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Intracerebroventricularly injected streptozotocin (STZ)-induced learning impairment has
been an increasingly used rat model of Alzheimer disease. The evoked pathological
changes involve many symptoms of the human disease (cognitive decline, increase in
β-amyloid and phospho-tau level, amyloid plaque-like deposits). However, the model has
predominantly been used with Wistar rats in the literature. The objective of the current
study was to transfer it to Long-Evans rats with the ulterior aim to integrate it in a complex
cognitive test battery where we use this strain because of its superior cognitive capabilities.
We performed two experiments (EXP1, EXP2) with three months old male animals. At
EXP1, rats were treated with 2 × 1.5 mg/kg STZ (based on the literature) or citrate buffer
vehicle injected bilaterally into the lateral ventricles on days 1 and 3. At EXP2 animals were
treated with 3 × 1.5 mg/kg STZ or citrate buffer vehicle injected in the same way as in EXP1
at days 1, 3, and 5. Learning and memory capabilities of the rats were then tested in the
following paradigms: five choice serial reaction time test (daily training, started from week 2
or 8 post surgery in Exp1 or Exp2, respectively, and lasting until the end of the experiment);
novel object recognition (NOR) test (at week 8 or 14), passive avoidance (at week 11 or 6)
and Morris water-maze (at week 14 or 6). 15 or 14 weeks after the STZ treatment animals
were sacrificed and brain phospho-tau/tau protein ratio and β -amyloid level were
determined by western blot technique. In EXP1 we could not find any significant
difference between the treated and the control groups in any of the assays. In EXP2
we found significant impairment in the NOR test and elevated β-amyloid level in the STZ
treated group in addition to slower learning of the five-choice paradigm and a trend for
increased phospho-tau/tau ratio. Altogether our findings suggest that the Long-Evans
strain may be less sensitive to the STZ treatment than theWistar rats and higher dosesmay
be needed to trigger pathological changes in these animals. The results also highlight the
importance of strain diversity in modelling human diseases.
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INTRODUCTION

The bitter experience of anti-dementia drug development over
the past 15 years has been that clinical trials of potential cognitive
enhancers have resulted in 100% failure, mostly due to lack of
efficacy (Cummings et al., 2014). One of the main reasons for the
serial failures is the low translational value of animal experimental
models predicting human efficacy. In the case of Alzheimer’s
disease (AD) therapeutic approaches were based almost
exclusively on the amyloid cascade hypothesis (Barage and
Sonawane, 2015), and its key models were transgenic mouse
lines carrying human mutant transgenes characteristic for the
familial form of the disease. These strains are characterized by
massive human β-amyloid overproduction, but this can be
considered a model of amyloid intoxication rather than the
disease itself, as they did not show tau pathology and the
observed cognitive defects did not correlate with histological
changes (Foley et al., 2015). The series of failures in clinical
trials (Schneider et al., 2014) have raised serious doubts not only
about the validity of the transgenic models but also about the
validity of the amyloid theory itself (Herrup, 2015). For these
reasons, non-transgenic models of sporadic AD have again
become the focus of research. One prominent representative of
these is the intracerebroventricularly (icv.) injected
streptozotocin (STZ)-induced insulin-resistant brain state
(Chen et al., 2013; Salkovic-Petrisic et al., 2013). The
theoretical basis of the model is the cerebral insulin resistance
in AD, which is why the disease is also referred to as type 3
diabetes (Chen and Zhong, 2013). As a result of insulin resistance
induced by STZ treatment (Craft, 2006; Agrawal et al., 2011; De
Felice et al., 2014), AD-like pathology develops (increased
phospho-tau at 1 month post-injection, β -amyloid at
3 months, appearance of plaques at 6 months) associated with
cognitive deficits (already at 1 month) (Knezovic et al., 2015).
Based on the data to date, it appears to be a more adequate model
than transgenic mice (Salkovic-Petrisic et al., 2013) and has the
additional advantage of being applicable to rats.

Our group elaborated and established a rat cognitive test
battery and testing protocol for more reliable prediction of
clinical efficacy of putative cognitive enhancer drugs
(Gyertyán, 2017; Gyertyán et al., 2020). According to the
protocol, several cognitive tasks representing different
cognitive domains were taught to the same cohort of Long-
Evans rats, for example, five-choice serial reaction time task
(5-CSRTT) for attention, a cooperation task for social
cognition (Kozma et al., 2019), Morris water maze paradigm
for spatial memory, “pot-jumping” exercise for procedural
memory (Ernyey et al., 2019). Hereby we created a population
with “widespread knowledge” (Gyertyán et al., 2016). The Long-
Evans strain was chosen for its good learning capability, which is
an essential requirement in a system imposing heavy cognitive
load on the subjects. The effect of a particular impairment
method on the various cognitive functions could then be
simultaneously measured in this trained population. These
impaired states served then as the target of potential cognitive
enhancer treatments in a “clinical trial-like”, vehicle controlled,
double blind, randomized experimental design (Gyertyán et al.,

2020). The icv. STZ-model could be integrated into this testing
protocol as a distinguished, particularly useful impairing method
of high translational potential. As the model has been used with
Wistar–and to a lesser extent Sprague-Dawley rats in the
literature, transferring it into Long-Evans animals is the first
step toward this integration. The objective of the current study
was to try to reproduce the cognitive and biochemical changes
described in Wistar rats in the literature in naive Long-Evans rats
as well.

