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The aim of this study was to apply machine learning methods to deeply explore the risk
factors associated with adverse drug events (ADEs) and predict the occurrence of ADEs in
Chinese pediatric inpatients. Data of 1,746 patients aged between 28 days and 18 years
(mean age � 3.84 years) were included in the study from January 1, 2013, to December 31,
2015, in the Children’s Hospital of Chongqing Medical University. There were 247 cases of
ADE occurrence, of which the most common drugs inducing ADEs were antibacterials.
Seven algorithms, including eXtreme Gradient Boosting (XGBoost), CatBoost, AdaBoost,
LightGBM, Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and TPOT,
were used to select the important risk factors, and GBDT was chosen to establish the
prediction model with the best predicting abilities (precision � 44%, recall � 25%, F1 �
31.88%). The GBDT model has better performance than Global Trigger Tools (GTTs) for
ADE prediction (precision 44 vs. 13.3%). In addition, multiple risk factors were identified via
GBDT, such as the number of trigger true (TT) (+), number of doses, BMI, number of drugs,
number of admission, height, length of hospital stay, weight, age, and number of
diagnoses. The influencing directions of the risk factors on ADEs were displayed
through Shapley Additive exPlanations (SHAP). This study provides a novel method to
accurately predict adverse drug events in Chinese pediatric inpatients with the associated
risk factors, which may be applicable in clinical practice in the future.
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INTRODUCTION

Rising attention has been paid to the early warning of adverse drug events (ADEs) in
hospitalized children. ADEs are defined as medication-related patient injury caused during
any stage of the medication process, some of which are preventable due to errors, whereas some
are adverse drug reactions (ADRs) and non-preventable (Desireé et al., 2009; Marcum et al.,
2013; Malladi, 2016). The World Health Organization defines an ADR as a response to a
noxious and unintended drug (Smyth et al., 2012). Events such as overdose, drug abuse,
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treatment failure, and drug administration errors are
excluded from ADRs. In this study, we considered ADEs
including ADRs and drug administration errors. ADEs can be
manifested by signs, symptoms, or laboratory abnormalities,
which are important causes of iatrogenic morbidity and
mortality (Desireé et al., 2009).

As a special population, pediatric patients commonly have
complicated situations, and the incidence of ADEs is hard to
predict. A systematic review of 102 studies concluded that the
incidence rates for ADRs causing pediatric admission ranged
from 0.4 to 10.3% (Sakuma et al., 2014). Another study on
Japanese pediatric inpatients found frequent ADEs with an
incidence of 37.8 per 1,000 patient-days, and most were non-
preventable (Morimoto et al., 2011). Surprisingly, the
incidence of ADEs was around two times higher in
admitted children than in adults (37.8 vs. 17.0 per 1,000
patient-days), and the incidence of medication errors was
about eight times higher in admitted children than in adults
(65.1 vs. 8.7 per 1,000 patient-days) (Poole, 2008). The
possible reasons may be complexities in the pediatric
medication process, which needs specific dosage
calculation based on the age and weight of individual
child; moreover, children are difficult to express and
describe the symptoms of ADEs (Takata et al., 2008;
Morimoto et al., 2011).

So far, the Global Trigger Tool (GTT), developed by the
Institute for Healthcare Improvement (IHI), is a commonly
used method for identifying potential ADEs among pediatric
populations in the United States, the United Kingdom,
Norway, Australia, and Japan (Grifn and Resear, 2009;
Morimoto et al., 2011; Kirkendall et al., 2012; Chapman
et al., 2014; Solevag and Nakstad, 2014; Hibbert et al.,
2015; Ji et al., 2018). In China, Ji et al. explored the
associated risk factors to predict ADEs using the GTT in
children through stepwise logistic regression. The GTT uses
“triggers” to identify ADEs, presenting as the ordering of
certain medications, change of clinical status or symptoms,
abnormal laboratory values, and abrupt stop orders (Resar
et al., 2003; Marcum et al., 2013). However, based on previous
research, pediatric patients have remarkable differences with
regard to the risk factors associated with ADEs. Some found
that gender, the number of drugs, use of antibacterial drugs,
length of hospital stay, and general anesthesia were associated
with ADEs in children. These findings still create controversy
(Star et al., 2011; Rashed et al., 2012; Tiesen et al., 2013;
Saedder et al., 2015; Andrade et al., 2017).

