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Experimental and clinical evidence has indicated that the natural product ascorbic acid
(AA) is effective in preventing and treating various types of cancers. However, the effect of
AA on liver cancer metastasis has not yet been reported. Cancer stem cells (CSCs) play
pivotal roles in cancer metastasis. Here, we demonstrated that AA selectively inhibited the
viability of both liver cancer cells and CSCs, reduced the formation of cancer cell colonies
and CSC spheres, and inhibited tumor growth in vivo. Additionally, AA prevented liver
cancer metastasis in a xenotransplantation model without suppressing stemness gene
expression in liver CSCs. Further study indicated that AA increased the concentration of
H2O2 and induced apoptosis in liver CSCs. Catalase attenuated the inhibitory effects of AA
on liver CSC viability. In conclusion, AA inhibited the viability of liver CSCs and the growth
and metastasis of liver cancer cells in vitro and in vivo by increasing the production of H2O2

and inducing apoptosis. Our findings provide evidence that AA exerts its anti-liver cancer
efficacy in vitro and in vivo, in a manner that is independent of stemness gene regulation.
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INTRODUCTION

One of the main causes of cancer-related death is distant metastasis that occurs in cancer patients,
and cancer stem cells (CSCs) are an important driving force for cancer metastasis. CSCs, also referred
to as tumor-initiating cells, have a stronger tumor-forming ability than somatic or non-tumorigenic
cancer cells (Ponti et al., 2005; Ma et al., 2007). CSCs play key roles in the development of metastasis
in multiple cancers. In colorectal cancer, CD26+ CSCs caused distant metastasis when injected into
the mouse cecal wall, while the presence of CD26+ CSCs in primary tumors can predict distant
metastasis in cancer patients (Pang et al., 2010). Also, Lgr5+ or CD44v6+ CSCs are required for the
generation of metastatic tumors (Todaro et al., 2014; De Sousa e Melo et al., 2017). In squamous cell
carcinoma of the head and neck, it was observed that BMI1+ CSCs regulated the invasive growth and
cervical lymph node metastasis in a mouse model (Chen D. et al., 2017). A recent study at the single-
cell level in breast cancer has shown that early-stage metastatic cells possess a distinct stem-like gene
expression signature (Wylie et al., 2015).

Liver cancer is a heterogeneous disease, and liver CSCs play important roles in the development of
this disease. Inhibition of ICAM-1, a marker of hepatocellular CSCs, suppresses tumor formation
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and metastasis in mice (Liu et al., 2013). All-trans retinoic acid
can effectively induce the differentiation of CSCs, and it also
enhances the cytotoxicity of cisplatin and increases the inhibition
of hepatocellular carcinoma (HCC) cell migration in vitro and
metastasis in vivo in combination with cisplatin (Zhang et al.,
2013). All of these studies have demonstrated a key role for CSCs
in cancer metastasis and suggested that CSCs are a promising
target for developing effective therapeutic agents that can be used
to treat metastatic cancer.

The natural product ascorbic acid (AA) is an important water-
soluble vitamin and is one of the early unorthodox therapies that
has long been used in the field of alternative and complementary
medicine for cancer treatment, with profound safety and
anecdotal efficacy (Du et al., 2010; Chen et al., 2015). Many
clinical and laboratory studies have revealed its effects on cancer
prevention and treatment. AA inhibits the growth of prostate,
ovarian, and pancreatic cancer cells and neuroblastoma cells.
(Maramag et al., 1997; Carosio et al., 2007; Chen et al., 2008; Du
et al., 2010; Yun et al., 2015; Schoenfeld et al., 2017). Cameron
et al. demonstrated in the 1970s that there was a potential survival
benefit for patients who received oral and intravenous
administration of AA (Cameron and Pauling, 1976; Cameron
and Pauling, 1978). However, two clinical studies performed at
the Mayo Clinic have shown no significant difference between
oral ascorbate-treated and placebo-treated patients (Moertel and
Fleming, 1985; Creagan et al., 1979).

