
2014; Mueller et al., 2018). Moreover, excessive ethanol intake
exhausts hepatic capacity of endogenous antioxidants including
GSH and SOD (Leung andNieto, 2013). In this study, we detected
the protective role of alcohol withdrawal on oxidative stress in the
liver. Unexpectedly, our data indicated that only 1 week
abstinence was not enough to completely reverse alcohol-
increased MDA content in liver. However, alcohol withdrawal
rescued the activity of hepatic antioxidant enzymes, including
SOD and GSH-PX. Further study should be focused on whether
extending abstinence and how long the extension will be required
to help eliminating the increased hepatic MDA.

Oxidative stress promotes reprogramming of liver genes, which
are in charge of lipid metabolism, programmed apoptosis, and
inflammation, and further induces hepatic steatosis, liver injury,
and hepatitis (Ceni et al., 2014). Recently, Paul et al. found that
alcohol withdrawal attenuated alcohol-induced hepatic steatosis
and injury by normalizing aberrant fatty acid transport and
restoring lysosomal function in rats (Thomes et al., 2019). In
the present study, we evaluated the beneficial effect of alcohol
abstinence on the key enzymes or regulators of lipid catabolism
and synthesis. AMPK acts as a central signal switch that controls
lipid metabolism pathways (Winder and Hardie, 1999; You et al.,
2004). Chronic alcohol exposure inhibited hepatic
phosphorylated-AMPK expression. However, drug induced
activation of AMPK or AMPK overexpression significantly
improved alcohol-induced hepatic steatosis and liver injury
(Nagappan et al., 2019; Silva et al., 2021). In this study, our
data indicated that the phosphorylation of AMPK was
inhibited by 4-weeks alcohol exposure, which was restored by
alcohol withdrawal. CPT-1, a downstream target of AMPK, is a

FIGURE 5 | Alcohol withdrawal mitigates alcohol-induced hepatic inflammation. (A) The mRNA levels of TNF-α (A), IL-6 (B), and IL-1β (C) in the liver. * p < 0.05
indicates statistically significant differences (n � 6−8).
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rate-limiting enzyme in FFA β-oxidation (Ronnett et al., 2006).
Previous report showed that ethanol decreased the activity of
CPT-1 (You et al., 2004). In the present study, we observed that
alcohol withdrawal rescued the reduction of CPT-1. The role of
PPARα in fatty liver disease has been investigated in the past
decade. PPARα is a nuclear hormone receptor that controls the
transcription of a number of genes involved in FFA transport and
oxidation (Galli et al., 2001). Excessive alcohol consumption leads
to the downregulation of PPARα and its target genes, which
inhibits the β-oxidation of fatty acids (Nakajima et al., 2004).
In mouse models of ALD, PPARα ligands treatment restored
receptor activity and significantly ameliorated fat accumulation
(Fischer et al., 2003; Nanji et al., 2004). Consistent with previous
reports, the expression of PPARα was inhibited by alcohol but was
upregulated with alcohol withdrawal. These findings suggested
that alcohol abstinence improves lipid accumulation in the liver by
reprogramming key enzymes and regulatory factors of fatty acid
catabolism.

In the initial stage of ALD, the imbalance between FA
synthesis and metabolism contributed to hepatic steatosis
(Purohit et al., 2009). SREBP-1c is a critical factor regulating
the de novo lipogenesis. Mature SREBP-1c (the active form)
promotes fatty acid biosynthesis by upregulating the
expression of lipogenesis-related genes, including ACC, FAS
and DGAT-2 (You et al., 2002). The expression of hepatic
SREBP-1c was increased by alcohol exposure (Ji and
Kaplowitz, 2003; Hu et al., 2012). Consistent with previous
studies, chronic alcohol exposure significantly increased the
expression of hepatic mature-SREBP-1c, FAS, and DGAT-2,
and inhibited the phosphorylation of ACC. Importantly, those
alterations were reversed by alcohol withdrawal. These results
suggested that alcohol abstinence improved chronic alcohol
exposure-induced hepatic steatosis via decreasing the de novo
lipogenesis.

Lipotoxicity is a vital pathological factor in ALD.
Previous studies showed that TLR4/MAPKs pathway
was mechanistically involved in lipotoxicity-induced
hepatotoxicity (Shen et al., 2018). TLR4 activation-stimulated
MAPKs pathway was mechanistically implicated in ALD
(Fitzgerald and Kagan, 2020). While, TLR4 deficiency
protected against alcohol-induced steatosis by protecting
against inflammatory cytokines production (Uesugi et al.,
2001; Hritz et al., 2008). In our study, alcohol withdrawal
effectively reversed alcohol-induced phosphorylated-p38,
-ERK1/2 and -JNK. P53, a downstream target of MAPKs, was
also reversed by alcohol withdrawal. We noticed that the
expressions of p-JNK and Bax/Bcl-2 were returned to the
same levels of the control group after alcohol withdrawal.
However, some proteins, such as p38, pERK1/2, and cleaved-
caspase -3 were only partially reversed. we speculated that this
was due to the short duration of abstinence. After alcohol
treatment, TLR4 recruits complicated adaptor proteins to
initiate MyD88 pathways, which transactivate the transcription
and secretion of the gene for TNF-α, an inflammatory cytokine
(Gustot et al., 2006). In the present study, decreased level of
inflammatory cytokine, TNF-α and IL-6, were observed after
alcohol withdrawal. The existing evidence indicates that alcohol

withdrawal rescues alcohol-stimulated TLR4/MAPKs and
mitigates alcohol-induced hepatic inflammation.

Mitochondrial dysfunction has been detected in both
experimental animal and patients with ALD (Yacoub et al.,
1995; Ziol et al., 2001). Chronic alcohol consumption
promoted programmed apoptosis mediated by mitochondria
via upregulating Bax and down-regulating Bcl-2, leading to
mitochondrial permeabilization increase, release of cytochrome
c and activation of caspases 3 (Guo et al., 2009). In this study,
we confirmed that 1-week alcohol abstinence strongly reversed
alcohol-fed induced mitochondrial dysfunction, evidenced by
the observation of decreased cleaved-caspase3 expression and
increased Bax/Bcl-2 ratio.

Taken together, alcohol withdrawal effectively reversed
chronic alcohol intake-caused liver metabolic reprogramming,
and in hence improved hepatic steatosis, liver injury, and
inflammation. Our findings provide a theoretical basis for the
understanding of alcohol withdrawal on ALD recovery.
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