In our study, we aimed to apply machine learning methods
to explore the associated risk factors for ADEs in Chinese
pediatric inpatients. The rapidly developing machine
learning methods can promote data-driven estimation
when screening from multiple variables and capture
nonlinear relations to achieve high accuracy in predicting
clinical outcomes. We proposed to make a comparison
between the study outcome and the findings of Ji et al., in
order to find an optimal model to accurately predict pediatric
ADEs and take effective prevention measures.

METHODS

Study Design and Population
We enrolled pediatric inpatients from January 1, 2013, to
December 31, 2015, in the Children’s Hospital of Chongqing
Medical University, which is a large tertiary children’s hospital in
China. Data were collected from the electronic medical records
through the medical record system and the bar code system for
medication administration. In order to compare the final results
with those of the study by Ji et al., we applied the same criteria to
select patients. The inclusion criteria were patients aged >28 days
and <18 years, whose length of hospital stay >1 day and who were
discharged or died between January 1, 2013, and December 31,
2015. The exclusion criteria were as follows: patients who had no
drug exposure or were from the PICU, neonatal ward,
hematology department, or oncology department (they were
excluded because they had special treatment regimens that
needed different triggers for ADE research). Samples were
randomly selected from eligible patients using a random
equidistant sampling method, obtaining a total of 1,800
patients. The whole dataset was then divided into derivation
and test cohorts at the ratio of 8:2.

Data Processing
Data were collected from medical records including patient’s
basic information, diagnostic and treating procedures,
medication charts, laboratory values, surgical records, nurse’s
records, physician’s records, and admission and discharge
records. One pharmacist and two pediatricians were assigned
to examine the data and determine the occurrence of ADEs. If
there was a disagreement, the final decision was made based on a
consensus after team discussion. If the patient got actual harm
that was related to medication, then the event was deemed as an
ADE. Herein, harm was defined as an accidental body injury that
needed medical care with additional monitoring, treatment, or
hospitalization, including permanent injury or death. To be
specific, the following symptoms or diseases were deemed as
the occurrence of ADEs: gastrointestinal disorders (e.g., diarrhea,
constipation, and vomiting), nervous system disorders (e.g.,
convulsions, convulsions grand mal, and over-sedation/
hypotension), resistance mechanism disorders (e.g., candidiasis
and fungal infection), metabolism and nutrition disorders (e.g.,
hyperkalemia, hypokalemia, hypoglycemia, hyperglycemia, and
hyponatremia), respiratory system disorders (e.g., respiratory
depression, bronchospasm, and dyspnea), rash, hepatotoxicity,
nephritis, coagulopathy, leukopenia, allergic reactions, and so
forth. The number of ADEs per case � the total number of ADEs/
the number of cases.

Selection of Risk Factors
Based on the data of pediatric inpatients’ records, the risk factors
were screened from multiple patient characteristics. To be
specific, we included patients’ demographic information (such
as gender, age, weight, and height), status at birth (such as natural
delivery/cesarean, premature birth, and weight at birth),
information about admission (such as the number of medical

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6590992

Yu et al. Predicting adverse drug events

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


diagnoses, admissions, admissions in the previous 1 year, and the
length of hospital stay), and treatment information (such as
surgical operation, number of drugs and doses, and the use of
antibacterial, sedative analgesic, and anesthetic drugs). We set
“the occurrence of ADEs” as the target variable to analyze which
characteristic had remarkable influence on it. Subsequently,
machine learning methods were applied to calculate the
importance score of all risk factors according to patient
characteristics, represented as a ranking figure. A factor with a
higher risk score indicates more impact on the occurrence of
ADEs. Based on the selected factors, we visually displayed the
Shapley Additive exPlanations (SHAP) figure to demonstrate the
positive or negative correlations between risk factors and the
occurrence of ADEs (Lundberg and Lee, 2017).