METHODS AND MATERIALS

Animals
Eight-nine weeks old male Long-Evans rats (Janvier Labs, Le
Genest-Saint-Isle, France) were used in this study; 18 subjects
weighing 240–280 g in experiment 1 (EXP1), and 24 subjects
(210–270 g) in experiment 2 (EXP2). Animals were kept three per
cage (1376 cm2 polycarbonate cages with paper tubes and wooden
bricks as environmental enrichment tools) under reverse light
dark cycle (dark phase from 4 am to 4 pm). Food (commercial
pellet rat feed R/M−Z + H produced by SSniff Spezialdiäten
GmbH, Soest, Germany) was available ad libitum up to the end of
the post-injection recovery period; after that the animals had a
restricted food access: the amount of the food was 45 g for three
rats and it was supplied before the end of the dark phase.
Drinking water was available ad libitum over the whole course
of the experiment. The animals were intensively handled before
and during the experiments. At the end of the behavioral
measurements, they were anaesthetized by isoflurane and
decapitated to remove their hippocampus for the western blot
measurements. The experiments were authorized by the regional
animal health authority in Hungary (resolution number PE/EA/
785–5/2019) and conformed to the Hungarian welfare law and
the EU 63/2010 Directive.

Intracerebroventricular Streptozotocin
Treatment
During EXP1, 3 mg/kg icv STZ (Sigma-Aldrich, St. Louis, MO,
United States) divided into two 1.5 mg/kg doses were given
bilaterally at day 1 and day 3. A volume of 2 μL/ventricle was
injected to the left and the right ventricle for a rat of 500 g. The
dose was adjusted to the body mass of the animal by changing the
injection volume. At EXP2, rats were treated with 4.5 mg/kg STZ
split into three equal doses administered on day 1, 3, and 5
(Figure 1). In both experiments, STZ was dissolved in 0.05 M
citrate buffer pH 4.5 [sodium citrate dihydrate (0,0228 M) and
citric acid (0,0272 M), Santa Cruz Biotechnology (Santa Cruz,
CA, United States)]. The control groups received vehicle
treatment in both experiments.

In EXP1, rats were anesthetized by sodium pentobarbital
(60 mg/kg, i.p.) at both injections. Unfortunately, one animal
from the control group could not recover from anesthesia. In
EXP2, rats received anaesthesia via a mixture of ketamine
(80 mg/kg) and xylazine (10 mg/kg ip.) during the first drug
administration and isoflurane (4% in pure oxygen) during the
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2nd and 3rd surgeries. Animals were placed in a stereotactic
apparatus (Stoelting, Wood Dale, IL, United States) and laid on
a heating bench (37°C) (Supertech Instruments, Pécs, Hungary).
Midline incision on the skin was made and the surface of the skull
was cleaned. Drilled holes at the place of the injection was made by
dental drill. The ICV coordinates were: 0.72mm posterior to
Bregma, 1.5 mm lateral to sagittal suture, 3.6 mm ventral of the
surface of the brain (Noble et al., 1967). A guide cannula was placed
into the drilled hole in the skull and STZwas infused by aHamilton
syringe via a microinjection pump (CMA/100, CMA/Microdialysis
Ab, Stockholm, Sweden); the injection speed was 5 min/hole. The
needle was left in place for an additional 2 minutes then the guide
canule was removed and the wound sutured. After the last
treatment, the holes were closed by bone-cement. After the
surgery, rats were given buprenorphine (0.05 mg/kg i.p.) and
lidocaine was applied to the wound as analgesics. During the
period of the surgeries and one week thereafter the animals had
ad libitum food access. Until the wounds healed (approximately
two weeks), the animals were kept separately.