Additional research has shown that oral ingestion of high
doses of AA rarely induce a plasma concentration greater than
200 μM, due to the limited absorption and renal excretion. By
contrast, both intravenous (i.v.) and intraperitoneal (i.p.)
administration of ascorbate result in pharmacologic serum
ascorbate concentrations up to 20 mmol/L (Reczek and
Chandel, 2015; Verrax and Calderon, 2009). Subsequent

studies have shown that high-dose intravenous administration
of AA alleviates symptoms and prolongs survival in patients with
advanced cancer (Cameron and Pauling, 1976; Cameron and
Pauling, 1978; Cameron and Campbell, 1974; Padayatty et al.,
2006; Raymond et al., 2016). AA also significantly reduces the
metastasis of B16FO melanoma cells injected into mice who were
deficient in AA and unable to synthesize it (Cha et al., 2013).
However, there have been no reports describing the effects of AA
on liver cancer metastasis.

With the participation of transition metals (such as copper
and iron), a high dose of AA as an electron donor produces
extracellular ascorbate anion and H2O2, which play important
roles in AA-induced anticancer activity (Chen et al., 2015).
H2O2, an important reactive oxygen species (ROS), plays
numerous roles in cancer cells, where a low concentration
of H2O2 is involved in various signal transduction and cell
functions, and a high concentration of H2O2 causes DNA
damage and promotes cell apoptosis. Du et al.
demonstrated that AA decreases the clonogenic survival of
pancreatic cancer cell lines, while treatment of cells with H2O2

scavengers can reverse AA’s anticancer activity (Du et al.,
2010). Chen et al. reported that AA causes significant
cytotoxicity in cancer cells, while glutathione reduces the
cytotoxicity by attenuating AA-induced H2O2 production
(Chen et al., 2005; Chen et al., 2011).

In this study, we investigated the inhibitory effects of AA on
liver cancer cells and liver CSCs in vitro and in vivo. We found
that AA inhibited the growth and metastasis of liver cancer cells
and liver CSCs, although AA also increased the expression levels
of stemness genes. Further molecular mechanism studies
indicated that the increased concentration of H2O2 and the
enhanced apoptosis by AA play vital roles in its efficacy
against liver cancer.

FIGURE 1 | Inhibitory effects of AA on the viability of liver cancer cells in vitro. Cells were treated with AA at the concentration as shown and cell viability was
measured by CCK-8 assay. (A)Cell viability of Huh7 cells. (B)Cell viability of Hep3B cells. (C)Cell viability of Huh7 CSCs. (D)Cell viability of Hep3B CSCs. (E) IC50 values
of AA, values are mean and 95% confidence. (F) Cell viability of L02 hepatocytes. ***p < 0.001.
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MATERIALS AND METHODS

Cell Culture
Human liver cancer cell lines Huh7 and Hep3B and normal
human liver cell line L02 cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) containing 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin. Huh7
and Hep3B CSCs were enriched and maintained on poly-
HEMA coated plates in serum-free DMEM/Nutrient Mixture
F-12 (F-12) medium containing 20 ng/ml epidermal growth
factor (EGF) (236-EG-200, R&D Systems), 10 ng/ml fibroblast
growth factor (FGF) (233-FB-025, R&D Systems), and 1%
penicillin/streptomycin (Pang et al., 2010; Li et al., 2015). For

preparing poly-HEMA coated plates, 6-well plates were pre-
coated with 1.2% (w/v) poly-HEMA (Re et al., 1994).

Detection of Cell Viability
Cell viability was measured by Cell Counting Kit-8 (CCK-8)
(Dojindo Laboratories) according to the user’s manual. The cell
viability in each group is expressed as the percentage of untreated
control cell viability (Wu et al., 2017).

Flow Cytometric Analysis
To examine the expression of CD133 and CD44, Huh7 and Hep3B
stem cells were digested with 0.05% trypsin. Next, 106 cells/100 μl of
single cells were resuspended and incubated with PE-labeled CD133

FIGURE 2 | AA reduces sphere formation and colony formation by liver cancer cells. (A) Image of spheres formed by Huh7 cells after treatment with AA at indicated
concentrations for 14 days. (B) Sphere numbers of Huh7 cells after treatment with AA at indicated concentrations for 14 days. (C) Image of spheres formed by
Hep3B cells after treatment with AA at indicated concentrations for 14 days. (D) Sphere numbers formed by Hep3B cells after treatment with AA at indicated
concentrations for 14 days. (E) Colonies formed by Huh7 or Hep3B cells after treatment with AA at indicated concentrations for 14 days. ***p < 0.001.
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(1:50, Miltenyi Biotec) or CD44 (1:50, Miltenyi Biotec) in the dark
for 15 min, washed twice with cold phosphate-buffered saline (PBS),
resuspended in 400 μl PBS, and analyzed using flow cytometry
(Becton Dickinson FACS Vantage SE, San Jose, CA, United States).