Model Establishment and Comparison
Using the selected risk factors as covariates, seven machine
learning models were first established and analyzed through
algorithms including eXtreme Gradient Boosting (XGBoost),
CatBoost, AdaBoost, LightGBM, Random Forest (RF),
Gradient Boosting Decision Tree (GBDT), and TPOT. The
prediction metrics of the seven models were evaluated and
compared in terms of the receiver operating characteristic
(ROC) curve and the value of area under the curve (AUC),
which represented the overall ability of classification and
prediction. In order to compare the results with those of the
study by Ji et al., precision/positive predictive value (PPV), recall,
and F1 values of the prediction model were calculated. Precision/
PPV indicates the number of times a risk factor independently
identified an ADE divided by the number of times a risk factor
was identified as positive. Ultimately, the algorithm with the best
performance was selected to establish the model to predict the
occurrence of ADEs in Chinese pediatric inpatients.

Statistical Analysis
Data were analyzed by using Python 3.6.4 and WPS Office.
Algorithms including XGBoost, CatBoost, AdaBoost,
LightGBM, RF, GBDT, and TPOT were chosen to investigate
risk factors associated with ADEs and the algorithm with the best
performance was selected to establish the ADE prediction model.
The evaluating metrics for model performance are as follows
(Powers and Ailab, 2011):

Precision � TP
TP + FP

,

Recall � TP
TP + FN

,

F1 � 2 × Precision × Recall
Precision + Recall

.

TP, true positive, indicating the positive class is predicted
as the number of positive classes; TN, true negative,
indicating the negative class is predicted as the number of
negative classes; FP, false positive, indicating the negative
class is predicted as the number of positive classes; FN, false
negative, indicating the positive class is predicted as the
number of negative classes.

F1 is used to measure the merits and defects of the model, a
larger F1 value indicating better model performance.

RESULTS

Study Population
A total of 1,800 patients (cases) were enrolled in this study, while
54 patients were excluded, 28 of whom had no drug exposure and
26 of whom were diagnosed with cancer. The whole dataset was
divided into derivation and test cohorts at the ratio of 8:2, which
were 1,396 and 350 cases, respectively. According to Table 1,
there is no significant difference between derivation and test
cohorts (p > 0.05), except that gender and treatment with sedative
analgesics have a slightly lower p-value (p � 0.02). In the final
dataset of 1,746 cases, children were of the average age of
3.84 years, ranging from 0.08 to 17.75 years, females accounted
for 35% (611 cases) and males 65% (1,135 cases), and the average
body mass index (BMI) was 16.45 kg/cm2. The mean length of
hospital stay was 7.83 days (ranging between 1 and 63 days), the
average number of using drugs was 14 (1–64) per patient, and the
average doses were 114 doses (1–1,206 doses) per patient. A total
of 221 patients had ADEs, of which 32.6% were females, 77.4%
were children with natural delivery, and proportions of children
treated with antibacterial, sedative analgesic, and anesthetic drugs
were 66.1, 43.0, and 52.5%, respectively. The relationships of these
factors with the occurrence of ADEs need further screening in the
following sections.