Behavioural Assays
Novel Object Recognition
The test apparatus was a 48x48x42 cm box with bedding material
on the bottom where the behaviour of the animals were recorded
by a video camera system. Before the testing day, rats were
habituated to the test box for 3 minutes (EXP1) or 10 minutes
(EXP2). The assay itself consisted of two trials, an acquisition trial
and a retention trial. In the acquisition trial, the rats had
3 minutes to explore two identical objects in the box. The
objects were placed 10 cm from the diagonally opposite
corners and 40 cm from each other. After a delay of
80 minutes (EXP1) or 60 minutes (EXP2), in the retention trial
one of the objects was changed to a novel one and the animals had
3 minutes again to explore them. The recognizable objects were a
glass jar and a plastic jar in EXP1 and a plastic bottle filled with
gravel and a glass bottle filled with blue dye solution in EXP2.
Exploration time of each object was the registered parameter.
Recognition memory was characterized by the discrimination
index according to the following equation:
DI � new object−old object

new object+old object × 100. Animals which explored the
objects for less than 10 seconds or explored only one of the
two objects in any of the trials were excluded from the experiment
(2 animals from the control group and one from the STZ group in
EXP1, and one animal from the control group and two rats from
the STZ group in EXP2).

Passive Avoidance Learning
The type of the experiment was a step through passive avoidance
test. The apparatus consisted of a light and a dark chamber
separated by a guillotine door. The test consisted of two parts, the
acquisition trial and 24 hours later the retention trial. During the
trials the rats were placed into the light chamber and 30 sec later
the door opened and the animal could cross into the dark
chamber. In the acquisition trial the animals had 180 sec (cut
off time) to enter the dark compartment of the device, whereas at
the retention trial the cut off time was 300 sec. When the rat
passed through to the dark side, the door closed and after a
3 seconds delay a mild foot shock (0,6 mA, 3 sec) was delivered.
The animal was left in the dark compartment for an additional
5 seconds after the shock. The measured parameters were entry
latencies into the dark compartment in the acquisition and the
retention trials.

Morris Water Maze
The apparatus was a black circular pool (diameter 190 cm, depth
60 cm) filled with water (38 cm, 23 ± 1°C) and containing a non-
visible round escape platform (10 cm diameter) placed 0.5 cm
below the water surface. The platform was located in the south-
east (SE) quadrant, 40 cm from the edge of the pool. On the wall
of the experimental room extra-maze cues were placed to
facilitate the orientation during swimming. At the start of a
trial the rat was placed into the pool at one of the four
possible start points (North, East, West or South rotated in a
systemic manner) had 3 minutes to find the hidden escape
platform. When the animal didn’t find it, it was gently guided
to the platform. Rats were allowed to spend 30 sec on the platform
then were taken out, dried with a cloth and replaced in their
home-cage. During the acquisition phase the animals were
trained in 3 daily trials for two (EXP1) or three (EXP2)
consecutive days. The interval between the trials was 30 min.
Escape latency was measured and swimming path was recorded
by Smart v3.0 video tracking system software (Panlab, Barcelona,
Spain). Two days after the last acquisition trial, the animals were
tested in a probe trial when the hidden platform was removed
from the maze. In this measurement, the rats had 2 minutes to
explore the maze, the measured parameter was the time they
spent in the target quadrant (where the platform had been located
during the acquisition trials). After a 30 min delay, the hidden
platform was replaced to the maze at a different position [north-
west (NW)], and 3 more acquisition trials were run. With the
EXP2 group, 3 months after the STZ treatment an acquisition

FIGURE 1 | Timeline of the experiments (EXP, experiment; ICV, intracelebroventricular; STZ, streptozotocin; NOR, novel object recognition; 5CSRTT, five choice
reaction time task; PAL, passive avoidance learning; MWM, Morris water maze; WB, western blot).
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session (hidden platform located at NW) and two days after a
single probe trial was made.

5-Choice Serial Reaction Time Task
5CSRTT device consist of a 31x35x34 cm test box (cat. no. 259920)
(TSE Systems, Bad Homburg vor der Höhe, Germany). The boxes
were equipped with 5 nose-poke modules on the back wall and
with a magazine at the front wall. During the task, rats had to nose-
poke into that hole where the light was turned on. After 5 s inter-
trial interval, in one randomly selected nose-poke module a 1 sec
long stimulus was presented. The animalmade a correct response if
nose-poked into this hole during the stimulus presentation or
within 5 s afterwards (limited hold). Correct responses were
rewarded with a pellet delivered into the magazine. Nose-poke
into the magazine initiated the next trial. The animal made an
incorrect response if nose-poked into one of the holes where the
stimulus was not presented. An omission response was recorded
when the rat did not make any nose-poke up to the end of the
limited hold. Incorrect responses and omissions were followed by
5 s time-out punishment, when the house light was turned off.
After the time-out, the house light was set back and the rat could
start the next trial by nose-poking into the magazine. The animal
made a premature response, if nose-poked into any of the holes
during the inter-trial interval. These responses were also punished
with time-out. Length of a daily test session was 20 min. Rats were
trained for the task in stages with gradually decreased stimulus
duration from 30 to 1 s. Animals could step to the next training
stage, if they collected at least 40 (EXP1) or 30 rewards (EXP2)
during a training session. One animal which did not even reach the
1st stage (learning to use the nosepoke modul) was excluded from
the experiment. The outcome parameters were the days needed to
complete the final stage and the learning curve plotted as average
learning stage in function of training days.