To analyze cell apoptosis, Huh7 stem cells were digested with
0.05% trypsin. Then, 1 × 106 single cells were resuspended and
mixed with 10 μl Annexin V-fluorescein isothiocyanate (FITC, 130-
097-928, Miltenyi Biotec), incubated in darkness for 15 min, washed
with 1ml 1× Annexin V Binding Buffer and resuspended in 500 μl
1× Annexin V Binding Buffer, mixed with propidium iodide (PI)
solution, and then analyzed by flow cytometry (Cheng et al., 2017).

RNA Isolation and Quantitative
Real-Time PCR
Total RNA was isolated using a Tissue RNA Kit (R6311-01,
Biomiga). RNA (1 μg) was reverse-transcribed into cDNA using
GoScript Reverse Transcriptase (A5001, Promega). Quantitative
real-time PCR was completed using the Power Up SYBR Green
Master Mixture (Thermo Fisher) with the StepOne Plus Real-
Time PCR System (Thermo Fisher), according to a protocol from
a previous study (Wu et al., 2017). Specific primers for CD90 and
EPCAM were created according to Luo et al. (2015). Specific
primers for CD133, OCT4 (POU5F1), NANOG, SOX2, and beta-
actin were created according to Ma et al. (2010).

Animal Experiments
All of the mice were maintained in a pathogen-free facility, and all of
the animal experiments were approved by the Committee on the
Ethics of Animal Experiments of the Naval Medical University,
China. For the animal experiments, 6-week-old female nude BABL/c

mice were used, and 2 × 106 Huh7 or Hep3B cells were
subcutaneously inoculated into the nude mice (Ma et al., 2018;
Yuan et al., 2015). Three weeks later, PBS (control group) or 4 g/kg
AA was injected intraperitoneally twice daily for 26 days. The tumor
volume was calculated as: total volume � (length × width2)/2 (Naito
et al., 1986). Lung and liver tissues were fixed with 4%
polyformaldehyde, and serial sections (four sections per tissue
with a 30-μm step) were created and stained with hematoxylin
and eosin (HE) (Cheng et al., 2017).

Western Blot
Western blot was completed according to a protocol from a previous
study (Wu et al., 2017). Briefly, cells or tissues were lysed with
Radioimmunoprecipitation Assay (RIPA) Lysis Buffer (P0013C,
Beyotime Biotechnology, China) and centrifuged at 13,000 rpm
for 15 min. The supernatant was separated by sodium dodecyl
sulfate (SDS)-polyacrylamide gel and transferred to a
polyvinylidene difluoride (PVDF) membrane. The membrane was
incubated overnight with anti-NANOG (1:500, ab109250, Abcam),
anti-SOX2 (1:500, ab92494, Abcam, UK), anti-ALDH1A1 (1:1,000,
ab52492, Abcam), or anti-β-actin (1:1,000, 3700S, Cell Signaling
Technology) primary antibodies, washed with Tris-buffered saline
(TBS) containing 0.1% Tween-20 (TBST) three times, incubated
with secondary antibody (926-32210, 1:20,000 for β-actin and 926-
32211, 1:5,000 for others, LI-COR, Biosciences), and analyzed with
the Odyssey Infrared Imaging System (LI-COR, Biosciences).

Detection of H2O2
The H2O2 concentration was measured using a H2O2 Assay Kit
(S0038, Beyotime Biotechnology, China) according to the user’s
manual. Simply, 1 × 106 cells were lysed in 200 μl lysis buffer and

FIGURE 3 | AA suppresses tumor growth in vivo. 2 × 106 Huh7 or Hep3B cells were inoculated subcutaneously into nude mice. 3 weeks later, PBS (control group)
or 4 g/kg AA was injected intraperitoneally twice daily for 26 days. Tumor volume was measured every 2–3 days and animal body weight was measured every 9 days.
(A) Volumes of tumors formed by Huh7 cells. (B) Volumes of tumors formed by Hep3B cells. (D) Body weight of animals engrafted with Huh7 cells. (D) Body weight of
animals engrafted with Hep3B cells *p < 0.05.
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centrifuged for 5 min at 12,000 rpm. Every 50 μl of the supernatant
was mixed with 100 μl of H2O2 detection reagent and incubated for
30 min at room temperature. Absorbance was determined at 560 nm
using an Epoch Microplate Spectrophotometer (BioTek). For
catalase experiments, catalase was added prior to AA treatment.