ADEs and Risk Factors
A total of 247 ADEs were identified in 221 patients, with an
incidence rate of 12.7%. In Table 2, we summarize the
classification of the drugs leading to the 247 ADEs. Anti-
infective drugs including antibacterials, antivirals, and anti-
tuberculosis drugs were the most common drugs causing
ADEs in pediatric inpatients (35.9%). The importance scores
of risk factors were calculated and ranked using seven algorithms.
Since the GBDT model was ultimately proven to be the optimal
one, Figure 1 only displays the importance score ranking in the
GBDT model, the top 10 of which includes the number of trigger
true [triggers were found to occur, TT (+)], number of doses,
BMI, number of drugs, number of admission, height, length of
hospital stay, weight, age, and number of diagnoses in a
descending order. Among them, the number of TT (+) has the
highest score of 0.2911, followed by the number of doses (0.1589)
and BMI (0.1179), demonstrating their importance in predicting
pediatric ADEs.

As depicted in Figure 2, for risk factors including the number
of TT (+), number of doses, number of drugs, number of
admission, number of diagnoses, and height, the dot color is
redder when SHAP value gets larger and the color is bluer when
SHAP value gets smaller, thus showing positive impacts of these
factors on the risk of ADEs. Their SHAP values also show the
same indications, which are 0.009, 0.082, 0.086, 0.011, 0.004, and
0.008 for the number of TT (+), number of doses, number of
drugs, number of admission, number of diagnoses, and height,
correspondingly. On the contrary, risk factors including age,
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BMI, and weight display negative impacts on the risk of ADEs,
and their SHAP values are −0.003, −0.005, and −0.008,
respectively. The length of hospital stay shows unclear
direction of influence (SHAP � 0.001). Some display evident
influencing directions, and others are relatively indistinct. With a
larger sample size, the direction would be clear.

Model Establishment and Comparison
In Table 3, the metrics of seven models are compared in terms of
precision, recall, and F1 value. Among the seven models, TPOT
has the highest precision (75%) but moderate values of recall
(13.64%) and F1 (23.08%), while GBDT has the highest values of
recall (25%) and F1 (31.88%) with a moderate precision (44%). In
addition, the visual comparisons of the seven models are
displayed in Figure 3, including the precision-recall curve and
the ROC curve, where the GBDT model achieves the highest
AUC of 0.809. It can be seen that the GBDT model outperforms
other models in the aspects of recall, F1, and AUC, demonstrating
a good ability of model classification and prediction. After overall
consideration of the predicting performance, we chose the model
using the GBDT algorithm over the others to predict the
occurrence of ADEs. Compared with the PPV of 13.3% in the

study by Ji et al., the GBDT model has a precision of 44%, which
surpassed their outcome (Marcum et al., 2013).

DISCUSSION

Prediction based on important risk factors is necessary for the
prevention of ADEs in pediatric patients; nevertheless, it is
difficult to achieve a precise prediction due to complex body
status and dosing regimens of children. In the present study, we
attempted to apply machine learning methods to deeply explore
the risk factors associated with ADEs, since in the real-world
studies, variables are not always independent of each other, and
they are closely related in the nonlinear way. The normally used
multivariate analysis methods cannot capture the complex
relationships of variables, which machine learning methods are
skilled in, especially GBDT that we used is able to divide and
reaggregate variables to achieve the minimum prediction error
when growing sub-trees. In this way, the nonlinear relationship
between variables can be well captured. In addition, they all have
the ability to learn from data with missing values directly, which
can better adapt to the data situation in the real world. In the

TABLE 1 | Characteristics of patients with and without ADEs.

Variable Derivation cohort
(N = 1,396)

Test cohort
(N = 350)

p-value Total (n = 1,746) Patients with
ADEs (n = 221)

Patients with
no ADEs
(n = 1,525)

Demographics
Female (%) 33.6% 40.6% 0.02 35.0% 32.6% 35.3%
Age (y) 3.8 ± 3.89 3.72 ± 3.89 0.35 3.84 ± 3.89 3.72 ± 4.12 3.86 ± 3.85
Weight (kg) 16.30 ± 11.66 15.54 ± 10.72 0.39 16.15 ± 11.48 15.37 ± 11.51 16.26 ± 11.47
Height (cm) 95.01 ± 29.37 93.46 ± 29.41 0.36 94.70 ± 29.38 91.97 ± 31.40 95.10 ± 29.06
BMI (kg/cm2) 16.49 ± 3.63 16.27 ± 3.13 0.84 16.45 ± 3.53 16.17 ± 2.85 16.49 ± 3.62