Western Blot
After the behavioral tests, the animals were decapitated, their
brain were removed and both hippocampi were dissected then
frozen and stored at −80°C. Hippocampal tissues were
homogenized with TissueLyser (Qiagen, Venlo, Netherlands)
in lysis buffer containing 200 mM NaCl, 5 mM EDTA, 10 mM
Tris, 10% glycerine, and 1 g/ml leupeptin (pH 7.4), supplemented
with a protease inhibitor cocktail (cOmplete ULTRA Tablets,
Roche, Basel, Switzerland) and PMSF (Sigma, St. Louis, MO,
United States). The homogenized lysates were centrifuged twice
at 1,500x g and 4°C for 15 min, then the supernatants were
collected and their protein concentration was measured by the
bicinchoninic acid assay (Thermo Fisher Scientific, Waltham,
MA, United States). Equal amount of protein (20 μg) was mixed
with Pierce Lane Marker reducing sample buffer (Thermo Fisher
Scientific, Waltham, MA, United States), and loaded and
separated in a 4–20% precast Tris-glycine SDS polyacrilamide
gel (Bio-Rad, Hercules, CA, United States). Proteins were
transferred electrophoretically onto a polyvinylidene difluoride
membrane (Bio-Rad, Hercules, CA, United States) at 200 mA
overnight. Membranes were blocked with 5% nonfat dry milk
(Cell Signaling Technology, Leiden, Netherlands) in Tris buffered
saline containing 0.05% Tween-20 (0.05% TBS-T; Sigma, St.

Louis, MO, United States) at room temperature for 2 h.
Membranes were incubated with primary antibodies against
PHF-13 (sc32275, 1:1,000, Santa Cruz Biotechnology, Santa
Cruz, CA, United States), Tau (sc32274, 1:1,000, Santa Cruz
Biotechnology, Santa Cruz, CA, UnitedStates) and β-Amyloid
(sc28365, 1:500, Santa Cruz Biotechnology, Santa Cruz, CA,
UnitedStates) overnight at 4°C, followed by 2 h incubation at
room temperature with anti-mouse HRP-linked secondary
antibody. Phospho-Tau protein expression was normalized to
the corresponding total protein. β-Actin was used to control for
sample loading and protein transfer and to normalize the content

FIGURE 2 | Novel Object Recognition performance of rats treated with
icv. streptozotocin (STZ) or citrate buffer (control). Means ± SEM values are
shown. (A,B) Results of experiment 1 (EXP1), when the animals received 2 ×
1.5 mg/kg icv. STZ 8 weeks before the test. Exploration time of the
familiar (old) and unfamiliar (new) objects marginally significantly differ in the
control group (paired t-test: t(5) � 2.10, p � 0.089) but not in the STZ group
(paired t-test: t(7) � 0.70, ns) and the calculated discrimination indices (DI) did
not significantly differ (unpaired t-test: t(12) � 1.33, ns) (C,D) Results of EXP2,
when the animals received 3 × 1.5 mg/kg icv. STZ 14 weeks before the test.
The control group explored the new object for significantly longer time than the
old one (paired t-test: t(10) � 3.53, p < 0.005) while the STZ-treated rats spent
equal time in examining the objects (paired t-test: t(9) � −0.10, ns). The
discrimination indices (DI) of the two groups were also significantly different
(unpaired t-test: t(19) � 2.21, p < 0,05) *p < 0.05 vs “new”, + < p < 0.005 vs
“control”.
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of the β -Amyloid. Signals were detected with a chemiluminescence
kit (Bio-Rad, Hercules, CA, UnitedStates) by Chemidoc XRS+
(Bio-Rad, Hercules, CA, UnitedStates). The intensity of the
samples was measured by Image Lab software (version 4.1, Bio-
Rad, Hercules, CA, UnitedStates). Phospho-specific antibody was
removed with Restore™ Western Blot Stripping Buffer (Thermo
Fisher Scientific, Waltham, MA, UnitedStates) before the
incubation of the corresponding total protein antibody.

Statistics
Groupmeans ± standard error were calculated and significance was
determined by unpaired t-test (5CSRTT days to complete, NOR
discrimination index, PAL, MWM probe trial, WB), paired t-test
(NOR discrimination index), Fischer exact test (PAL frequency) or
repeated measures ANOVA (MWM escape latencies) using the
Statistica 13.5.0.17 software package (TIBCO Software Inc.). The
sigmoidal fits to the 5CSRTT learning curves were performed by the
Origin 2015 software (OriginLab Corporation). In addition, a
multivariate ANOVA was performed on the following variables
in both experiments: NOR discrimination index, days needed to
reach the final stage in the 5-CSRTT, phospho-tau/tau ratio,
β-amyloid level (Statistica 13.5.0.17).