Sphere Formation Assay and Colony
Formation Assay
For the sphere formation experiment, cells were digested into
single cells with trypsin. Then, 100 cells/well were plated into a
96-well ultra-low attachment plate and cultured for 2 weeks in
serum-free DMEM/F-12 medium containing 20 ng/ml EGF,
10 ng/ml FGF, and AA (0, 0.5, or 1 mM). The number of
spheres was counted and photographed.

For the colony formation experiment, 1,000 cells/well were plated
into 6-well plates. The colonies were cultured in DMEM containing
10% fetal bovine serum, 1% penicillin/streptomycin, and AA (0, 0.5,
or 1mM). The colonies were then stained with 1% crystal violet.

Statistical Analysis
Statistical analysis was performed using unpaired t tests when
comparing two different groups or one-way ANOVA with

Tukey’s multiple comparison tests. IC50 values were calculated
using Prism software (GraphPad, San Diego, CA, USA) by
nonlinear regression to dose-response curves, and expressed as
mean and 95% confidence intervals (CI). The data are expressed
as the mean ± SEM. p < 0.05 was considered statistically significant.

RESULTS

AA Selectively Inhibited the Viability of Liver
Cancer Cells and Liver CSCs in vitro
Two human liver cancer cell lines (Huh7 and Hep3B), the
respective CSCs, and a normal human liver cell line L02 were
treated with AA at the concentrations of 0, 0.5, or 1 mM, which
are easily achievable clinically by intravenous infusion (Chen et al.,
2008) (Hoffer et al., 2008). The results showed that AA inhibited the
viabilities of liver cancer cells and liver CSCs in a concentration-
dependent manner (Figures 1A–D). AA at the concentration of
1 mMdecreased the viabilities ofHuh7 andHep3B cells to 12.15 and
5.77%, respectively (Figures 1A,B). For Huh7 and Hep3B CSCs, the
viabilities were decreased to 52.37 and 33.04%, respectively, at 1 mM
concentration of AA (Figures 1C,D). The IC50 values of AA for
Huh7, Hep3B, and Huh7 CSCs and Hep3B CSCs were 0.67, 0.32,

FIGURE 4 | AA prevents tumor metastasis in vivo. 2 × 106 Huh7 cells were inoculated subcutaneously into female BALB/c nude mice. After 3 weeks, PBS (control
group) or 4 g/kg AA was injected intraperitoneally twice daily. At the end of the experiment, the animals were sacrificed to examine liver and lung metastasis. (A,B) HE
staining of lung section (A: control group, B: AA group; A, B upper: 2×magnification; A, B lower: 40×magnification). (C,D) the number and area ratio of metastatic tumors
in each lung section. (E,F) HE staining of liver section. (E: control group, F: AA group; 40 ×magnification). (G) Number of mice with lung metastases in each group.
(H) Number of mice with liver metastases in each group. *p < 0.05.
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1.21, and 0.52 mM, respectively (Figure 1E). However, AA did not
display significant inhibitory effects on the viability of L02 cells at
0.5 mM or 1mM concentrations (Figure 1F). Together, these data
indicated that AA was responsible for selective inhibitory effects on
the viabilities of liver cancer cells and liver CSCs.

AA Inhibits Sphere Formation and Colony
Formation in Liver Cancer Cells
We further examined the effects of AA on sphere formation and
colony formation. As shown in Figure 2A, AA treatment reduced
the volume of spheres formed by Huh7 cells. The number of spheres
larger than 50 μm in diameter was markedly decreased in a
concentration-dependent manner in AA-treated Huh7 cells
(Figure 2B). Twenty-two spheres were formed for every 100 cells
in the control group, whereas only two spheres were formed for every
100 cells in the group treated with 1mM AA. Similar results were
obtained forHep3B cells (Figures 2C,D). As shown in Figure 2E, AA
treatment also markedly decreased colony formation in a
concentration-dependent manner in Huh7 and Hep3B cell lines.
Collectively, our data showed that AA reduced sphere formation and
colony formation by liver cancer cells, indicating the inhibitory effects
of AA on self-renewal and tumorigenicity of liver cancer cells.

