AUTHOR=Liu Shuai , Liu Xing , Zhang Chuanbao , Shan Wei , Qiu Xiaoguang TITLE=T-Cell Exhaustion Status Under High and Low Levels of Hypoxia-Inducible Factor 1α Expression in Glioma JOURNAL=Frontiers in Pharmacology VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2021.711772 DOI=10.3389/fphar.2021.711772 ISSN=1663-9812 ABSTRACT=

Background: Hypoxia-inducible factor 1α (HIF1A), the principal regulator of hypoxia, is involved in the suppression of antitumor immunity. We aimed to describe the T-cell exhaustion status of gliomas under different levels of HIF1A expression.

Methods: In this study, 692 patients, whose data were collected from the Chinese Glioma Genome Atlas (CGGA) database, and 669 patients, whose data were collected from The Cancer Genome Atlas database, were enrolled. We further screened the data of a cohort of paired primary and recurrent patients from the CGGA dataset (n = 50). The abundance of immune cells was calculated using the transcriptome data. The association between HIF1A and T-cell exhaustion-related genes and immune cells was investigated.

Results: According to the median value of HIF1A expression, gliomas were classified into low-HIF1A-expression and high-HIF1A-expression groups. The expression levels of PDL1 (CD274), FOXO1, and PRDM1 in the high-HIF1A-expression group were significantly higher in both glioblastoma (GBM) and lower-grade glioma. The abundance of exhausted T cells and B cells was significantly higher in the high-HIF1A-expression group, while that of macrophage, monocyte, and natural killer cell was significantly higher in the low-HIF1A-expression group in both GBM and lower-grade glioma. After tumor recurrence, the expression of HIF1A significantly increased, and the correlation between HIF1A expression levels and exhausted T cells and induced regulatory T cells became stronger.

Conclusion: In diffuse gliomas, the levels of T-cell exhaustion-associated genes and the abundance of immune cells were elevated under high HIF1A expression. Reversing hypoxia may improve the efficacy of immunotherapy.