RESULTS

Novel Object Recognition
In EXP1, STZ-treated animals explored less the unfamiliar new
object than the control rats (Figure 2A) and their DI value was

also much lower (0.33 and 0.08 in the control and STZ group,
respectively, Figure 2B), nevertheless, due to the low number of

FIGURE 3 | Passive Avoidance Learning results of rats treated with icv. streptozotocin (STZ) or citrate buffer (control). Columns showmeans ± SEM values of entry
latencies, numbers inside the columns indicate the not entered/total number of animals. (A)Results of experiment 1 (EXP1), when the animals received 2 × 1.5 mg/kg icv.
STZ 11 weeks before the test. No significant difference was observed between control and STZ-treated animals (unpairedt-test acquisition trial: t(15) � −0.23, ns;
unpaired t-test retention trial: t(15) � −0.45, ns; Fischer exact p, two tailed test p � 1.0, ns). (B) Results of experiment 2 (EXP2), when the animals received 3 ×
1.5 mg/kg icv. STZ 6 weeks before the test. No significant difference was observed between control and STZ-treated animals (unpaired t-test acquisition trial: t(22) �
0.85, ns; unpaired t-test retention trial: t(22) � −1.10, ns; Fischer exact two tailed test p � 3707).

FIGURE 4 | Learning performance in the Morris water-maze in EXP1.
Means ± SEM of escape latency values are shown except in the probe trial
where the time spent in the target quadrant is depicted. SE and NW indicate
the position of the escape platform. There was no significant difference
between groups in the acquisition trials on days 1 and 2 (group effect: F(1,15) �
0.89, ns; Day × trial × treatment interaction: F(2,30) � 1.94, ns), in the probe trial
(unpaired t-test: t(15) � −0.51, ns) and during re-acqusition on Day 3 (group
effect: F(1,15) � 1.60, ns, Day × treatment interaction: F(2,30) � 0.11, ns).
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animals remained in the experiment (n � 6 and n � 8 for control
and STZ, respectively) the difference was not statistically
significant (Figure 2B). In EXP2, control animals spent
significantly more time in examining the unfamiliar object
(24.9 s) than the old one (13.9 s) whereas STZ-treated rats
equally explored both (15.6 s and 15.8 s for new and old,
respectively) (Figure 2C). The DI values of the two groups
(0.32 and 0.05 for control and STZ, respectively, Figure 2D)
were significantly different.

Passive Avoidance Learning
There was no significant difference between the learning
performances of groups either in acquisition or retention trials
in any of the experiments (Figures 3A,B).

Morris Water-Mate
In EXP1 this assay was carried out at week 14. Control and treated
animals similarly performed in the acquisition trials (days 1–2,
Figure 4). All of the rats successfully learned the location of the
hidden platform with similar decrease in their escape latency. The
animals spent the same amount of time in the target quadrant
during the probe trial, furthermore no significant difference was
found between the groups during the re-acquisition trials when
the platform was replaced to a new location (Figure 4). In EXP2,
MWM performance was first measured at week 6 (Figure 5A).
Again, no significant difference was detected in the performance
of the control and STZ-treated groups in the three phases of the
test. To examine the possible later development of cognitive
impairment, an additional acquisition session and probe trial
were carried out at week 14; nonetheless there was no significant
difference between the groups (Figure 5B).

5-Choice Serial Reaction Time Task
In EXP1, STZ-treated and control animals showed intersecting
and overlapping learning curves (inflection points of the fitted
sigmoid regression curves were 24.7 and 25.8 days, respectively)
and the days needed to reach the maximum learning stage were
the same (43.8 and 43.8 days, respectively) (Figure 6). In EXP2,
however, the control group learned significantly faster shown by
the two days difference in the midpoint of the fitted sigmoid
regression curves (11.4 and 13.4 days in the control and STZ-
treated group, respectively, Figure 7), furthermore, the STZ-
treated animals needed 3 days more to complete the task
(21.2 vs 18.0 days in the control group), though this difference
was not significant.

Western Blot Measurements
In EXP1, Western blot analysis revealed no significant difference
in phospho-Tau/Tau ratio and β-amyloid level between vehicle-
and STZ-treated animals (Figures 8A,C). In EXP2 we found a
marginally significant elevated phospho-tau/tau ratio (Figure 8B
significant increase in the β -amyloid level in the STZ-treated
animals (Figure 8D).