AA Inhibited Liver Tumor Growth in vivo
We determined the effects of AA on tumor growth in mice bearing
Huh7 and Hep3B xenografts. As mentioned above, AA

concentrations in human plasma and cells were tightly controlled.
With the oral ingestion of high doses of vitamin C, even at 100 times
the recommended dietary allowance, the plasma concentration rarely
exceeds 200 µM. Both i.v. and i.p. administration of ascorbate
induced pharmacologic serum ascorbate concentrations up to
20mmol/L. To obtain a pharmacologic serum ascorbate
concentration, the i.p. administration method was selected.
Compared with the PBS control group, AA treatment significantly
suppressed the growth of Huh7 and Hep3B xenograft tumors in vivo
(Figures 3A,B) without significantly changing the animal’s body
weight (Figures 3C,D).

AA Prevents Tumor Metastasis in vivo
As shown in Figures 4A,B, AA-treated mice developed fewer
metastatic lung tumors as compared to the control group. The
number of metastatic lung tumors in AA-treated mice was 0.90 ±
0.40 (n � 5), and that in the control mice was 6.25 ± 2.27 (n � 5)
(Figure 4C). The area ratio of metastatic lung tumors in AA-
treated mice was 0.29 ± 0.17 (n � 5), and that in control mice was
14.61 ± 6.91 (n � 5) (Figure 4D). The metastatic tumors in the
livers of either the control or AA groups were small (Figures
4E,F). In the control group, 5 of 5 mice developed metastatic lung
tumors, whereas 3 of 5 mice exhibited metastatic lung tumors in
the AA-treated group (Figure 4G). Additionally, in the control
group, 4 of 5 mice developed metastatic liver tumors, while in the
AA-treated group, 1 of 5 mice developed metastatic liver tumors
(Figure 4H). In summary, our data demonstrated that AA

FIGURE 5 | AA regulates the expression of stemness genes in liver cancer cells. (A,B) Flow cytometric analysis of the expressions of CD133 and CD44 in Huh7 (A)
and Hep3B (B) stem cells treated with different concentrations of AA. (C,D) The protein levels of stemness genes in Huh7 (C) and Hep3B (D) stem cells treated with
different concentrations of AA.
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treatment reduced liver and lung metastasis of liver cancer cells
inoculated subcutaneously into nude mice.

AA Upregulated the Expression of
Stemness Genes in Liver Cancer Cells and
Tumors
We investigated the effects of AA on the expression of stemness
genes. Flow cytometric analysis showed that AA treatment
increased CD133+ cells and CD44+ cells in both Huh7-and
Hep3B-derived stem cells (Figures 5A,B). CD133 antigen was
identified as a CSCmarker in various cancer types, including liver
cancer. CD44, a transmembrane glycoprotein, is also considered
as an important liver CSC marker (Zhu et al., 2010; Yang et al.,
2008). For Huh7 CSCs, AA at 1 mM increased CD133+ cells and
CD44+ cells from 2.90 to 14.70%–4.29 and 24.19%, respectively
(Figures 5A,B). For Hep3B CSCs, CD133+ cells and CD44+ cells
were increased by AA from 20.40 to 0.75%–24.22 and 4.51%,
respectively (Figures 5A,B). Western blot analysis showed that
the protein levels of embryonic stem cell markers NANOG and
SOX2 as well as liver CSC marker ALDH1A1 were increased after
treatment with AA in Huh7-and Hep3B-derived stem cells
(Figures 5C,D).

We also examined the effects of AA on the expression of
stemness genes in liver tumors in vivo. Consistent with the in vitro
results, the mRNA expression levels of NANOG, OCT4, SOX2,

EPCAM, CD133, and CD90 were upregulated in the AA-treated
tumors (Figure 6A). Also, the protein level of NANOG was
increased in the AA-treated group as compared with that of the
control group (Figures 6B,C). Collectively, our data showed that
AA upregulated the expression of stemness genes in liver cancer
cells in vitro and in vivo.