Developmental and nutritional status
Fine 513 (36.7%) 126 (36.00%) 0.41 639 (36.6%) 70 (31.7%) 569 (37.3%)
Medium 757 (54.2%) 187 (53.43%) 944 (54.1%) 123 (55.7%) 821 (53.8%)
Lower middle 99 (7.1%) 25 (7.14%) 124 (7.1%) 19 (8.6%) 105 (6.9%)
Others 27 (1.9%) 12 (3.43%) 39 (2.2%) 9 (4.1%) 26 (2.0%)

Status at birth
Natural delivery 382 (27.4%) 84 (24%) 0.22 1,280 (73.3%) 171 (77.4%) 1,110 (72.7%)
Cesarean 1,014 (72.6%) 266 (76%) 466 (26.7%) 50 (22.6%) 416 (27.3%)
Premature birth 63 (4.5%) 16 (4.57%) 0.92 79 (4.5%) 14 (6.3%) 65 (4.3%)
Weight at birth 3.22 ± 0.50 3.22 ± 0.51 0.83 3.22 ± 0.50 3.18 ± 0.49 3.22 ± 0.51

Admission
Length of stay (d) 7.90 ± 5.51 7.58 ± 4.32 0.42 7.83 ± 5.29 10.23 ± 8.03 7.48 ± 4.66
Number of medical diagnoses 2.94 ± 1.89 3.11 ± 2.02 0.92 2.97 ± 1.89 2.92 ± 1.98 2.83 ± 1.71
Number of admissions 1.80 ± 1.43 1.88 ± 1.39 0.67 1.81 ± 1.42 2.07 ± 1.60 1.77 ± 1.39
Number of admissions in the previous 1 year 0.47 ± 1.02 0.59 ± 1.12 0.26 0.49 ± 1.04 0.61 ± 1.01 0.47 ± 1.04

Treatment
Surgical operation 422 (30.2%) 90 (25.7%) 0.11 506 (29.0%) 64 (30.3%) 442 (28.8%)
Number of drugs 14.14 ± 6.82 14.31 ± 6.53 0.84 14.18 ± 6.77 18.82 ± 9.02 13.51 ± 6.01
Number of doses 114.24 ± 109.94 114.10 ± 87.77 0.83 113.94 ± 104.97 189.94 ± 187.00 102.92 ± 83.30
Antibacterial use 720 (51.6%) 194 (55.43%) 0.22 914 (52.3%) 146 (66.1%) 768 (50.4%)
Sedative analgesic use 587 (42.0%) 122 (34.86%) 0.02 709 (40.6%) 95 (43.0%) 614 (40.3%)
Anesthetic use 798 (57.2%) 199 (56.86%) 0.97 997 (57.1%) 117 (52.5%) 880 (57.7%)

Other
Number of TT (+) 1.42 ± 1.49 1.56 ± 1.62 0.88 1.45 ± 1.51 2.95 ± 2.02 1.23 ± 1.29
ADEs 177 (79.1%) 44 (19.9%) 0.99 221 (12.7%) 221 (100%) 0

Abbreviations: BMI, body mass index; TT, trigger true; ADEs, adverse drug events
Notes: Data for variables are presented asmean ± variance, excluding those presented as cases and percentage (%). p-value is calculated for comparing the difference between derivation
and test cohorts, p < 0.05 is considered significant.
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study by Ji et al., they found that an overall PPV of using trigger
tools for ADE prediction was 13.3% at the Children’s Hospital of
Chongqing Medical University, within the range of other trigger
tools in pediatric care centers from 3.7 to 38% (Kirkendall et al.,
2012; Marcum et al., 2013; Chapman et al., 2014; Unbeck et al.,

2014; Solevag and Nakstad, 2014; Hibbert et al., 2015; Stockwell
et al., 2015). In our study, the precision/PPV of the selected
GBDT model was 44%, which outperforms the results of the
study by Ji et al. and the majority of similar studies using trigger
tools for ADE prediction.