Multivariate Analysis of Variance
We foundmore pronounced effects in four out of the six assays in
EXP2 vs EXP1, although in themselves they were not always
statistically significant. To statistically analyze the overall
difference between the two experimental protocols we
performed a multivariate ANOVA on four variables each from
one of these 4 assays: phospho-tau/tau ratio, β-amyloid level,
NOR discrimination index, and days needed to reach the final
stage in the 5-CSRTT. The difference between the control and

FIGURE 5 | Learning performance in the Morris water-maze in EXP2. Means ± SEM of escape latency values are shown except in the probe trial where the time
spent in the target quadrant is depicted. SE and NW indicate the position of the escape platform. (A) There was no significant difference between groups in the
acquisition trials on days 1, 2 and 3 (Day x trial × treatment interaction: F(4,88) � 1.80, ns) in the probe trial (unpaired t-test: t(22) � 0.58, ns)) and during the re-acquisition at
day 4 (Day × treatment interaction: F(2,44) � 3.79, ns). (B) No significant difference was detected during the additional acquisition session (Day × treatment
interaction: F(2,44) � 0.01, ns) and the second probe trial (unpaired t-test: t(22) � 0.66, ns).
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STZ groups was significant in EXP2 (Wilks λ � 0.397, F(4,13) �
4,931; p � 0.012) whereas it was not significant in EXP1 (Wilks
λ � 0.583, F(4,6) � 1.072; p � 0.446).

DISCUSSION

The icv. STZ-induced brain pathology has been an increasingly
used model of Alzheimer’s disease. The preferred subjects of the
model are Wistar and to a lesser extent–the Sprague-Dawley rats
and mice. A few papers were published on Lewis rats (Blokland
and Jolles, 1993; Bloch et al., 2017) but pigmented rats–up to our
knowledge have not been examined in the model yet. However,
apart from the species and strain, several variations of other
parameters of the model have been published which offered
various options to choose while transferring the model to the
Long-Evans strain.

1. Dosing of STZ: the most common dosing is 3 mg/kg split
into two 1.5 mg/kg doses injected with two days difference
(Sonkusare et al., 2005; Pathan et al., 2006; Prakash and
Kumar, 2009; Salkovic-Petrisic et al., 2011, Salkovic-Petrisic
et al., 2015; Hashemi-Firouzi et al., 2018; Knezovic et al., 2018;
Majkutewicz et al., 2018; Yamini et al., 2018) but single 1 mg/kg
(Salkovic-Petrisic et al., 2006, 2015; Grünblatt et al., 2007),
1.5 mg/kg (Blokland and Jolles, 1993; Jee et al., 2008; Deng
et al., 2009), 2 mg/kg (Moreira-Silva et al., 2018) and 3 mg/kg
(Rodrigues et al., 2010; Correia et al., 2013; Osmanovic Barilar
et al., 2015; Samy et al., 2016; Zappa Villar et al., 2018; Bavarsad
et al., 2020) doses are also applied. We chose the first regimen.

2. Follow-up period after the injection: the majority of the
published studies applied a one month long post-injection period

(Li et al., 2012; Correia et al., 2013; Zhou et al., 2013; Hashemi-
Firouzi et al., 2018; Zappa Villar et al., 2018) or even shorter,
2–3 weeks intervals (Blokland and Jolles, 1993; Sonkusare et al.,
2005; Jee et al., 2008; Deng et al., 2009; Yamini et al., 2018). There
are some studies where longer, 3 months follow-up periods were
used (Salkovic-Petrisic et al., 2006, Salkovic-Petrisic et al., 2011,
Salkovic-Petrisic et al., 2015; Knezovic et al., 2015; Samy et al., 2016;

FIGURE 6 | Learning performance in the 5 Choice Reaction Time task in EXP1. Learning curves of control and STZ-treated animals are depicted. Shaded areas
show the 95% confidence band of the fitted sigmoidal regression curves (thin [red] lines). The column chart inset shows the number of days taken to reach the maximum
stage. Means ± SEM values are shown. No significant difference was detected either between the learning curves or in the days elapsed until reaching the final stage
(unpaired t-test: t(15) � 0.25, ns).

FIGURE 7 | Learning performance in the 5 Choice Serial Reaction Time
task in EXP2. Learning curves of control and STZ-treated animals are
depicted. Shaded areas show the 95% confidence band of the fitted
sigmoidal regression curves (thin [red] lines). The regression lines
significantly differ (no overlap between the confidence bands). The column
chart inset shows the number of days taken to reach the final stage. Means ±
SEM values are shown. No significant difference was detected between the
two groups (unpaired t-test: t(21) � −1.46, ns).
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Knezovic et al., 2018; Ilieva et al., 2019; Voronkov et al., 2019) In
two very much informative longitudinal studies (Knezovic et al.,
2015; Osmanovic Barilar et al., 2015) changes/impairments were
followed up to 9 months. In our study we chose a 3–3.5 months
follow up period considering that the method is intended to be a
model of Alzheimer’s disease, which would imply slowly evolving
long term pathological changes and that it allowed to conduct
learning tasks requiring several weeks training, like 5-CSRTT.