AA Enhanced the Production of H2O2 and
Promoted the Apoptosis of Liver CSCs
It was reported that H2O2 plays an important role in AA’s
anticancer activity (Lennicke et al., 2015; Chaiswing et al.,
2018). To determine the role of H2O2 in the inhibitory effect
of AA on liver CSCs, we first evaluated the concentrations of
H2O2 in Huh7-derived CSCs with or without AA treatment. As
shown in Figure 7A, AA treatment increased the concentration
of H2O2 in Huh7-derived CSCs. Furthermore, AA increased the
protein levels of cleaved poly (ADP-ribose) polymerase (PARP)
and cleaved caspase-7 (Figure 7B) and promoted cell apoptosis
(Figures 7C,D).

Catalase, as a specific H2O2 scavenger, converts the ROS H2O2

to water and oxygen and thereby mitigates the cytotoxic effects of
H2O2. We also found that the addition of catalase reversed the
effects of AA on the production of H2O2 and the cleavage of
PARP and caspase-7 (Figures 7E,F). More importantly, the
addition of catalase reduced the inhibitory effects of AA on

FIGURE 6 | AA regulates the expressions of stemness genes in liver tumors in vivo. 2 × 106 Huh7 cells were inoculated subcutaneously into female BALB/c nude
mice. Three weeks later, PBS (control group) or 4 g/kg AA were injected introperitoneally twice a day. At the end of treatment, the animals were sacrificed and tumors
were collected for analysis. (A) mRNA levels of stemness genes in tumor tissue. (B,C) Protein levels of NANOG in tumor tissue. *p < 0.05. **p < 0.01.
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FIGURE 7 | AA reduces liver CSC viability via increasing the production of H2O2 and induction of cell apoptosis. (A) The content of H2O2 in Huh7 stem cells treated
with different concentrations of AA. (B) The protein levels of cleaved PARP and caspase 7 in Huh7 stem cells treated with different concentrations of AA. (C,D) Apoptosis
of Huh7 stem cells treated with different concentrations AA. (E) The content of H2O2 in Huh7 stem cells treated with different concentrations of AA in the presence of
100 μg/ml catalase (Cat: catalase, Sigma -Aldrich). (F) The protein levels of cleaved PARP and caspase 7 in Huh7 stem cells treated with different concentrations of
AA in the presence of 100 μg/ml catalase. (G) Viabilities of Huh7 stem cells treated with different concentrations of AA in the presence of 100 μg/ml catalase. *p < 0.05.
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liver CSC viability (Figure 7G), which was consistent with
previous reports describing the dependence of AA’s
cytotoxicity on the generation of H2O2 (Du et al., 2010; Chen
et al., 2015; Chen et al., 2005). In conclusion, our data indicate
that AA exerts its inhibitory effects on liver CSCs through the
production of H2O2 and the promotion of cell apoptosis.

DISCUSSION

Various factors lead to an increased risk of liver cancer. Among
these factors, it has been reported that alcoholic liver disease is the
most common cause of HCC, accounting for approximately 30%
of all HCC cases (Morgan et al., 2004). Liver cancer is one of the
common causes of cancer-related death. Metastasis and
recurrence are the main causes of primary liver cancer-
associated mortality. Liver CSCs, possessing a higher migration
ability and tumorigenicity, are closely related to metastasis and
recurrence of liver cancer. Liver CSCs are considered an
important target for liver cancer therapy. For example, WYC-
209, a synthetic retinoid, inhibited the proliferation of malignant
murine melanoma tumor-repopulating cells and abrogated 87.5%
of lung metastases of melanoma tumor-repopulating cells (Chen
et al., 2018).

It was reported that AA inhibited the growth of various types
of cancer, including colorectal cancer cells, neuroblastoma cells,
and ovarian cancer cells. However, its effect on liver cancer
metastasis has not yet been reported. Consistent with a
previous study (Lv et al., 2018), we found that AA inhibited
the viability of liver cancer cells without significantly inhibiting
the viability of L02 cells, which are normal human hepatocytes.
Furthermore, AA significantly attenuated the viability of liver
CSCs and reduced the colony formation ability and sphere
formation ability of liver cancer cells in vitro, indicating the
inhibition by AA on self-renewal and tumorigenicity of liver
cancer cells. Because CSCs are involved in important functions in
cancer metastasis and AA shows inhibitory effects on liver CSCs,
we further examined the effects of AA on liver cancer metastasis.
As expected, AA inhibited the metastasis of liver cancer cells to
the lung and liver in a subcutaneous xenotransplantation model.