TABLE 2 | Classification of drugs leading to occurrence of ADEs.

Classification of medicines Types of medicines Number of cases Percentage (%)

Anti-infective drugs Antibacterials 86 35.9
Antivirals 3
Anti-tuberculosis drugs 1

Nervous system drugs Anti-epileptics 12 27.1
Anti-anxiety drugs 1
Sedatives 55

Digestive system drugs Acid inhibitors 7 4.8
Antidiarrheal drugs 5

Hormonal and endocrine system drugs Glucocorticoids 6 4.4
Insulin 5

Drugs to regulate water, electrolyte, and acid–base balance Potassium chloride, glucose 10 4.0
Urological system drugs Diuretics 4 2.0

Dehydrating agent 1
Antipyretic, analgesic, and anti-inflammatory drugs Antipyretics 4 1.6
Cardiovascular medicines Anti–heart failure drugs 1 1.2

Anti-hypertensives 1
Anti-shock drugs 1

Vitamins, minerals, amino acids, etc. Minerals, amino acids 3 1.2
Hematology and hematopoietic system drugs Anticoagulants 3 1.2
Anti-allergic reaction drugs Anti-allergy drugs 2 0.8
Others Immunomodulators 14 15.9

Chinese herbal medicine/Chinese medicine injections 6
Mistake intake of paraquat, acetochlor, cocklebur 6
Blood products 5
Anesthetics 2
Medical tapes 1
Unspecified 6

FIGURE 1 | Importance score ranking for risk factors.
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Ji et al. found the significant risk factors for ADEs
including the number of drugs, the number of doses, and
the number of admissions (Marcum et al., 2013). Compared
with their findings, our study identified the number of TT (+),
BMI, height, weight, age, length of hospital stay, and number
of drugs, doses, admission, and diagnoses, as the top 10
significant risk factors, which should be paid more
attention on their measurement and take corresponding
prevention in clinical. The trigger tools have proven their
utility in multiple studies worldwide, some of which used IHI
GTT (such as in the study by Ji et al., PPV 13.3%) and some of
which developed other trigger tools, such as the U.S.
pediatric-focused trigger tool (PPV 3.7%), the British
National Health Service Pediatric Trigger Tool (PPV
19.8%), and the U.K. Pediatric Trigger Tool (Kirkendall
et al., 2012; Marcum et al., 2013; Chapman et al., 2014;
Solevag and Nakstad, 2014; Unbeck et al., 2014; Hibbert
et al., 2015; Stockwell et al., 2015). Trigger tools show
their practical ability in pediatric patients; however, the
PPV of trigger tools was generally low and varied greatly
among different populations and health care centers. We
found that the number of TT (+) has a positive
relationship with ADEs, which is also the most important

FIGURE 2 | SHAP values of the important risk factors. The dot color is redder when the feature value gets higher and bluer when the feature value gets lower. When
the SHAP value gets higher, the impact of the variable on model output is larger.

TABLE 3 | Model performance using seven algorithms.