3. Selected cognitive assays and their timing: PAL (fear
memory) and MWM (spatial learning and memory) are by far
the most common tasks in the literature with usually significant
impairments in the STZ-treated groups. Their timing varies but
impairments were shown already at 2–3 weeks post-injection both
in the PAL (Blokland and Jolles, 1993; Lannert and Hoyer, 1998;
Sharma andGupta, 2001; Sonkusare et al., 2005; Pathan et al., 2006;
Jee et al., 2008; Knezovic et al., 2015; Samy et al., 2016) and in the
MWM assays (Pathan et al., 2006; Grünblatt et al., 2007; Prakash
and Kumar, 2009; Agrawal et al., 2011; Zhou et al., 2013; Salkovic-
Petrisic et al., 2015; Samy et al., 2016; Rajasekar et al., 2017;
Majkutewicz et al., 2018; Yamini et al., 2018). Later
measurements (1–3 months) also showed impaired
performance; PAL: (Samy et al., 2016; Lu et al., 2017; Hashemi-
Firouzi et al., 2018; Knezovic et al., 2018; Bavarsad et al., 2020),
MWM: (Shoham et al., 2003; Salkovic-Petrisic et al., 2006;
Grünblatt et al., 2007; Rodrigues et al., 2010; Li et al., 2012;

Correia et al., 2013; Salkovic-Petrisic et al., 2015; Samy et al.,
2016; Knezovic et al., 2018; Bavarsad et al., 2020; Liu et al., 2020).
Impaired visual recognition memory was also detected in the novel
object recognition paradigm 3–8 weeks after STZ-treatment. We
chose to apply these cognitive assays. To extend the cognitive
domains under investigation we added the 5-CSRTT paradigm
(attention). This task requires a long training period therefore we
started with it soon after recovery from surgery in EXP1. Timing of
the other three assays was based on literature data with taking care
to avoid interference with the initial training phase of the 5-
CSRTT.

4. Detecting amyloid and tau pathology: increase in phospho-
tau/tau ratio was already observed from 2 weeks post-injection
and was detected either by Western-blot technique (Salkovic-
Petrisic et al., 2006; Grünblatt et al., 2007; Li et al., 2012; Correia
et al., 2013; Kosaraju et al., 2013; Zhou et al., 2013; Osmanovic
Barilar et al., 2015; Salkovic-Petrisic et al., 2015; Lu et al., 2017;
Moreira-Silva et al., 2018; Zappa Villar et al., 2018) or by
immunostaining (Lu et al., 2017; Knezovic et al., 2018; Wu
et al., 2018). Increase in β-amyloid was shown at later
timepoints, about 1.5 months on, by either ELISA (Correia
et al., 2013; Kosaraju et al., 2013; Samy et al., 2016; Lu et al.,
2017; Wu et al., 2018; Ilieva et al., 2019) or Western-blot (Choi
et al., 2014; Kang and Cho, 2014; Zappa Villar et al., 2018) or
immunostaining (Salkovic-Petrisic et al., 2006; Choi et al., 2014;

FIGURE 8 | The effect of icv. STZ or citrate buffer (control) treatment on the tissue protein levels of phospho-Tau (A,B) and β-amyloid (C,D) in EXP1 (A,C) and EXP2
(B,D)measured byWestern blot. Means ± SEM values are shown. There was no significant difference between the groups in phospho-tau/tau ratio in EXP1 (unpaired t-
test: t (14) = −0.19, ns) (A) whereas a trend for an increase in the STZ group can be seen in EXP2 (unpaired t-test: t (22) = −2.012, p = 0.06) (B) Also, there was no
significant difference in β-amyloid level in EXP1 (unpaired t-test: t (13) = −1.13, ns) (C)while significantly elevated β-amyloid level was found in the STZ-treated group
in EXP2 (unpaired t-test: t (20) = −2.45, p < 0.05 (D) *<0.05, #<0.10.
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Kang and Cho, 2014; Knezovic et al., 2015; Salkovic-Petrisic et al.,
2015). Amyloid-plaque like deposits appeared first at 3 months
after STZ injection in the meningeal vessels visualized either by
congo red (Salkovic-Petrisic et al., 2006) or by immunostaining
(Bloch et al., 2017). At 6 and 9 months they became more
pronounced (Salkovic-Petrisic et al., 2011) and progressed into
the brain parenchyima (Knezovic et al., 2015). We chose Western
blot detection of both phospho-tau and β-amyloid proteins.