Stemness genes play vital roles in regulating cancer
metastasis. In most cases, stemness genes promote cancer
metastasis (Lv et al., 2017; Baccelli et al., 2013; Tang et al.,
2012; Celià-Terrassa and Kang, 2016). Sox2, a transcription
factor involved in the regulation of embryonic development,
functions as a novel regulator of cell invasion, migration, and
metastasis in several cancer types (Feng and Lu, 2017; Weina
and Utikal, 2014). However, it was recently reported that
REX1, an embryonic stem cell marker, inhibits liver cancer
metastasis, indicating the complex functions of stemness genes
in the process of cancer metastasis (Luk et al., 2019). AA
regulates the expression of stemness genes, and in human
embryonic stem cells, AA caused specific DNA
demethylation of 1,847 genes (including the important stem
cell genes) (Chung et al., 2010) and also inhibited retinoic acid-
induced differentiation of embryonic stem cells (Wu et al.,
2014). Furthermore, AA alleviated cell aging and increased the

production of induced pluripotent stem cells in mice and
human cells (Esteban et al., 2010; Wang et al., 2011).

In adult stem cells, AA enhanced the stemness of mouse
corneal epithelial stem cells/progenitor cells and promoted the
healing of corneal epithelial injury (Chen J. et al., 2017). AA
also reduced stemness gene expression in liver cancer (Lv
et al., 2018). Unexpectedly, our data suggested that AA
promoted the expression of genes related to cancer
stemness. AA increased the production of CD133+ and
CD44+ cells and the protein levels of NANOG, SOX2, and
ALDH1A1 in vitro and upregulated the mRNA expression
levels of NANOG and SOX2 and the protein level of NANOG
in Huh7 transplanted tumors. Our data suggest that AA
inhibits liver cancer metastasis via a pathway independent
of stemness gene regulation. However, the detailed
mechanisms of AA-induced expression changes of stemness
genes require further study.

Our results indicated that AA did not downregulate the
expression of stem genes in liver cancer cells, which implies
that other mechanisms are involved in the inhibition of liver
cancer metastasis by AA. H2O2 plays an important role in AA’s
anticancer activity (Du et al., 2010; Chen et al., 2005; Chen et al.,
2011). H2O2, a key ROS, is involved in cell differentiation, growth,
and survival. High levels of H2O2 can induce cell cycle arrest and
apoptosis in cells (Lennicke et al., 2015; Chaiswing et al., 2018).
With the participation of transition metals (such as copper and
iron), a high dose of AA as an electron donor produces
extracellular ascorbate anion and H2O2. H2O2 is a cell
permeant, and its accumulation induces DNA and
mitochondrial damage, and apoptosis of tumor cells. The
addition of H2O2 to tumor cells produced the same cell death
effect as that caused by AA, while simultaneous use of the
antioxidants N-acetylcysteine or catalase with AA inhibited
AA-induced tumor cell death. These results further
demonstrate the key role of H2O2 in AA’s action upon tumor
cells. (Chen et al., 2008; Verrax and Calderon, 2009; Chen et al.,
2005; Chen et al., 2007). Normal cells exhibit both catalase and
glutathione peroxidase activities, which efficiently detoxify H2O2.
This might be the reason why AA selectively inhibited tumor
cells, while it had no toxic effects on normal cells (Chen et al.,
2005). We examined the changes in the H2O2 concentration in
liver CSCs treated with AA and found that the H2O2

concentration was increased after AA treatment. AA treatment
also increased the protein levels of apoptotic mediators including
cleaved PARP and caspase-7 and enhanced the cell apoptosis of
CSCs, while the addition of catalase reduced these effects. These
results suggest that AAmight induce CSC apoptosis by increasing
the intracellular concentration of H2O2.

In conclusion, AA inhibited the viability of CSCs and prevented
liver cancer metastasis without reducing the expression of stemness
genes in liver cancer cells. The inhibitory effects of AA on liver
CSCs can result from the production of H2O2 and promotion of
cell apoptosis. Our findings provide evidence that supports AA as
an effective therapeutic agent for liver cancer metastasis and
suggest that additional effects other than inhibition of stemness
genes may be considered during later evaluation of the effects of
AA on CSCs and cancer metastasis.
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