Model Precision Recall F1

GBDT 44.00 25.00 31.88
LightGBM 27.27 6.82 10.91
AdaBoost 41.18 15.91 22.95
RF 23.08 13.64 17.14
CatBoost 46.15 13.64 21.05
TPOT 75.00 13.64 23.08
XGBoost 34.62 20.45 25.71

FIGURE 3 | Visual presentation of model performance based on seven
algorithms. (A) displays the precision–recall curve. (B) displays the ROC curve.
When the area under curve is closer to “1,” the performance of model
classification and prediction is better. Abbreviations: RF, Random Forest;
GBDT, Gradient Boosting Decision Tree; XGBoost, eXtreme Gradient Boosting.
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risk factor, demonstrating that ADEs could be better
predicted with more occurred triggers. Hence, it is highly
recommended to increase the number of triggers and take
them into consideration with other important risk factors
together, in order to predict ADEs more accurately.

We also confirmed the importance of the number of drugs,
doses, and admissions, which was consistent with the study
by Ji et al. and previous research. The potential reason for the
number of drugs as a risk factor could be the rising
accumulated risks of multiple drug treatment, interactions
between different drugs, and medication errors (Marcum
et al., 2013). A similar reason can explain the number of
doses being a risk factor, in that patients faced more risks of
ADRs and the occurrence of overdose and drug abuse. As for
the number of admissions, pediatric patients who were
admitted frequently were commonly diagnosed with
diseases requiring high-risk drugs, such as antiepileptic
drugs for epilepsy, antibacterial drugs for recurrent
infection, and some drugs for chronic diseases including
corticosteroids, immunosuppressive agents, and analgesics
(Rashed et al., 2012; Marcum et al., 2013). With regards to the
number of diagnoses, a newly confirmed risk factor positively
associated with ADEs in our study, generally, more drugs are
used if the patient is diagnosed with more diseases. It can be
explained by the increasing opportunities of drug–drug
interactions, use of high-risk drugs, and occurrence of
ADRs as well.

In terms of the hospital stay length, our result shows that it has
an impact on the occurrence of ADEs. However, the length of
hospital stay is commonly influenced by a couple of other factors,
such as patient status, nursing care, and drug regimens (including
the number of drugs and doses). Therefore, we did not consider
the length of hospital stay as an independent risk factor for ADEs.
In addition, some research believed that ADEs lead to prolonged
length of hospital stay, which shows an inverse causal relationship
(Rashed et al., 2012; Munoz-Torrero et al., 2010; Amelung et al.,
2017). The causal relationship between length of hospital stay and
ADEs is still a controversial topic currently, which needs further
research in the future.

Of note, BMI, height, and weight were identified as remarkable
risk factors. It is possibly because children have substantial
variation in terms of weight and height, with their weights
varying from 400 g to 120 kg (Takata et al., 2008). Moreover,
most drugs need dosing calculation based on children’s weight,
which may lead to a potential of 300-fold dosing errors (Takata
et al., 2008). This is a noteworthy factor that needs careful records
and strict reference of weight and height in order to predict
pediatric ADEs in clinical practice. According to our findings,
BMI and weight are negatively correlated to ADEs, indicating that
children with low weight/BMI may experience more ADEs,
possibly due to patient vulnerability as a result of low
nutritional status.

Different from the findings of Ji et al., we found that age is a
risk factor for the occurrence of ADEs, which was inconsistent
with previous studies (Munoz-Torrero et al., 2010; Rashed et al.,
2012). One indicated that age was not an independent risk factor
of ADEs, as older patients showed more possibilities of having
ADEs, which they believed was associated with more
opportunities of using high-risk drugs (Rashed et al., 2012). In
our viewpoint, younger children may be more vulnerable to
ADEs because of the immature developmental and nutritional
status and the susceptibility to drug reactions.

In conclusion, to our knowledge, this is a novel study to
establish a prediction model for ADEs using machine learning
in Chinese pediatric inpatients. The risk factors identified in
this study could be incorporated into routine screen systems
to improve inpatient safety in clinical practice. One drawback
is the limited sample size, which needs to include more
pediatric patient data in the future from different health
care centers. Furthermore, the prediction model using
GBDT should also be further validated in more pediatric
inpatients including those in the hematology, oncology,
PICU, and neonatal units.
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