During EXP1, we couldn’t find any significant difference
between the control and STZ-treated groups either in the
behavioural assays or in the histological markers β-amyloid
and phospho-tau/tau ratio. STZ animals learnt the MWM and
5-CSRTT tasks as well as control animals did. In the PAL test
relatively lowmemory trace could be observed even in the control
group. In the NOR assay the control animals showed a sufficient
level of discrimination while the STZ-treated rats were much
inferior, but due to the low final sample size these differences were
not significant.

The results obtained during EXP1 suggested that the dose of
STZ may have been inadequate in Long-Evans rats. Therefore, we
increased the dose by a factor of 1.5 in EXP2. It was a cautious
increase since the exact dose-response relationship is not entirely
clear for the icv STZ, and some reports showed dramatic changes
even at the 3 mg/kg dose (Bloch et al., 2017). Furthermore,
personal communications on unpublished experimental
attempts also warned us about severe histological or
behavioural toxicity. Instead of increasing the injected dose we
added a third 1.5 mg/kg injection partly to avoid acute toxicity,
partly to approximate a more prolonged STZ influence.

We also changed the timing of the cognitive assays. We
assumed that the early 5 CSRTT learning engagement and the
consequential frequent handling of the animals may have had a
protective effect against STZ treatment. During EXP2 we
dismissed any measurements in the first and a half month to
allow a kind of incubation period. PAL and MWM, as the most
sensitive tests were the first, while the 5-CSRTT training started
afterwards to avoid the above mentioned interference. The NOR
test was placed to the end. However, as we did not get any
impairment in the MWM, we repeated it at the end of the
follow-up period to see if the deterioration could be detectable
by then.

During EXP2, we could not again find significant difference
in the PAL and MWM tests. In the former, the observed
memory trace in the control group was good enough this
time to allow to detect an eventual inhibition, yet STZ
treated animals performed at least as well as the controls. In
the MWM tests, animals showed a similar performance both in
the acquisition and probe trials both at the first and the second
occasion. These results are in sharp contrast to the findings of
the literature referred above, and the discrepancy is not easily
explainable. For the MWM one may speculate that STZ
treatment may affect visual acuity, which plays an important
role in MWM learning, and the superior visual acuity of
pigmented rats over white ones (Prusky et al., 2002) may
have remained more functional after the STZ-treatment. In
most of the cited studies, white STZ-treated rats also showed
a learning process but slower than the controls. In the studies of

(Prakash and Kumar, 2009; Prakash et al., 2015) STZ-treated
animals also found a visible platform significantly slower than
the controls. These findings suggest that the impaired MWM
performance may resulted from–at least partly–a visual
impairment. Certainly, such a difference cannot play a role
in the PAL task. In this assay a possible–though admittedly
feeble–explanation could be if STZ would cause a higher anxiety
state in Long-Evans than in white rats, which would resulted in a
higher sensitivity to punishment allowing stronger fear memory
formation.

In the NOR test, control but not STZ-treated animals
explored significantly more the unfamiliar object, and the
discrimination index of the STZ group was significantly
lower. These findings are in accordance with those in the
literature (Lu et al., 2017; Hashemi-Firouzi et al., 2018;
Moreira-Silva et al., 2018; Wu et al., 2018; Zappa Villar
et al., 2018). In the 5-CSRTT paradigm STZ-treated animals
showed slower learning than the controls, although they were
also able to acquire the task. In the Western blot measurements
we found marginally significant increase in the phospho-tau/
tau ratio and significant increase in the β-amyloid level in the
hippocampus of animals in the STZ group compared to
controls. These results are again in line with those of the
literature (Correia et al., 2013; Kosaraju et al., 2013; Samy
et al., 2016; Lu et al., 2017; Wu et al., 2018; Zappa Villar et al.,
2018) and point out that the 3 × 1.5 mg/kg dose was sufficient to
induce biochemical changes.

Overall, in EXP2, the effects of STZ were more pronounced in
the NOR, 5-CSRTT, β-amyloid, and phospho-tau assays
compared to EXP1, which was confirmed by the multivariate
analysis. However, we still get no difference in the two key tests,
MWM and PAL. We can conclude that some tests may be more
sensitive to treatment (prominently the NOR task), while the
aversively motivated learning tasks (PAL and MWM) still
remained insensitive to the effect of STZ despite the elevated
dose. Thus, our findings suggest that Long-Evans rats are likely
less sensitive to STZ treatment. As this strain is crucial in our test
system, we continue experimenting in it with the STZ treatment.
We plan to apply the 3 × 1.5 mg/kg dosing of STZ in trained,
experienced animals and also in aged rats. A possible
modification of the model could be the injection of 3 ×
2 mg/kg dose or administration of STZ via osmotic
minipump, to ensure a continuous and longer lasting exposure
to the drug.
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